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Detailed assessments of the ability of recent theoretical approaches to modeling existing experi-
mental data for ternary fission confirm earlier indications that the dominant mode of cluster forma-
tion in ternary fission is clusterization in very neutron rich, very low density, essentially chemically
equilibrated, nucleonic matter. An extended study and comparison of these approaches applied to
ternary fission yields in the thermal neutron induced reaction 241Pu(nth,f) has been undertaken to
refine the characterization of the source matter. The resonance gas approximation has been im-
proved taking in-medium effects on the binding energies into account. A temperature of 1.29 MeV,
density of 6.7 × 10−5 nucleons/fm3 and proton fraction Yp = 0.035 are found to provide a good
representation of yields of the ternary emitted light particles and clusters. In particular, results for
Z = 1 and 2 isotopes are presented. Isotopes with larger Z are discussed, and the roles of medium
and continuum effects, even at very low density are illustrated.

PACS numbers: 21.65.-f, 21.60.Jz, 25.70.Pq, 26.60.Kp

I. INTRODUCTION

In the neutron induced or spontaneous ternary fission
of a heavy isotope a nucleon or light cluster is emit-
ted perpendicular to the fission axis determined by the
two separating large fission fragments [1–11]. 4He, emit-
ted in approximately 1/500 events is the most dominant
charged particle but other charged isotopes with charge
number Z = 1 up to Z = 18 have been observed [9, 10].
These light charged particles (LCP) are emitted from the
neck region at the time of scission and may be considered
as signals which describe the state of nuclear matter in
the neck at that time.

To interpret the observed ternary yields, statistical
models have been applied which assume thermodynamic
equilibrium at chemical freeze-out during scission [12–
14]. However, experimental yields for the heavier ele-
ments are typically overestimated unless some mecha-
nism for suppression of higher mass products is intro-
duced [13, 14]. In Wuenschel et al. [14], chemical equilib-
rium is achieved in accordance with the grand canonical
ensemble only for the lightest isotopes and a time depen-
dent nucleation process for production of heavier LCP
is introduced [15, 16] so that the LCP yield becomes in-
creasingly suppressed with increasing mass number.

Recently, this approach has been explored in more
detail and used to determine isotopic equilibrium con-
stants for LCP emitted in the ternary fission reaction
241Pu(nth,f) [17]. Further investigations were then un-
dertaken to better characterize the ternary fissioning
242Pu source. In [18], the simple ideal model of nuclear
statistical equilibrium was improved considering medium

effects and continuum correlations [19], e.g., resonances
such as 4H, 5He, 8Be (as known from the virial expansion
of the nuclear matter equation of state). A nearly per-
fect description of the measured yields of H and He iso-
topes for 252Cf(sf) was obtained. In [20], several different
fission reactions were investigated within an information
entropy approach, and isotopes up to Z = 6 are included.
These investigations showed that the dominant mode of
cluster formation in ternary fission is clusterization in
very neutron rich, very low density, essentially chemi-
cally equilibrated, nucleonic matter at temperatures near
1 MeV.

In the present work, an extended study and com-
parison of the different approaches applied to modeling
ternary fission yields in the thermal neutron induced re-
action 241Pu(nth,f) [9, 10] is undertaken. A more detailed
exploration of the in-medium and continuum effects leads
to a more refined characterization of the source matter.
We show that, in particular, the weakly bound states
are strongly influenced by in-medium effects and provide
an alternative observable to determine the density of the
source matter. We find that the neck matter at scis-
sion has a temperature T ≈ 1.29 MeV, a nucleon density
nB ≈ 6.7 × 10−5 nucleons/fm3, and a proton fraction
Yp ≈ 0.035. This work provides a baseline laboratory
test of the low-density nuclear equation of state for con-
ditions which may be encountered in astrophysical sites
such as core-collapse supernova events in which a neo-
neutron star is formed, evolves with time and cools down
to a neutron star [21]. Similar neutron rich matter may
also be produced in the merging of a binary neutron star
system. Both systems relax to a temperature of about 1
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MeV in less than a minute. In such dense, highly excited
systems, surface densities of 1011 g/cm3 are typical, but
the proton fraction may be different. In β equilibrium,
it depends upon the neutrino density, see, e.g., [22, 23].
Even if the proton fraction in astrophysical scenarios is
different from the proton fraction in the neck matter at
scission, the equations of state (for a review see, e.g.,
[24, 25]) employed over a wide region of parameter val-
ues may be checked at the special conditions of scission.
Investigations of the correct description of correlations
under scission conditions may also be applied to other
regions of the astrophysical parameter space.

II. YIELDS FROM A QUANTUM STATISTICAL
APPROACH

We consider different stages of the fission process. For
the time evolution of the nucleonic system up to scission
we assume a quick relaxation to local thermodynamic
equilibrium. Within the statistical model framework the
grand canonical distribution at scission, where chemical
freeze-out takes place, gives the primordial (or primary)
yields for the relevant species. For the time evolution af-
ter scission we assume a reaction kinetics in which popu-
lated excited states decay, and the kinetic energies are de-
termined by the interaction between the fission products.
The decay of unstable nuclear states and resonances is de-
scribed as feed-down processes which transform the pri-
mordial distribution of yields to the final observable yield
distribution. This approach to the time evolution of the
fission process may be considered as an approximation
within the systematic approach of non-equilibrium statis-
tical operators where both stages of time evolution, the
hydrodynamical and kinetic ones, are unified within an
information theoretical approach [18, 20]. This informa-
tion theoretical approach allows us to introduce Lagrange
parameters λT (t), λn(t), λp(t) which are the nonequilib-
rium generalizations of the temperature and the chemical
potentials of neutrons (n) and protons (p). They depend
on time t and, in general for the hydrodynamical descrip-
tion, also on position.

In the present work, we focus on inferring the corre-
sponding Lagrange parameters λi for the primary dis-
tribution at chemical freeze-out from the observed final
yield distribution. For this, we need an accurate solution
of the grand canonical distribution at scission. We em-
ploy and compare three successive approximations:
(i) The resonance gas approximation (res.gas) known
also as nuclear statistical equilibrium (NSE), see [25, 26]
where the nucleonic system is considered as an ideal mix-
ture of nuclei in the ground state and in (unstable) ex-
cited states and resonances. A semi-empirical improve-
ment is the excluded volume model [27, 28].
(ii) The virial approximation (vir) where binary inter-
actions between the different constituents are taken into
account considering the respective scattering phase shifts
[26, 29, 30].

(iii) Accounting for in-medium corrections (medium)
such as self-energy shifts and Pauli blocking effects
[26, 31, 32].
In particular, we investigate whether the frequently used
nuclear statistical equilibrium model is sufficient to de-
scribe nucleonic systems under the scission conditions in
the neck region or whether continuum correlations and
in medium effects must be taken into account.

In the quantum statistical (QS) approach, after the
cluster decomposition of the spectral function, the den-
sity is decomposed into partial densities of different chan-
nels characterized by A,Z [18]. The primordial yields,

here denoted as relevant yields Y rel,approx
A,Z , are calculated

in the corresponding approximation as

Y rel,approx
A,Z ∝ Rapprox

A,Z gA,Z

(
2π~2

AmλT

)−3/2

×e(BA,Z+(A−Z)λn+Zλp)/λT , (1)

where BA,Z denotes the (ground state) binding energy
and gA,Z the degeneracy [33]. The prefactor

Rapprox
A,Z = 1 +

exc∑
i

[gAZ,i/gA,Z ]e−EAZ,i/λT (2)

is related to the intrinsic partition function of the cluster
{A,Z}.

Different approximations are considered for the intrin-
sic partition function as discussed above.
(i) In the resonance gas approximation, the summation
for Rres.gas

A,Z (λT ) is performed over all excited states i, ex-

citation energy EAZ,i and degeneracy gAZ,i [33].
(ii) In the virial approximation, Rvir

A,Z(λT ), the summa-

tion in (2) is performed over all excited states i which are
bound. Also, the continuum contributions are included.
For instance, the Beth-Uhlenbeck formula expresses the
contribution of the continuum to the intrinsic partition
function via the scattering phase shifts, see [18, 19, 29–
31, 34].

(iii) The expression R,medium
A,Z (λT , λn, λp) takes in-

medium effects into account, in particular the shifts of
binding energy values because of self-energy, Pauli block-
ing effects and the modification of bound state wave func-
tions and scattering phase shifts. Therefore, this term is
also dependent on the densities of neutrons and protons.

A simple statistical equilibrium distribution, where for
each isotope {A,Z} only the ground state is taken into
account, is obtained for Rapprox

A,Z (λT ) = 1, i.e., neglecting
the contribution of all excited states including contin-
uum correlations. Details to evaluate the intrinsic par-
tition function and Rres.gas

A,Z , Rvir
A,Z , R

medium
A,Z are presented

for Z ≤ 6 in the appendix,.
As an example we focus on the fission reaction

241Pu(nth,f) induced by thermal neutrons where good
data for the ternary fission yields are available [9, 10].
The observed yields up to 20C are shown in Tabs. I, II
below. Instead of normalizing to the yield of total α par-
ticle emission, assigned to be 10000, we employ absolute
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yields per fission. The total α particle emission yield per
fission was taken from [4].

The Koester data do not contain values for scission nu-
cleon (n or p) emission. Determination of those yields is
experimentally very challenging [6–8]. Experimental scis-
sion proton yields are very small and careful experiments
have revealed that secondary processes dominate the ap-
parent yields reported [6]. In our opinion the best avail-
able constraint on the scission proton yield is that of ref-
erence [6], where only an upper limit of 2.9 to 4.0× 10−5

is deduced. Interestingly, although the determination of
scission neutron emission yield in the presence of a much
larger yield of secondary neutrons evaporated from the
separated fission fragments is inherently even more diffi-
cult, very precise measurements and analyses of the neu-
tron energy and angular distributions have been carried
out and lead to the conclusion that the scission neutron
yield is 0.107 per fission, approximately one thirtieth of
the total neutron yield [7, 8]. We have adopted this num-
ber for our analysis. It is worth noting that, in an equi-
librium picture, the relative scission neutron and proton
yields implied by these results indicate that the neck mat-
ter at scission is extremely neutron rich. That this must
be the case has previously been inferred from the fact
that 3He has not been detected in ternary fission experi-
ments while the isotope 3H, with a similar binding energy
is the second most abundant ternary charged fragment
observed [3, 4].

The standard nuclear statistical equilibrium (NSE)
approach describes matter in the low-density limit where
interaction between the components may be neglected
(ideal gas of nucleons and nuclei in ground and excited
states). We suggest a consistent quantum statistical
description of interacting components as done, for
instance, for the equation of state [34]. In particular we
take into account continuum correlations and in-medium
effects.

III. EXTRACTION OF LAGRANGE
PARAMETERS FROM OBSERVED YIELDS

In this section we demonstrate how the Lagrange pa-
rameters λi = {λT (t), λn(t), λp(t)} may be extracted
from the observed yields. For simplicity, we use in this
example only the simplest approximation for the intrinsic
partition function, i.e., the ideal resonance gas approx-
imation. Rres.gas

A,Z (λT ) is calculated according (2) where

for isotopes {A,Z} all excited states i are summed over,
the excitation energies EAZ,i and angular momentum de-
generacies gAZ,i = 2JAZ,i + 1 are taken from the nuclear
data tables [33]. In the Appendix we give these values for
Z ≤ 6 as well as the ground state binding energies and
the threshold energies for the continuum of scattering
states Ethresh

A,Z . In Tabs. IV - VIII, we divide the intrin-
sic partition function into different parts with respect to
the contribution to the final yields: The summation over

all excited states above the threshold energy is marked
by an asterisk. After freeze-out, these excited states are
assumed to decay and feed the yields of daughter iso-
topes observed in the final distribution. This process is
also explained in Tabs. I, II, where in col. 7 the respec-
tive feed-down channel is indicated. The other excited
states are assumed to gamma decay to the ground state
and remain in the same isotope channel. Furthermore,
we indicate by the superscript ”0” the states which have
a binding energy smaller than 1 MeV below the contin-
uum threshold. These weakly bound states are of special
interest when in-medium effects are considered.

We use this subdivision of the intrinsic partition func-
tion to model the kinetic stage of evolution, i.e. the
transition from the primary distribution to the final dis-
tribution considering only decay processes of the excited
nuclei. In a more general approach, this sharp subdivi-
sion should be replaced by branching ratios describing
the feed-down to the final yields or using reaction net-
works.

For the resonance gas approximation and the virial
approximation the R factors are functions of the
temperature-like parameter λT . If in-medium effects are
taken into account, the R factor depends in addition on
the chemical potentials λn, λp. Within our fit procedure
described below, they are determined self-consistently.
With a given set of Lagrange parameters, we are able to
calculate the primary yields and the final yields. This
is shown for the resonance gas approximation in Tabs.
I, II as well as in Tabs. IX, X where in-medium effects
are taken into account. In each case the calculated final
yields are compared with the observed yields.

The task is then to find values for the Lagrange param-
eters which reproduce the observed yield in an optimum
way. We have previously observed [14, 18, 20] that yields
of isotopes with large mass number are suppressed be-
cause of nucleation kinetics or size effects. For the fission
process 241Pu(nth,f) this suppression with respect to the
grand canonical distribution is observed for A > 10. To
avoid this effect we use only the charged particles up to
Z = 2, i.e., the observed yields of 1n, 2H, 3H, 4He, 6He,
8He to find values for the Lagrange parameters. As shown
in Ref. [20], the inclusion of further isotopes with A ≤ 10
gives approximately identical Lagrange parameters λi.

As in Ref. [14], we use for the fit metric that of Lestone
[13], defined by

M2 =
1

N

N∑
A,Z

(
ln[Y final,approx

A,Z ]− ln[Y obs
A,Z ]

)2

(3)

whereN is the number of fitted experimental data points.
As shown in Tab. II, the values λT = 1.29 MeV,

λn = −3.149 MeV, and λn = −16.273 MeV are obtained
from the minimum of the fit metric for the resonance gas
approximation. The fit metric is also given in Tab. II.
From the yields per fission, we can also derive a volume.
The baryon density nB is obtained from the observed
yields per fission nB =

∑
A,Z AY

obs
A,Z divided by the vol-
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isotope A Z Y obs
A,Z Rres.gas

A,Z (1.29) Y rel,res.gas
A,Z Y final,res.gas

A,Z Xres.gas
A,Z

1n 1 0 0.107 1 0.1098 0.1098 0.9215

1H 1 1 - 1 4.298×10−6 4.298×10−6 0.00003414

2H 2 1 8.463×10−6 1 8.889×10−6 8.889×10−6 0.000146

3H 3 1 1.584×10−4 1 1.212×10−4 1.398×10−4 0.00359

4H* 4 1 - 1.579 1.855×10−5 [→3H] -

3He 3 2 - 1 2.549×10−9 2.817×10−9 6.163×10−8

4He 4 2 2.015×10−3 1 1.449×10−3 1.911×10−3 0.06529

5He* 5 2 - 1 3.999×10−4 [→4He] -

6He0 6 2 5.239×10−5 1 4.322×10−5 5.916×10−5 0.003232

6He* 6 2 - 1.242 5.407×10−5 [→4He] -

7He* 7 2 - 1.156 1.594×10−5 [→6He] -

8He 8 2 3.022×10−6 1 2.605×10−6 2.898×10−6 0.0002249

8He* 8 2 - 0.452 1.193×10−6 [→4He] -

9He* 9 2 - 1.426 2.929×10−7 [→8He] -

6Li 6 3 - 1 4.059×10−8 4.059×10−8 2.085×10−6

6Li* 6 3 - 0.5471 2.46×10−8 [→3H] -

7Li 7 3 1.35×10−6 1.345 2.207×10−6 2.545×10−6 0.0001591

8Li 8 3 8.463×10−7 1.281 1.357×10−6 1.357×10−6 0.00009983

8Li* 8 3 - 0.3151 3.374×10−7 [→7Li] -

9Li 9 3 1.672×10−6 1.062 2.181×10−6 2.335×10−6 0.0002005

10Li* 10 3 - 1 1.531×10−7 [→9Li] -

11Li0 11 3 9.068×10−10 1 2.785×10−8 2.962×10−8 3.312×10−6

12Li* 12 3 - 1 1.773×10−9 [→11Li] -

7Be 7 4 - 1.359 2.382×10−11 2.382×10−11 1.401×10−9

8Be* 8 4 - 1.477 1.59×10−6 [→4He] -

9Be 9 4 8.866×10−7 1 1.616×10−6 1.616×10−6 0.0001325

9Be* 9 4 - 0.5628 1.244×10−6 [→4He] -

10Be 10 4 9.269×10−6 1.367 1.112×10−5 1.51×10−5 0.001435

10Be0 10 4 - 0.0789 6.553×10−7 [→10Be] -

11Be0 11 4 1.189×10−6 1 2.422×10−6 4.313×10−6 0.0004634

11Be0 11 4 - 0.7803 1.891×10−6 [→11Be] -

11Be* 11 4 - 1.343 3.287×10−6 [→10Be] -

12Be 12 4 5.642×10−7 2.149 2.781×10−6 3.73×10−6 0.0004532

12Be0 12 4 - 0.3657 7.655×10−7 [→12Be] -

13Be* 13 4 - 1 1.84×10−7 [→12Be] -

14Be 14 4 5.441×10−10 1 3.606×10−8 4.117×10−8 6.237×10−6

15Be* 15 4 - 1 5.114×10−9 [→14Be] -

Table I. Observed yields per fission of ternary fission of 241Pu(nth,f), including 0.107 for scission neutrons (col. 4), are compared
to a final state distribution, calculated in the resonance gas approximation. The Lestone fit metric [13] is calculated for the

isotopes with Z ≤ 2. The minimum is found for the parameter values given at the end of table. Y rel,res.gas
A,Z denotes primordial

yield, Y final,res.gas
A,Z : final yield, Xres.gas

A,Z = AY res.gas
A,Z /

∑
A′,Z′≤2 A

′Y res.gas
A′,Z′ : mass fraction.

ume, it is mainly determined by the neutron density. The
proton fraction Yp is obtained as

∑
A,Z ZY

obs
A,Z/nB , it is

mainly determined by the yield of 4He. There is an un-
certainty because the free proton density is not included
in the fit, but the calculated values Y1,1 are small so that
no large effect is expected if the contribution of 1H is
dropped.

The observed values 1nobs, 2Hobs, 3Hobs, 4Heobs,
6Heobs, and 8Heobs are well reproduced, the deviation of
about 10% is within the experimental error limits. Be-
low, in the next Section, we will also discuss the isotopes
with Z > 2.

The value for temperature is consistent with values
previously obtained for thermal neutron and spontaneous
fission [35, 36]. The proton fraction is directly deter-
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isotope A Z Y obs
A,Z Rres.gas

A,Z (1.29) Y rel,res.gas
A,Z Y final,res.gas

A,Z Xres.gas
A,Z

10B 10 5 - 1.363 2.484×10−9 2.565×10−9 2.295×10−7

10B0 10 5 - 0.0443 8.17×10−11 [→10B] -

11B 11 5 3.224×10−7 1.175 8.876×10−7 8.876×10−7 0.00009106

12B 12 5 2.015×10−7 2.251 1.703×10−6 1.835×10−6 0.0002126

12B0 12 5 - 0.1715 1.32×10−7 [→12B] -

13B 13 5 - 1 4.367×10−6 4.91×10−6 0.0006411

14B0 14 5 2.62×10−8 1 1.123×10−6 1.504×10−6 0.0002177

14B0 14 5 - 0.3381 3.809×10−7 [→14B] -

14B* 14 5 - 0.4803 5.426×10−7 [→13B] -

15B 15 5 9.269×10−9 1 7.523×10−7 7.691×10−7 0.0001235

16B* 16 5 - 1 1.685×10−8 [→15B] -

17B 17 5 - 1 2.021×10−8 2.26×10−8 4.397×10−6

18B* 18 5 - 1 2.389×10−9 [→17B] -

13C 13 6 - 1.358 2.079×10−6 2.079×10−6 0.0002587

14C 14 6 2.539×10−6 1.069 4.479×10−5 5.129×10−5 0.007177

15C 15 6 8.665×10−7 1 2.08×10−5 5.606×10−5 0.008647

15C0 15 6 - 1.69 3.527×10−5 [→15C] -

15C* 15 6 - 0.3074 6.501×10−6 [→14C] -

16C 16 6 1.008×10−6 2.272 6.149×10−5 9.799×10−5 0.01218

16C0 16 6 - 0.885 2.425×10−5 [→16C] -

17C0 17 6 1.29×10−7 1 1.816×10−5 4.693×10−5 0.008776

17C0 17 6 - 1.582 2.877×10−5 [→17C] -

17C* 17 6 - 0.6677 1.225×10−5 [→16C] -

18C 18 6 5.642×10−8 3.172 3.515×10−5 4.42×10−5 0.009127

19C0 19 6 5.038×10−10 5.112 1.662×10−5 1.662×10−5 0.003715

19C* 19 6 - 2.776 9.051×10−6 [→18C] -

20C 20 6 7.254×10−10 2.426 3.743×10−6 3.743×10−6 0.0009117

λT [MeV] 1.2897

λn [MeV] -3.1486

λp [MeV] -16.273

volume [fm3] 1859.4

nB [fm−3] 0.000064

Yp 0.03486

fit metric 0.005485

Table II. Continuation of Tab. I. Observed yields per fission of ternary fission of 241Pu(nth,f) (col. 4) are compared to a final
state distribution, calculated in resonance gas approximation, including 0.107 for scission neutrons. The Lestone fit metric is
calculated for the isotopes with Z ≤ 2. The minimum is found for the parameter values given at the end of table.

mined from summation of the ternary product scission
yields, primarily from the yields of neutrons and 4He.
The value of the baryon density is debated, in our work
it is to be determined as optimum to reproduce the mea-
sured yields. We calculate the composition assuming dif-
ferent values for the density to show that there is a strong
variation of the composition and a sharp minimum of the
fit metric.

A main result is the low value of the density nB =
6.4 × 10−5/fm3 in resonance-gas approximation. We
performed the fit considering the isotopes with Z ≤
2. Larger LCP (”metals”) will be included below

in the following section IV. To show how sharp
the fit value for the density is, we performed calcu-
lations for the composition, mass fraction X̃A,Z =
AYA,Z/

∑
A′,Z′≤2A

′YA′,Z′ , for fixed values of λT and pro-

ton fraction Ỹp =
∑
A,Z≤2 ZYA,Z/

∑
A,Z≤2AYA,Z but

variable density ñB =
∑
A,Z≤2AYA,Z , divided by the

volume, see Fig. 1, where we compare the calculated val-
ues (final,res.gas) with the observed values (obs). (Note
that the densities and proton fractions are calculated in
the present section from the yields of n, H, and He iso-
topes, dropping the contributions of the metals.)

As indicated above, all calculations presented in this
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section were performed for the ideal resonance gas ap-
proximation, the simplest of the three cases considered.
The same calculations can be performed for the other ap-
proximations of the intrinsic partition function as shown
below. With respect to the results discussed in the
present section, no significant changes in the Lagrange
parameters will be observed. However the successive ap-
proaches do reveal evidence for continuum and medium
effects that even at this very low density, particularly for
weakly bound and/or very neutron rich isotopes.
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Figure 1. Calculated light isotope yields (resonance-gas ap-
proximation) as a function of baryon density nB (fixed tem-
perature T = 1.289 MeV and proton fraction Yp = 0.0349)
for Z = 1, 2 isotopes (represented by symbols) are com-
pared with the observed experimental yields represented by
horizontal dotted lines. Optimum agreement based on a fit
metric proposed by J. Lestone (3) is found at a density of
nB = 6.4× 10−5 fm−3 (dashed line). See Figure 2.

The quality of the fit is expressed by the Lestone fit
metric (3), see Fig. 2.

IV. INCLUSION OF HEAVIER ISOTOPES

We now consider the yields of isotopes with 2 < Z ≤ 6.
For these elements, accurate values for observed yields of
ternary fission are available for 241Pu(nth,f) [9, 10]. For
heavier elements Z > 6 calculations can be performed,
but observed data become incomplete and less accurate.

For this purpose, we again calculate the relevant, pri-
mary distribution within a quantum statistical approach
using the several different approximations proposed. In
a first approximation of the ideal resonance gas, for each
A,Z not only the ground state, but also all excited states
are considered which will give the intrinsic partition func-
tion. We take the excited states from the data tables [33]
together with their degeneracy, see the appendix, Tabs.
IV - VIII. The possible decay to other isotopes is also
indicated. For this, the threshold energy Ethresh

AZ is given
where the decay channels open, in general the separation
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Figure 2. Fit metric (3) vs. baryon density nB for T = 1.289
MeV and Yp = 0.0349.

energy Sn for neutrons, but also other possible decay
channels such as for 7Li to 4He + 3H or 8Be to 2×4He.
In this resonance gas approximation, all known excited
states are considered, and states above the threshold en-
ergy are assumed to decay and to feed other isotopes in
the final distribution.

The second approximation takes the states in the con-
tinuum more accurately into account. The virial expan-
sion implements continuum correlations in a systematic
way. This virial approximation is also known from the
nuclear matter equation of state [26, 29, 30].

In the third approximation, in-medium modifications
are taken into account. These are the shifts of binding
energies owing to Pauli blocking and possible dissolution
of bound states if they are shifted to the continuum [19,
31, 32].

A. Excited states and resonance gas approximation

Data for excited states are shown in the appendix,
Tabs. IV to VIII. In addition, the threshold energy
Ethresh
AZ is shown for the continuum of scattering states.

As indicated above, this is in general the neutron sepa-
ration energy Sn, but other decay channels (e.g. triton,
α) are also possible. For each isotope of the primary
distribution, different final states are possible if excited,
unstable states are considered. A branching ratio would
indicate the ratio to final state transitions during the ex-
pansion after freeze out.

We use the simple approximation that all excited states
below the continuum edge decay to the ground state of
the same isotope. States above the continuum edge de-
cay to other final isotopes. The same happens also with
the unbound nuclei like 4H, 5He. These states which
feed down to other isotopes are marked with an aster-
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isotope A Z
BA,Z

A
gA,Z Ethresh

AZ Y obs
A,Z Y obs

A,Z/Y final,res.gas
A,Z Y obs

A,Z/Y final,vir
A,Z Y obs

A,Z/Y final,medium
A,Z

1n 1 0 0 2 - 0.107 0.9742 0.9555 0.9551

1H 1 1 0 2 - - - - -

2H 2 1 1.112 3 2.224 8.463×10−6 0.952 0.92 0.917

3H 3 1 2.827 2 6.257 1.584×10−4 1.133 1.179 1.223

4He 4 2 7.073 1 20.577 2.015×10−3 1.055 1.049 1.042

6He 6 2 4.878 1 0.975 5.239×10−5 0.8856 0.8753 0.8903

8He 8 2 3.925 1 2.125 3.022×10−6 1.043 1.04 1.03

7Li 7 3 5.606 4 2.461 1.35×10−6 0.5305 0.4964 0.4523

8Li 8 3 5.160 5 2.038 8.463×10−7 0.6235 0.5669 0.5211

9Li 9 3 5.038 4 4.062 1.672×10−6 0.7164 0.6363 0.5814

11Li 11 3 4.155 4 0.396 9.068×10−10 0.03061 0.02936 0.2992

9Be 9 4 6.462 4 1.558 8.866×10−7 0.5488 0.4908 0.3191

10Be 10 4 6.497 1 6.497 9.269×10−6 0.6149 0.5343 0.5285

11Be 11 4 5.953 2 0.502 1.189×10−6 0.2756 0.2584 0.4202

12Be 12 4 5.721 1 3.17 5.642×10−7 0.1513 0.1362 0.1385

14Be 14 4 4.994 1 1.264 5.441×10−10 0.01321 0.01326 0.0121

11B 11 5 6.928 4 8.674 3.224×10−7 0.3632 0.3015 0.2257

12B 12 5 6.631 3 3.369 2.015×10−7 0.1098 0.09418 0.08358

14B 14 5 6.102 5 0.97 2.62×10−8 0.01742 0.01552 0.01793

15B 15 5 5.880 4 2.78 9.269×10−9 0.01205 0.01005 0.008624

14C 14 6 7.520 1 8.176 2.539×10−6 0.0495 0.04598 0.02229

15C 15 6 7.100 2 1.218 8.665×10−7 0.01546 0.01353 0.01464

16C 16 6 6.922 1 4.25 1.008×10−6 0.01028 0.009781 0.007721

17C 17 6 6.558 4 0.734 1.29×10−7 0.002748 0.00241 0.005271

18C 18 6 6.426 1 4.18 5.642×10−8 0.001276 0.001078 0.0006891

19C 19 6 6.118 2 0.58 5.038×10−10 0.00003031 0.00002647 0.0002309

20C 20 6 5.961 1 2.98 7.254×10−10 0.0001937 0.0001578 0.0001285

λT - - - - - - 1.2897 1.2913 1.2924

λn - - - - - - -3.1486 -3.1425 -3.087

λp - - - - - - -16.273 -16.236 -16.189

volume - - - - - - 1859.4 1876.4 1796.3

nB - - - - - - 0.000064 0.0000645 0.00006741

Yp - - - - - - 0.03486 0.03486 0.03479

fit metric - - - - - - 0.005485 0.009384 0.009574

Table III. Observed yields per fission of ternary fission of 241Pu(nth,f) are compared to a final state distribution, obtained from
feeding of a relevant (primary) distribution. The primary distribution was calculated in the ideal resonance gas approximation
(res.gas), as well as for the virial form (vir) and including medium effects (medium). Lagrange parameters and other properties
are given at the bottom of the Table, the fit metric refers to all isotopes with Z ≤ 2. Units: MeV for BA,Z , E

thresh
AZ , λi, fm3 for

volume, and for nB fm−3.

isk *, and the process is indicated (→3H for 4H, etc.).
Weakly bound states within 1 MeV below the threshold
energy are marked with ”0”. In the present approxima-
tion of the ideal resonance gas, we assume that these
states contribute to the ground state final yield of the
same isotope after de-excitation. The corresponding fac-
tors Rres.gas

A,Z (λT ) which are related to the intrinsic parti-
tion function are calculated for λT = 1.29 MeV in Tabs.
IV to VIII. These partition function multipliers are also
shown in Tabs. I, II, together with the relevant, primary

yields Y rel,res.gas
A,Z , and the final yields Y final,res.gas

A,Z .

To compare with the observed yields, results for the

ratio Y obs
A,Z/Y final,res.gas

A,Z for this resonance gas approxima-
tion are shown in Tab. III as well as in Fig. 3. The global
behavior can be described as follows: Up to A = 10 the
observed yields are rather well reproduced by the grand
canonical equilibrium calculations, for larger A we see
a strong suppression, as has already been discussed in
[14, 18, 20]. Individual isotopes show deviations from the
global behavior which may be caused by the approxima-
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Figure 3. Ternary fission of 241Pu(nth,f): Ratios

Y obs
A,Z/Yfinal,res.gas

A,Z (bold symbols) and Y obs
A,Z/Yfinal,vir

A,Z (full
lines) as function of the mass number A. Isotopes with Z ≤ 6
are shown. Data from Tab. III.

tions in calculating the final distribution, i.e., neglecting
interaction effects. This clearly bears further investiga-
tion.

B. Virial expansion and continuum correlations

As previously indicated we have improved the equilib-
rium calculations in two successive steps. First we con-
sider the virial expansion which accounts for continuum
contributions. In the subsequent section, in-medium ef-
fects are also taken into account. Results for the virial
approximation are shown in Tab. III and Fig. 3.

The cluster-virial expansion considers continuum cor-
relations of two constituents of nuclear matter in terms
of the scattering phase shifts, as obtained in correspon-
dence to the Beth-Uhlenbeck formula. For instance, 4H
is considered as resonance in the t − n channel, where
scattering phase shifts have been measured, see [19, 30].
For details see the appendix C. Data for Rvir

A,Z(T ) are
shown in the appendix, Tabs. IV to VIII. The resulting

ratios Y obs
A,Z/Y final,vir

A,Z are also shown in Tab. III.
We see that the changes are small in general, so that

the influence of the continuum correlations on the final
yield distribution is not essential. This may be attributed
to the low temperature so that the contribution of scat-
tering states is small for binding energies larger than T .
At higher T , the contribution of scattering states would
become more important. As shown by the partition func-
tion multipliers given in Tab. IV in appendix A, the most
important changes are obtained for 4H so that the feed-
down to the final 3H is reduced. Some He isotopes are
also reduced. The optimum fit of Lagrange parameters is
also slightly changed. However, for several of the isotopes
considered, strong deviations from the global behavior
remain.

As discussed in the case of 6He [20], weakly bound
states are more sensitive to medium effects. The thresh-
old energy of 11Li is low, and the yield is strongly overes-
timated within the ideal gas and virial approaches. Ob-
viously, the measured yield of 11Li is not well described
in the approximations where the interaction between the
components is neglected.

Low yields of other ’exotic’ nuclei (19C etc.) are also
known, and are observed in ternary fission of other ac-
tinides (Am, Cf, etc.). For the carbon isotopes, the spec-
trum of excited states is rather complex and feeds differ-
ent final states. In particular, isotopes with excited states
above the neutron separation energy feed the yield of iso-
topes with A− 1. Calculations of the yields, see Figs. 3
and 4 in [37], cannot explain the low yield for 19C. As
seen there, the authors offer no explanation for the low
yield of these exotic neutron rich, halo-like nuclei.

C. In-medium effects
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Figure 4. Ternary fission of 241Pu(nth,f): Ratios

Y obs
A,Z/Yfinal,res.gas

A,Z (bold symbols) and Y obs
A,Z/Yfinal,medium

A,Z (full
lines) as function of the mass number A. Isotopes with Z ≤ 6
are shown. Data from Tabs. III, IX, X.

We now consider two medium effects which might mod-
ify the yield distributions: Self-energy shifts and Pauli
blocking. Self-energy shifts act on all nucleons and can
be accounted for by a renormalization of the chemical
potentials λ̃n, λ̃p if they are not momentum dependent.
Ratios of yields are not influenced by these shifts. In
contrast, Pauli blocking acts individually for each isotope
and leads to strong deviations of the yield distribution.

Self-energy of nucleons has been treated, for instance,
within the relativistic mean-field approximation. The
well-established parametrization of DD2-RMF [38] gives
for the parameter values T = 1.29 MeV, nB = 0.000067
fm−3, Yp = 0.035 the self-energy shifts ∆SE

n = −0.03934
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MeV, ∆SE
p = −0.09936 MeV. For a cluster {A,Z} the

self-energy shift is ∆ESE
A,Z = (A − Z)∆SE

n + Z∆SE
p . We

then have λ̃n = λn −∆SE
n , λ̃p = λp −∆SE

p .

In all our earlier fits [20], the yields of 6He are
overestimated, whereas the yields of 8He are underes-
timated. One possible explanation is that 6He is only
weakly bound (Ethresh = 0.975 MeV) compared to 8He
(Ethresh = 2.125 MeV). In the dense medium, binding
energies are shifted, and weakly bound states are more
affected than strongly bound states.

More visible in Fig. 3 is the strong suppression of
weakly bound isotopes such as 11Li and 19C. These iso-
topes are near to the continuum edge so that the shift ow-
ing to Pauli blocking may lead to dissolution (the Mott
effect [26]). This suggests the use of yields of weakly
bound states as test probes to infer the free neutron den-
sity. The observation of such Mott effects would provide
us with an independent test of the free neutron density
at scission.

To quantify this effect, we consider the bound state
contribution to the intrinsic partition function which con-

tains the factor e−E
0
A,Z/T − 1 [18]. If the bound state en-

ergy is shifted owing to in-medium effects, this factor is
also changed and goes to zero at the Mott density where
bound states disappear.

The Pauli blocking shift of bound states in dense mat-
ter and the Mott effect has previously been considered
in detail for individual isotopes [19, 26, 31]. We will
give here only a general estimate applicable to bound
states of all nuclei. The shift of bound state energies
EA,Z(T, nB , Yp)−E0

A,Z in a dense medium (Pauli block-

ing) has been estimated in [19], Eq. (22), for nucleons in
the 1s and 1p orbits as

∆EPauli
A,Z = 1064(A− Z)nBe

−0.0513T/[MeV]MeV fm3 (4)

where we assume that the proton contribution is negli-
gible because of its very low density. With the baryon
density nB = 6.7 × 10−5 fm−3 (which should be deter-
mined self-consistently), the shifts of the binding energy
of the different isotopes are given in Tabs. IX and X.
These shifts may become important for weakly bound
states. For instance, for 11Li the shift is larger than the
threshold energy so that the bound state is dissolved.
This is also reflected in the low observed yield of this
isotope. In a more detailed calculation [39] not consid-
ered here, the Pauli blocking shift depends on the center-
of-mass momentum P of the cluster. Because the shift
becomes smaller for larger total momentum P , and con-
tinuum correlations may be present, a small yield of this
isotope remains. The same happens also with 19C where
the shift is also larger than the threshold energy so that
the Mott effect leads to a significant reduction of the ob-
served yields. This is also seen in Fig. 4. The yields of
other isotopes with a low threshold energy (Ethresh

AZ < 1
MeV) will be significantly influenced too. The excited
states 11Be0, 14B0, 15C0−17C0 become dissolved because
of Pauli blocking. The corresponding calculations are

seen in Tabs. IX, X.
As shown from Tab. III and Fig. 4, the observed

yields are, in fact, sensitive to in-medium effects. Sup-
pression effects owing to Pauli blocking seem to be vis-
ible. This allows an independent second determination
of the baryon density, and the densities at which such
isotopes which are dissolved are consistent with the in-
ferred value nB = 6.7 × 10−5 fm−3. Note that a fully
ab initio calculation of the Pauli blocking effects is very
involved, and we gave here only exploratory calculations
to illustrate the effect of suppression.

V. GENERALIZED RELATIVISTIC
MEAN-FIELD APPROACH

As discussed above, important in medium effects are
self-energy shifts and Pauli blocking. If the self-energy
shifts are not dependent on the nucleon momentum, they
can be absorbed into the chemical potential thus creating
an effective chemical potential. Different approximations
may be used to describe the in-medium self-energy shifts,
for instance the Skyrme or the relativistic mean-field ap-
proaches.

In Ref. [40], Pais et al. reported a generalized rela-
tivistic mean-field (RMF) approach formulated for the
study of in-medium modifications on light cluster prop-
erties. Explicit binding energy shifts and a modification
of the scalar cluster-meson coupling were introduced in
order to take these medium effects into account. The in-
teractions of the clusters i = 2H, 3H, 3He, 4He with the
surrounding medium are described with a phenomeno-
logical modification, xs, of the coupling constant to the
σ meson, gσi

= xsAigσ, where gσ is the nucleon scalar
coupling, and Ai the number of nucleons in cluster i.

Using the FSU Gold EoS [41], and requiring that the
cluster fractions exhibit the correct behavior in the low-
density virial limit [42, 43], they obtained a universal
scalar cluster-meson coupling fraction, xσi

= 0.85±0.05,
which could reproduce both this limit and the equilib-
rium constants extracted from reaction ion data [44] rea-
sonably well. We note that the vector cluster-meson cou-
pling is defined as gvj = Ajgv. Later this work was gen-
eralized to include clusters up to A = 12 [45].

A more recent analyse of the deuteron-meson coupling
at zero temperature has been given by Burrello and Typel
[46] where a critical of the been given.

In the present publication, we keep the same model
as in Ref. [40], the FSU Gold EoS [41], instead of the
model used in the previous section, the DD2 EoS [38],
but we note that both parametrizations yield approxi-
mately the same values for the quasiparticle energy shifts
at the very low densities considered here. However, un-
der such dilute-matter conditions, other models may be
more suitable [47, 48].

In a more recent work [49], Pais et al. compared re-
sults of an analysis, where in-medium effects are included,
to experimental equilibrium constants measured in in-
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termediate energy Xe + Sn collisions. This comparison
required a higher scalar cluster-meson coupling constant
xs = 0.92 ± 0.02. With this higher assumed value of
the coupling constant, the in-medium effects are reduced,
and the clusters melt at larger densities.

In the top panel of Fig. 5, we show the mass fractions of
the clusters with Z = 1, 2 and also the fraction of the free
neutron gas, calculated using the RMF formalism with
xs = 0.85 , as a function of the density, for the tempera-
ture and proton fraction found in the QS approach with
in-medium effects described in the previous subsection.
In the bottom panel, the mass fractions of light parti-
cles are plotted against the density, for different values of
the scalar cluster-meson coupling. We observe that the
abundances shown in the top panel are quite similar to
the ones in the resonance gas approximation (see Fig. 1).
Also, from the bottom panel, we see that the medium ef-
fects are almost negligible because the densities are very
small. As it was shown in Tab. III, the effect of the
medium is more relevant when considering clusters with
higher Z.
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Figure 5. (Top) Mass fractions as a function of the density
for the Z = 1, 2 isotopes and the free neutron gas in a RMF
calculation with in-medium effects (xs = 0.85) for the FSU
model with a fixed temperature of T = 1.29 MeV, and a
proton fraction of Yp = 0.035. The observed experimental
yields are represented by horizontal dotted lines. (Bottom)
Mass fractions of the light particles as a function of the density
in a RMF calculation employing different values of the scalar-
cluster-meson coupling constant.

In Fig. 6, we present the calculated fit metrics derived
with different values of the scalar cluster-meson coupling
constant, and we observe a minimum at about the same
density as in the QS approach, nB ∼ 6.7× 10−5 fm−3.
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Figure 6. Fit metric (3) vs. baryon density for T = 1.29 MeV
and Yp = 0.035, using different values of the scalar cluster-
meson coupling.

VI. CONCLUSIONS

We have considered the modeling of ternary fission
yields within a systematic quantum statistical approach
and a generalized relativistic mean field approach. We
consider our quantum statistical approach as a first step
in a strict non-equilibrium approach. As an example, we
have analyzed the observed yields for 241Pu(nth,f).

We assume that the light charged fragments are emit-
ted from the neck region at scission. We have first con-
sidered partial chemical equilibrium for clusters Z ≤ 2.
During the further expansion, feed-down processes were
considered. This leads to the final yields which are com-
pared to the observed yields. Higher mass clusters are
suppressed by nucleation kinetics and/or size effects.

We are interested in an optimal description of the pri-
mary equilibrium distribution at scission. Within a quan-
tum statistical approach, excited bound states and con-
tinuum correlations are taken into account. In particular,
we have searched for in-medium effects going beyond a
simple statistical model of non-interacting components
(ideal gas). These in-medium effects are determined by
the thermodynamic parameters of matter in the scission
region. For all nuclei Z ≤ 2, the Lagrange parameter
values are: λT = 1.29, λn = −3.09, λp = −16.19 MeV,
volume 1796 fm3, neutron density nn = 6.7×10−5 fm−3.
We showed that for those parameter values, density ef-
fects are expected and are manifested by the experimen-
tal data.

In particular we find evidence for the Mott effect for
the weakly bound states 11Li and 19C, and also the sup-
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pression of the yields for weakly bound nuclei 6He, 11Be,
14B, and 15C −17C (excited states). This shows the con-
sistency of our approach: the nucleon density 6.7× 10−5

fm−3 inferred from composition is also seen in the in-
medium shifts, the weakly bound clusters serving as test
probes. We identify the strong suppression of 11Li and
19C as a signature of the Mott effect and find that other
isotopes are not dissolved so that we find an estimate for
the Pauli blocking effect and the corresponding interval
of density.

We also considered a generalized relativistic mean-
field approach to study the in-medium modifications on
light cluster properties, introducing a modification on the
scalar cluster-meson coupling. At the low nucleon den-
sities considered here, no significant changes in the yield
distribution of isotopes and the nuclear-matter parame-
ter values have been observed. This underlines the va-
lidity of the parameter values for temperature, nucleon
density and proton fraction, presented in this article, to
describe nuclear matter in the neck region at scission.

The improved description of nuclear matter at scission
conditions is of interest for the properties of neutron rich
astrophysical systems [21, 23, 25, 50–55], for instance the
equation of state, heat capacity and the neutrino opacity,
at similar thermodynamic parameter values.
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Appendix A: Excited state multiplier and intrinsic
partition function

The contribution of excited states to the intrinsic par-
tition function of a particular channel {A,Z} which after
expansion (feed-down) decays to a different final isotope,
observed in experiment (branching ratio), is denoted by
*. We separate also the weakly bound states which are
within 1 MeV below the edge of continuum. We denote
it by ”0” below. Sometimes we separate the ground state
so that ”0” appears twice.

The threshold energy Ethresh
AZ is generally given by the

neutron separation energy, but lower threshold energies
may appear for other decompositions, for instance 6Li
→ α + d and 7Li → α + t, see [56]. This defines feed
down channels and the corresponding subdivisions of the
intrinsic partition function.

The corresponding partition function multipliers
Rres.gas
A,Z (λT ) and Rvir

A,Z(λT ) are calculated for λT = 1.29

MeV. Rmedium
A,Z (λT ) is calculated for λT = 1.29 MeV,

λn = −3.09 MeV, and λp = −16.19 MeV, we indicate
only the value for λT . See also the Supplemental mate-
rial of Ref. [20].

1. Z ≤ 2: n, H, He

Excited states and intrinsic partition function multi-
pliers R of H and He isotopes are shown in Tab. IV. The
contribution of excited states which after freeze-out de-
cays to a different channel {A,Z} (feed-down) is denoted
by ∗. At low temperatures considered in this work, the
subnuclear excitations of the nucleons n, p are neglected
so that R1,0 = R1,1 = 1.

2. Lithium

The yields of Li isotopes are shown in Tab. V. We
consider 6 ≤ A ≤ 12 The degeneracy is not known for
10Li and 12Li, the value 3 was assumed, but is not of
relevance for the discussion here. The same holds also
for some excited states. The threshold energy Ethresh

AZ is
given in general by the neutron separation energy, but
lower threshold energies appear for 6Li → α+ d and 7Li
→ α+ t, see [56].

3. Beryllium

Results for Be isotopes are shown in Tab. VI. For the
relevant, primary distribution we have to consider also
the unstable, excited states. Excited states above the
continuum edge which emit a neutron or other nuclei are
taken separately, their contribution to the intrinsic par-
tition function is denoted by an asterisk. Also excited
states little below the continuum edge (1 MeV) may be-
come dissolved in a dense medium if the binding energy
is reduced owing to Pauli blocking, their contribution is
denoted by ”0”.

4. Boron

Results for B isotopes are shown in Tab. VII. As be-
fore, we denoted the weakly bound part of the intrinsic
partition function with 10B0, 12B0, and 14B0. 16B feeds
15B, and 18B feeds 17B. It is expected that continuum
correlations and in-medium effects may give further cor-
rections to describe the final yields of the isotopes.

5. Carbon

For carbon, several states are close to the edge of the
continuum, see Tab. VIII. In particular, 19C is weakly
bound, as is 17C, with the threshold of the continuum
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isotope feeddown A Z BA,Z/A gA,Z Ethresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z(1.29) Rmedium

A,Z (1.29)
1n - 1 0 0 2 - - 1 1 1
1H - 1 1 0 2 - - 1 1 1
2H - 2 1 1.112 3 2.224 - 1 0.974 0.9306
3H - 3 1 2.827 2 6.257 - 1 0.999 0.9138

4H* →3H 4 1 1.720 5 -1.6 0.31 [3], 2.08 [1], 2.83 [3] 1.579 0.09404 0.03564
3He - 3 2 2.573 2 5.494 - 1 0.9979 0.9545
4He - 4 2 7.073 1 20.577 20.21 [1] 1 1 0.915

5He* →4He 5 2 5.512 4 -0.735 - 1 0.6906 0.5029
6He0 [→4He] 6 2 4.878 1 0.975 - 1 0.9343 0.7723
6He* →4He 6 2 4.878 1 0.975 1.797 [5] 1.242 0.7919 0.4617
7He* →6He 7 2 4.123 4 -0.410 2.92 [6] 1.156 0.9313 0.6577
8He - 8 2 3.925 1 2.125 - 1 0.972 0.7383

8He* →4He 8 2 3.925 1 2.125 3.1 [5] 0.452 0.2334 0.06923
9He* →8He 9 2 3.349 2 -1.25 1.1 [2] 1.426 0.364 0.04882

Table IV. Data of nucleons/nuclei Z ≤ 2 [units: MeV for BA,Z , E
thresh
AZ , Ei]. Feed-down to other final isotopes indicated by→AZ.

Mass number A, charge number Z. Ground state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold
energy Ethresh

AZ , excitation energy Ei and degeneracy gi according [33]. Partition function multiplier Rres.gas
A,Z (T ) according (C5).

The contribution of excited states above the continuum threshold is denoted by ”*”, the contribution of states within 1 MeV
below the threshold is denoted by ”0” (weakly bound states).

isotope feeddown A Z BA,Z/A gA,Z Ethresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z(1.29) Rmedium

A,Z (1.29)

6Li - 6 3 5.332 3 1.475 - 1 0.9544 0.83

6Li* →3H 6 3 5.332 3 1.475 2.186 [7], 3.563 [1], 4.312 [5], 5.366 [5], 5.65 [3] 0.5471 0.3847 0.2842

7Li - 7 3 5.606 4 2.461 0.478 [2] 1.345 1.316 1.097

8Li - 8 3 5.160 5 2.038 0.980 [3] 1.281 1.242 0.9877

8Li* →7Li 8 3 5.160 (5) 2.038 2.255 [7], 3.210 [3], 5.4 [3] , 6.1 [7] 0.3151 0.2646 0.1975

9Li - 9 3 5.038 4 4.062 2.691 [2], (4.301) [?] 1.062 1.055 0.8069

10Li* →9Li 10 3 4.531 (3) -0.032 - 1 0.863 0.5866

11Li0 [→9Li] 11 3 4.155 4 0.396 (1.266) [?] 1 0.9003 0.6026

12Li* →11Li 12 3 3.792 (3) -0.201 - 1 0.8422 0.4697

Table V. Data of lithium nuclei [units: MeV for BA,Z , E
thresh
AZ , Ei]. Feed-down to other final isotopes indicated by →AZ. Mass

number A, charge number Z. Ground state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy
Ethresh

AZ , excitation energy Ei and degeneracy gi according [33]. Partition function multiplier Rres.gas
A,Z (T ) according (C5) for

λT = 1.29 MeV. 7Li: Ethresh
AZ for decay to 4He+3H; excited states at 4.630 MeV [8], 6.680 MeV [6] decay this way, but also

gamma decay.
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below 1 MeV. We expect that these weakly bound nuclei
are stronger influenced by in-medium modifications, in
particular Pauli blocking.

Appendix B: Estimate for the Pauli blocking shift

There are two contributions to the in-medium shift of
quasiparticles, the self-energy contribution and the Pauli
blocking effects. Self-energy shifts are calculated, e.g., by
the relativistic mean-field approximation. If the momen-
tum dependence of the shift is neglected, each nucleon
suffers the same shift so that it can be implemented in
the chemical potential. The composition is not influ-
enced. For a more detailed discussion see [31, 39].

We give an estimate for the Pauli blocking
∆EPauli

A,Z (P;T, nB , Yp) as function of total momentum ~P
and the thermodynamic variables T, µn, µp respectively
T, nB , Yp as

∆EPauli
A,Z (P;T, nB , Yp) = e−

~2P2

2A2mT 2 (Nnn + Znp)

×aA,Ze−bA,ZT (B1)

according to Eq. (21) in Ref. [19], where also values for
the parameters aA,Z , bA,Z are given. An average value
for 10 ≤ A ≤ 16 is ā = 532.0 MeV fm3 and b̄ = 0.05103
MeV−1. The P dependence is according Eq. (43) of Ref.
[31].

Within an exploratory calculation, we use the aver-
age value to estimate the Pauli blocking shift. Values
for ∆EPauli

A,Z (P = 0;T, nB , Yp) = ∆EPauli
A,Z (0) are shown in

Tabs. IX, X. The Mott condition where the Pauli block-
ing shift exceeds the binding energy is fulfilled for 11Li
and 19C, but also for excited states of 11Be, 14B, 15C,
16C, and 17C. Further ground states and excited states,
denoted by ”0”, are also approaching the continuum edge
and partially suppressed.

The Mott condition does not mean that all clusters of
the corresponding state are dissolved. The transition to
the continuum gives also a contribution like a resonance,
see the case of 2H. An important point is that the Pauli
blocking depends on the total momentum ~P, see [39].
For ∆EPauli

A,Z (0) ≥ BA,Z , the Mott momentum follows as

PMott =

{
2A2Tm

~2
ln

[
∆EPauli

A,Z (0)

BA,Z

]}1/2

. (B2)

Not only the high-momentum bound states but also
part of the continuum states may evolve to the ground
state in the final distribution. However, this leads to the
discussion of branching ratios for the reaction network
describing the evolution from freeze-out to the final ob-
served yields, what is beyond the scope of the present
work.

Appendix C: Evaluation of the intrinsic partition
function multipliers R: Virial approximation

In (1), the intrinsic partition function multiplier was
introduced as a correction to the simple ideal gas approx-
imation where for each isotope {A,Z} only the ground
state was considered. However, for each channel we have
to consider the intrinsic partition function, in particular
the account of all excited states. The resonance gas ap-
proximation (2) considers all excited, including unstable,
states, also resonances in the continuum.

A systematic description of correlations in the contin-
uum is given by the virial approximation. We repeat: we
perform a cluster expansion for the interacting system
[19], and partial densities of different clusters {A,Z} are

introduced. The relevant yields Y rel,vir
A,Z in the virial ap-

proximation are calculated as

Y rel,vir
A,Z ∝ gA,Z

(
2π~2

AmλT

)−3/2

×

e(BA,Z+(A−Z)λn+Zλp)/λT Rvir
A,Z(λT ) (C1)

(nondegenerate limit), where BA,Z denotes the (ground
state) binding energy and gA,Z the degeneracy [33]. The
factor

Rvir
A,Z(λT ) = 1 +

exc∑
i

[gAZ,i/gA,Z ]e−EAZ,i/λT (C2)

is related to the intrinsic partition function of the clus-
ter {A,Z}. The index i characterizes further quantum
numbers of the excited state such as angular momen-
tum. The summation is performed over all excited states
of excitation energy EAZ,i and degeneracy gAZ,i [33].

As already discussed for H, He, we have also to con-
sider the scattering states. This leads to a change in the
contributions obtained for bound states, and, in particu-
lar, for the unbound states. We use the Beth-Uhlenbeck
relation, see [18] to perform the sum over the continuum
states,

Cvir
AZ,i(λT ) = [1− e−(Ethresh

A,Z −EAZ,i)/λT ]Θ(Ethresh
A,Z − EAZ,i)

+
1

πλT
e−(Ethresh

A,Z −EAZ,i)/λT

∫ ∞
0

dEe−E/λT δAZ,i(E)), (C3)

as prefactor for the contribution of the different channels
{A,Z, i}, degeneracy gAZ,i. Ethresh

A,Z is the difference of
the binding energy of the ground state and the binding
energy of the components of the lowest continuum, the
Θ function is 1 if a bound state occurs. If a channel
has no common bound state, we have EAZ,i = 0, all ex-
cited states are in the continuum. The intrinsic partition
function multiplier Rvir

A,Z(λT ) (C2) can be rewritten as

Rvir
A,Z(λT ) =

exc∑
i

gAZ,i
gA,Z

e−EAZ,i/λTCvir
A,Z(λT , EAZ,i).(C4)



14

isotope feeddown A Z BA,Z/A gA,Z Ethresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z(1.29) Rmedium

A,Z (1.29)

7Be - 7 4 5.372 4 1.585 0.429 [2] 1.359 1.302 1.1324

8Be* →4He 8 4 7.062 1 -0.088 3.03 [5] 1.477 1.266 1.0192

9Be - 9 4 6.462 4 1.558 - 1 0.9572 0.7585

9Be* →4He 9 4 6.462 (4) 1.558 1.684 [2], 2.429 [6], 2.78 [2], 3.049 [6] 0.5628 0.4796 0.3629

10Be - 10 4 6.497 1 6.497 3.368 [5] 1.367 1.366 1.0462

10Be0 [→9Be] 10 4 6.497 (1) 6.497 5.958 [5], 5.959 [3] 0.0789 0.07181 0.05348

11Be0 [→10Be] 11 4 5.953 2 0.502 - 1 0.9076 0.6422

11Be0 [→10Be] 11 4 5.953 (2) 0.502 0.320 [2] 0.7803 0.6894 0.4802

11Be* →10Be 11 4 5.953 (2) 0.502 1.783 [6], 2.654 [4], 3.4 [4], 3.889 [4], 3.955 [4] 1.343 0.308 0.03957

12Be - 12 4 5.721 1 3.170 2.109 [5], 2.251 [1] 2.149 2.122 1.4798

12Be0 [→10Be] 12 4 5.721 (1) 3.170 2.715 [3] 0.3657 0.3307 0.222

13Be* →12Be 13 4 5.241 2 -0.510 - 1 0.7806 0.3144

14Be - 14 4 4.994 1 1.264 - 1 0.9468 0.5897

15Be* →14Be 15 4 4.541 6 -1.800 - 1 0.02241 0.0005243

Table VI. Data of beryllium nuclei [units: MeV for BA,Z , E
thresh
AZ , Ei]. Feed-down to other final isotopes indicated by →AZ.

Mass number A, charge number Z. Ground state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold
energy Ethresh

AZ , excitation energy Ei and degeneracy gi according [33]. Partition function multiplier Rres.gas
A,Z (T ) according (C5)

for λT = 1.29 MeV. Weekly bound isotopes 10Be0, 11Be0, and 12Be0 are separated, they will merge with the continuum at
higher densities.

isotope feeddown A Z BA,Z/A gA,Z Ethresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z(1.29) Rmedium

A,Z (1.29)

10B - 10 5 6.475 7 4.466 0.718 [3], 1.740 [1], 2.154 [3] 1.363 1.357 1.086

10B0 - 10 5 6.475 (7) 4.466 3.587 [5] 0.0443 0.04117 0.0324

11B - 11 5 6.928 4 8.674 2.124 [2], 4.445 [6], 5.020 [4], 6.741 [8] 1.175 1.175 0.9

12B - 12 5 6.631 3 3.369 0.953 [5], 1.674 [5] 2.251 2.227 1.626

12B0 [→11B] 12 5 6.631 3 3.369 2.621 [3], 2.723 [1] 0.1715 0.1582 0.1127

13B - 13 5 6.496 4 4.879 3.482 [?], 3.535 [?], 3.681 [?], 3.712 [?], 4.131 [?] 1 0.9966 0.6976

14B0 - 14 5 6.102 5 0.970 - 1 0.9341 0.6065

14B0 [→13B] 14 5 6.102 (5) 0.970 0.740 [3] 0.3381 0.3001 0.188

14B* →13B 14 5 6.102 (5) 0.970 1.38 [7] 0.4803 0.387 0.1801

15B - 15 5 5.880 4 2.78 (?) 1 0.983 0.6246

16B* →15B 16 5 5.507 1 -0.082 (?) 1 0.8574 0.4311

17B - 17 5 5.270 4 1.39 (?) 1 0.9515 0.5399

18B* →17B 18 5 4.977 5 -0.005 (?) 1 0.8659 0.3832

Table VII. Data of boron nuclei [units: MeV for BA,Z , E
thresh
AZ , Ei]. Feed-down to other final isotopes indicated by →AZ. Mass

number A, charge number Z. Ground state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy
Ethresh

AZ , excitation energy Ei and degeneracy gi according [33]. Partition function multiplier Rres.gas
A,Z (T ) according (C5) for

λT = 1.29 MeV.
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As in the case of the resonance gas approximation, the
sum over all states i can be subdivided into different con-
tributions α,

Rvir
A,Z(λT ) =

∑
α

Rvir,α
A,Z (λT ). (C5)

We divided it into the contribution of well-bound nuclear
states with binding energy larger than 1 MeV (R) and
weakly bound states, (R0), both decaying to the ground
state, and in unbound states (R∗) which feed down to
other channels. The same subdivision has been per-
formed also for the intrinsic partition function multiplier
Rres.gas
A,Z (λT ). We perform this subdivision to calculate

the feed-down process from freeze-out to the final yields.
We are not able here to evaluate the integral over the

scattering phase shifts for all channels of interest. We
give only an estimate in analogy of the cases 2H, 4H, 5He
which have been discussed in Ref. [19]. The relation

Rvir
AZ(T ) = e(Ethresh

A,Z −Eeff (T ))/T was given there. We use
the effective energy Eeff(T ) given there and have for 4H
(Sn = −1.6 MeV) the value Rvir

4H(1.29) = 0.057, and for
5He for Sn = −0.735 MeV the value Rvir

5He(1.29) = 0.731.
Together with the known virial coefficient in the deuteron
channel, in [18] the interpolation formula (in units of
MeV)

Cvir
A,Z(λT , EAZ,i) =

1

e−(Ethresh
A,Z −EAZ,i+1.129)/0.204 + 1

×

1

e−(Ethresh
A,Z −EAZ,i+2.45)/λT + 1

(C6)

has been introduced which reproduces the values for 2H,
4H, and 5He at λT = 1.29 MeV. If we have multiple con-
tributions within a group α we replace Cvir

AZ,i(λT , EAZ,i)
by its value for the lowest excitation energy EAZ,α of the
group, and can extract this factor from the summation
so that

Rvir,α
A,Z (λT ) = Cvir

A,Z(λT , EAZ,α)Rres.gas,α
A,Z (λT ). (C7)

We used this expression to calculate the multipliers
Rvir,α
A,Z (λT ) shown in the Tables.

Appendix D: Evaluation of the intrinsic partition
function multipliers R: Medium modifications

The virial expression uses the bound state energies and
scattering phase shifts of the free clusters, neglecting in-
teraction effects. The most important in-medium effects
are self-energy and Pauli blocking. Self-energy effects
are well known and are parametrized, for instance, as
Skyrme forces or relativistic mean-field approximation.
If we neglect the momentum dependence of the single-
particle mean-field shift, this self-energy shift ∆SE

τ for
neutron and protons, which occurs also in the bound
states may be included in the effective chemical poten-
tials λ̃τ = λτ −∆SE

τ . Values for ∆SE
τ have been given in

Sec. IV C. Thus, it has no influence on the composition
at given temperature and densities.

In contrast, the Pauli blocking shift occurs only for
interacting nucleons in a cluster and depends strongly
on the quantum state, as discussed above. Therefore we
take this shift of energy levels explicitly into account. In
principle, also the scattering phase shifts are modified.
See [29] for the two-nucleon case, where a generalized
Beth-Uhlenbeck approach is given which accounts for in-
medium effects.

The Pauli blocking has different consequences. (i) In
(C1), (C2), the energy shift of the bound states ∆EPauli

A,Z,i

has to be added to the binding energies Bmedium
A,Z =

BA,Z −∆EPauli
A,Z for the ground state, but also for all ex-

citation energies Emedium
AZ,i = EAZ,i + ∆EPauli

AZ,i −∆EPauli
A,Z

which are taken relatively to the ground state. In princi-
ple, the Pauli blocking depends on the wave function of
the bound state as well as the total momentum P of the
cluster, but for simplicity we assume that we can neglect
this and approximate these different Pauli blocking shifts
by ∆EPauli

A,Z . Then, a common factor can be extracted so

that e−∆EPauli
A,Z /λTRvir

A,Z(λT ) appears.

(ii): The medium modifications will also result in a
density dependence of the intrinsic partition function or

the corresponding factors Rmedium,α
A,Z (T, nB , Yp) in the de-

composition corresponding to Eq. (C7). We use the virial
expression (C7) but replace in Cvir

A,Z(λT , EAZ,α) the ex-

citation energy EAZ,α by EAZ,α + ∆EPauli
A,Z ,

Rmedium,α
A,Z (λT , λn, λp)= Cvir

AZ(λT , EAZ,α + ∆EPauli
A,Z )×

Rres.gas,α
A,Z (λT )e−∆EPauli

A,Z /λT . (D1)

The shift of the bound states gives a decrease of the
binding energy which may vanish (Mott effect). The dis-
solution of bound states opens additional channels for
feed-down processes.

We discuss three different cases: Well bound states
with binding energy larger than T ≈ 1 MeV are shifted
but not dissolved. Because the temperature is low,
the effect of continuum correlations and the thresh-
old energy is small for the strongly bound isotopes so
that, in addition to the self-energy shift ∆SE

A,Z , the fac-

tor exp[−∆EPauli
A,Z /λT ] determines the influence of the

medium. The contribution of scattering states has been
approximated by Eq. (C6), replacing EAZ,i by EAZ,i +
∆EPauli

AZ,i .
Of special interest are the weakly bound states where

the shift brings it above the continuum edge, EAZ,i +
∆EPauli

A,Z − Ethresh
AZ > 0 so that the bound state will be

dissolved and feed down other final states. We estimate
these contributions also according to Eq. (C6) as done
above for the scattering states. Instead to feed down the
ground state after de-excitation, we assume that they
feed down other isotopes as indicated in Tabs. IX, X.

This simplified picture to describe the reaction pro-
cesses after freeze-out has to be improved in future treat-
ments within a systematic nonequilibrium approach. As
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isotope feeddown A Z BA,Z/A gA,Z Ethresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z(1.29) Rmedium

A,Z (1.29)

13C - 13 6 7.469 2 4.946 3.089 [2], 3.684 [4], 3.853 [6] 1.358 1.353 0.9905

14C - 14 6 7.520 1 8.176 6.093 [3], 6.589 [7] 1.069 1.069 0.7491

15C - 15 6 7.100 2 1.218 - 1 0.945 0.6169

15C0 [→14C] 15 6 7.100 (2) 1.218 0.740 [6] 1.69 1.532 0.9775

15C* →14C 15 6 7.100 (2) 1.218 3.103 [2], 4.220 [6], 4.657 [4], 4.780 [4] 0.3074 0.004482 0.000206

16C - 16 6 6.922 1 4.250 1.766 [5] 2.272 2.26 1.445

16C0 [→15C] 16 6 6.922 (1) 4.250 3.986 [5], 4.089 [7], 4.142 [9] 0.885 0.7875 0.4683

17C0 [→16C] 17 6 6.558 4 0.734 - 1 0.9218 0.5379

17C0 [→16C] 17 6 6.558 (4) 0.734 0.217 [2], 0.332 [6] 1.582 1.438 0.8288

17C* →16C 17 6 6.558 (4) 0.734 2.15 [8], 2.71 [2], 3.085 [10] 0.6677 0.09067 0.002612

18C - 18 6 6.426 1 4.18 1.588 [5], 2.515 [5] 3.172 3.153 1.843

19C0 [→18C] 19 6 6.118 2 0.580 0.209 [4], 0.282 [6] 5.112 4.665 2.431

19C* →18C 19 6 6.118 (2) 0.580 0.653 [6], 1.46 [6] 2.776 2.383 0.9985

20C - 20 6 5.961 1 2.98 1.618 [5] 2.426 2.391 1.268

Table VIII. Data of carbon nuclei [units: MeV for BA,Z , E
thresh
AZ , Ei]. Feed-down to other final isotopes indicated by →AZ.

Mass number A, charge number Z. Ground state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold
energy Ethresh

AZ , excitation energy Ei and degeneracy gi according [33]. Partition function multiplier Rres.gas
A,Z (T ) according (C5)

for λT = 1.29 MeV.
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known from reaction networks describing expanding mat-
ter in astrophysics, branching ratios may be introduced
to describe the evolution of the primary distribution to
the final distribution, which allow for different final states
of an excited state. For our considerations this is not of
relevance as long as the contribution of excited states
(including continuum states) is small, and the main con-
tribution to the yield of isotopes is determined by the
strongly bound states. Another situation appears for the
weakly bound final states like 11Li and 19C in our cal-
culation, see Tabs. IX, X. Because they are shifted to
the continuum, in our simple treatment of the feed down
process they will feed other isotopes, and the final yield
for both isotopes will be zero. A more detailed descrip-
tion would allow that some of the primary states may
remain in the bound state. For instance, the Pauli block-
ing is momentum dependent, and clusters with large mo-
mentum remain bound because Pauli blocking is effective
only within the Fermi sphere, as discussed in Sec. B and
Sec. IV C. There is also a finite probability that con-
tinuum contributions according to the Beth-Uhlenbeck
formula will de-excite to the ground state according to a
coalescence model. For this one has to introduce branch-
ing ratios which allow feed-down to different final states.

Even being small, special feed-down processes become
visible if they are the only process to form a final bound
state.

We are not able in this work to derive a microscopic
expression for the branching ratios during expansion af-
ter freeze-out. They are of relevance when they are the
only process to populate the final yield, for instance, of
the dissolved isotopes 11Li and 19C in Tabs. IX, X. To
give an example, we assumed in both cases a branching
ratio 0.1 that the primary yield remains at the same iso-
tope to form the final yield. As shown in Fig. 4, this
branching ratio would fit the yield of 19C to the general
behavior of the calculated yields. This example is only
for illustration, the derivation of the branching ratio goes
beyond the frame of the present work.

Another issue which needs further considerations is the
threshold energy Ethresh

A,Z which is taken in this work from
the data tables. It is possible that this quantity is also
changed in a dense medium. For this, a nonequilibrium
approach to the reaction processes is necessary which fi-
nally will provide us with in-medium branching ratios
discussed above. Our description of the reactions during
the expansion process after freeze-out remains a semi-
empirical one with a simplified reaction network as shown
in Tabs. IX, X.
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[19] G. Röpke, Phys. Rev. C 101, 064310 (2020).
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[26] G. Röpke, L. Münchow, and H. Schulz, Nucl. Phys. A

379, 536 (1982).
[27] M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837,

210 (2010).
[28] M. Hempel, K. Hagel, J. Natowitz, G. Röpke, and S.

Typel, Phys. Rev. C 91, 045805 (2015).
[29] M. Schmidt et al., Ann. Phys. 202, 57 (1990).
[30] C. J. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55

(2006).
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isotope A Z
BA,Z

A
gA,Z Ethresh

AZ Rvir
A,Z(1.29) ∆EPauli

A,Z Rmedium
A,Z (1.29) Y rel,medium

A,Z Y final,medium
A,Z Y obs

A,Z/Y final,medium
A,Z

1n 1 0 0 2 - 1 - 1 0.11203 0.11203 0.9551

1H 1 1 0 2 - 1 - 1 4.563×10−6 4.563×10−6 -

2H 2 1 1.112 3 2.224 0.9739 0.057 0.9306 9.226×10−6 9.226×10−6 0.9173

3H 3 1 2.827 2 6.257 0.9988 0.114 0.9138 1.289×10−4 1.342×10−4 1.223

4H∗ 4 1 1.720 5 -1.6 0.09404 0.172 0.03564 5.146×10−6 [→3H] -

3He 3 2 2.573 2 5.494 0.9979 0.057 0.9545 2.948×10−9 2.948×10−9 -

4He 4 2 7.073 1 20.577 1 0.114 0.915 1.639×10−3 1.935×10−3 1.042

5He∗ 5 2 5.512 4 -0.735 0.6906 0.172 0.5029 2.622×10−4 [→4He] -

6He0 6 2 4.878 1 0.975 0.9343 0.2291 0.7723 4.575×10−5 5.884×10−5 0.8903

6He∗ 6 2 4.878 1 0.975 0.7919 0.2291 0.4617 2.735×10−5 [→4He] -

7He∗ 7 2 4.123 4 -0.410 0.9313 0.2864 0.6577 1.309×10−5 [→6He] -

8He 8 2 3.925 1 2.125 0.972 0.3437 0.7383 2.919×10−6 2.935×10−6 1.029

8He∗ 8 2 3.925 1 2.125 0.2332 0.3437 0.06923 2.737×10−7 [→4He] -

9He∗ 9 2 3.349 2 -1.25 0.364 0.4009 0.04882 1.605×10−8 [→8He] -

6Li 6 3 5.332 3 1.475 0.9545 0.172 0.83 4.78×10−8 4.78×10−8 -

6Li∗ 6 3 5.332 3 1.475 0.3847 0.172 0.2842 1.417×10−8 [→3H] -

7Li 7 3 5.606 4 2.461 1.3159 0.2291 1.0972 2.66×10−6 2.985×10−6 0.4523

8Li 8 3 5.160 5 2.038 1.2424 0.2864 0.9877 1.624×10−6 1.624×10−6 0.5211

8Li∗ 8 3 5.160 (5) 2.038 0.2647 0.2864 0.1975 3.247×10−7 [→7Li] -

9Li 9 3 5.038 4 4.062 1.0553 0.3437 0.8069 2.694×10−6 2.876×10−6 0.5814

10Li∗ 10 3 4.531 3 -0.032 0.863 0.4009 0.5866 1.539×10−7 [→9Li] -

11Li+ 11 3 4.155 4 0.396 0.9003 0.4582 0.6026 3.03×10−8 × 0.1 3.03E-9 0.2992

11Li0 11 3 4.155 4 0.396 0.9003 0.4582 0.6026 3.03×10−8 × 0.9 [→9Li] -

12Li∗ 12 3 3.792 3 -0.201 0.8422 0.5155 0.4697 1.585×10−9 [→9Li] -

7Be 7 4 5.372 4 1.585 1.3015 0.172 1.1324 3.058×10−11 3.058×10−11 -

8Be∗ 8 4 7.062 1 -0.088 1.2657 0.2291 1.0192 1.722×10−6 [→4He] -

9Be 9 4 6.462 4 1.558 0.9572 0.2864 0.7585 2.03×10−6 2.778×10−6 0.3191

9Be∗ 9 4 6.462 4 1.558 0.4796 0.2864 0.3629 9.712×10−7 [→4He] -

10Be 10 4 6.497 1 6.497 1.366 0.3437 1.0462 1.464×10−5 1.752×10−5 0.5285

10Be0 10 4 6.497 (1) 6.497 0.07181 0.3437 0.05348 7.482×10−7 [→9Be] -

11Be 11 4 5.953 2 0.502 0.9076 0.4009 0.6422 2.829×10−6 2.829×10−6 0.4202

11Be0 11 4 5.953 2 0.502 0.6894 0.4009 0.48015 1.141×10−6 [→10Be] -

11Be∗ 11 4 5.953 (2) 0.502 0.308 0.4009 0.03957 3.341×10−9 [→10Be] -

12Be 12 4 5.721 1 3.170 2.1223 0.4582 1.4798 3.957×10−6 4.074×10−6 0.1385

12Be0 12 4 5.721 (1) 3.170 0.3307 0.4582 0.222 5.937×10−7 [→10Be] -

13Be∗ 13 4 5.241 2 -0.510 0.7806 0.5155 0.3144 1.164×10−7 [→12Be] -

14Be 14 4 4.994 1 1.264 0.9468 0.5728 0.5897 4.497×10−8 4.498×10−8 0.01209

15Be∗ 15 4 4.541 6 -1.800 0.02241 0.6301 0.0005243 5.994×10−12 [→14Be] -

Table IX. Calculated yields per fission of ternary fission of 241Pu(nth,f), in-medium effects included. For the fit of the
241Pu(nth,f) data, the Lagrange parameter values are λT = 1.29, λ̃n = −3.09, λ̃p = −16.19 MeV, volume 1796 fm3, fit
metric 0.0095 for all nuclei Z ≤ 2. Baryon density nB = 6.7× 10−5, Yp = 0.035. Bold figures: Mott effect, the Pauli blocking
shift exceeds the ground state binding energy so that the bound state is dissolved. For illustration of this effect, a branching
ratio 0.1 is assumed to remain as final yield (denoted by superscript ”+”) whereas 0.9 is assumed to feed down the yields of
other isotopes. [Units: MeV for BA,Z , E

thresh
AZ ,∆EPauli
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[39] G. Röpke, Nucl. Phys. A 867, 66 (2011).
[40] H. Pais et al., Phys. Rev. C 97, 045805 (2018).

[41] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett.
95, 122501 (2005).

[42] M. D. Voskresenskaya and S. Typel, Nucl. Phys. A 887,
42 (2012).

[43] C.J. Horowitz and A. Schwenk, Phys. Lett. B 638, 153



19

isotope A Z
BA,Z

A
gA,Z Ethresh

AZ Rvir
A,Z(1.29) ∆EPauli

A,Z Rmedium
A,Z (1.29) Y rel,medium

A,Z Y final,medium
A,Z Y obs

A,Z/Y final,medium
A,Z

10B 10 5 6.475 7 4.466 1.357 0.2864 1.086 3.547×10−9 3.547×10−9 -

11B 11 5 6.928 4 8.674 1.175 0.3437 0.9 1.261×10−6 1.428×10−6 0.2258

12B 12 5 6.631 3 3.369 2.227 0.4009 1.626 2.411×10−6 2.411×10−6 0.08358

12B0 12 5 6.631 (3) 3.369 0.1582 0.4009 0.1127 1.671×10−7 [→11B] -

13B 13 5 6.496 4 4.879 0.9966 0.4582 0.6976 6.209×10−6 7.096×10−6 -

14B 14 5 6.102 5 0.970 0.9341 0.5155 0.6065 1.461×10−6 1.461×10−6 0.01793

14B0 14 5 6.102 (5) 0.970 0.3001 0.5155 0.188 4.53×10−7 [→13B] -

14B∗ 14 5 6.102 (5) 0.970 0.387 0.5155 0.1801 4.338×10−7 [→13B] -

15B 15 5 5.880 4 2.78 0.9829 0.5728 0.6246 1.058×10−6 1.075×10−6 0.008624

16B∗ 16 5 5.507 1 -0.082 0.8574 0.6301 0.4311 1.723×10−8 [→15B] -

17B 17 5 5.270 4 1.39 0.9515 0.6873 0.5399 2.723×10−8 2.964×10−8 -

18B∗ 18 5 4.977 5 -0.005 0.8659 0.7446 0.3832 2.407×10−9 [→17B] -

13C 13 6 7.470 2 4.946 1.353 0.4009 0.9905 3.134×10−6 3.137×10−6 -

14C 14 6 7.520 1 8.176 1.069 0.4582 0.7491 6.769×10−5 1.139×10−4 0.02229

15C 15 6 7.100 2 1.218 0.9449 0.5155 0.6169 2.916×10−5 5.92×10−5 0.01464

15C0 15 6 7.100 (2) 1.218 1.5315 0.5155 0.9775 4.621×10−5 [→14C] -

15C∗ 15 6 7.100 (2) 1.218 0.004482 0.5155 0.000206 9.728×10−9 [→14C] -

16C 16 6 6.922 1 4.250 2.259 0.5728 1.445 9.266×10−5 1.305×10−4 0.007721

16C0 16 6 6.922 (1) 4.250 0.7875 0.5728 0.4683 3.004×10−5 [→15C] -

17C 17 6 6.558 4 0.734 0.9218 0.6301 0.5379 2.447×10−5 2.447×10−5 0.005271

17C0 17 6 6.558 (4) 0.734 1.438 0.6301 0.8288 3.77×10−5 [→16C] -

17C∗ 17 6 6.558 (4) 0.734 0.09067 0.6301 0.002612 1.188×10−7 [→16C] -

18C 18 6 6.426 1 4.18 3.153 0.6873 1.843 5.329×10−5 8.188×10−5 0.0006891

19C+ 19 6 6.118 2 0.580 4.665 0.7446 2.431 2.181×10−5 × 0.1 2.181×10−6 0.0002309

19C0 19 6 6.118 2 0.580 4.665 0.7446 2.431 2.181×10−5 × 0.9 [→18C] -

19C∗ 19 6 6.118 (2) 0.580 2.383 0.7446 0.9985 6.858×10−6 [→18C] -

20C 20 6 5.961 1 2.98 2.391 0.8019 1.268 5.646×10−6 5.646×10−6 0.0001285

Table X. Continuation of Tab. IX.

(2006).
[44] L. Qin et al., Phys. Rev. Lett. 108, 172701 (2012).
[45] H. Pais et al., Phys. Rev. C 99, 055806 (2019).
[46] S. Burrello and S. Typel, Eur. Phys. J. A 58, 120 (2022).
[47] C. J. Yang, M. Grasso, and D. Lacroix, Phys. Rev. C 94,

031301(R) (2016).
[48] M. Grasso, D. Lacroix, and C. J. Yang, Phys. Rev. C 95,

054327 (2017).
[49] H. Pais et al., Phys. Rev. Lett. 125, 012701 (2020); J.

Phys. G. 47, 105204 (2020).
[50] F. Gulminelli and Ad. R. Raduta, Phys. Rev. C 92,

055803 (2015).
[51] S. Burrello, F. Gulminelli, F. Aymard, M. Colonna, and

Ad. R. Raduta, Phys. Rev. C 92, 055804 (2015).
[52] S. Burrello, M. Colonna, and F. Matera, Phys. Rev. C

94, 012801(R) (2016).
[53] Y. Lim and J. W. Holt, Phys. Rev. C 95, 065805 (2017).
[54] X. Du, A. W. Steiner, and J. W. Holt, Phys. Rev. C 105,

035803 (2022).
[55] A. Sedrakian, Eur. Phys. J. A 56, 258 (2020).
[56] P. Jesinger et al., Eur. Phys. J. A 24, 379 (2005).


