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Abstract

Among closure operators �in the sense of Dikranjan and Giuli 	
�� the regular
ones have a relevant role and have been widely investigated� On the contrary� the
coregular closure operators were introduced only recently in 	�� and they need to
be further investigated� In this paper we study �co
regular closure operators �in
connection connectednesses and disconnectednesses� in the realm of topological
spaces and modules�

AMS subject classi�cation� ��B��� ��B��� ��E��� ��D���
Keywords� closure operator� 	co
regular closure operator� connectedness�
preradical� torsion theory�

� Introduction

Regular closure operators were introduced by Salbany ���
 in ���� in the category of
topological spaces and have been investigated and used by several authors� namely
because they play an important role in the study of epimorphisms� They have also been
used in the context of the �Diagonal Theorem�� that is� the characterization of delta
subcategories 	see for instance ��
� ���
 and ��

�

The recent study of nabla subcategories by Clementino and Tholen ��
 led these
authors to the de�nition of coregular closure operator which turned out to play exactly
the role of regular one in this context� Besides some interesting examples presented in
��
 not much is known about these closure operators� even in the category of topological
spaces�

In this paper we investigate the behaviour nabla subcategories and their respective
coregular closure operators in the category Top of topologoical spaces 	section �
 and
ModR of modules over a ring R 	section �
�

In Top we study in particular the least coregular closure operators and obtain a
proper class of coregular closure operators that do not form a chain 	Proposition ����
�

In ModRwe show in Theorem ��� that the regular and coregular closure operators
are exactly the maximal and the minimal closure operators de�ned by radicals and
idempotent radicals� respectively�
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cussion on the subject of this paper�

� Preliminaries

We will �rst introduce some notions and techniques that will be used througout�
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��� Factorization systems

In the category Top of topological spaces and continuous maps the class M of em�
beddings has some special features that can be formulated in a categorical way� For
each space X the class M�X of embeddings with codomain X can be preordered
by �� where 	m � M �� X
 � 	n � N �� X
 if there exists t � M � N such that
n � t � m� Considering in M�X the equivalence relation de�ned by� m �� n if m � n
and n � m� it is obtains that each equivalence class corresponds exactly to an inclusion
of a subspace of X� InM�X one can form arbitrary meets 	and so also arbitrary joins

and the class M is stable under pullback�

Furthermore� every morphism f � X �� Y can be factorized as follows

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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where a is an embedding and e is a continuous surjection� Moreover� this factorization
is unique� up to isomorphism 	that is� if f � a � e � a

�

� e
�

with a� a
�

embeddings and e� e
�

surjections� there exists an isomorphism h such that h � e � e
�

and a
�

�h � a� The direct

image of M � X under f is obtained by factorizing M
m
�� X

f
�� Y as above� while the

inverse image of N � Y under f is exactly the pullback 	��bred product
 of N
n
�� Y

along f �
This construction can be generalized straightforward to a general category X � given

two classes of morphisms E and M closed under composition and containing the iso�
morphisms of X � one says that 	E �M
 is a factorization system for morphisms in X if
every X �morphism has a unique 	up to isomorphism
 	E �M
�factorization� That is� for
each morphism f � X �� Y � there exists e � X �� M and m � M �� Y in M such
that f � m � e�

A factorization system is called proper if E is a class of epimorphisms and M is a
class of monomorphisms� Consequently� E contains the regular epimorphisms and M
the regular monomorphisms 	cf� ��

�

The category X is said to beM�complete if X hasM�pullbacks 	i�e� the pullback of
a morphism in M along any morphism exists and belongs to M
 and M�intersections
	i�e� X has limits of families of morphisms in M with common codomain � which be�
long to M
� We remark that the M�completeness of X guarantees the existence of a
factorization system 	E �M
 for morphisms 	see ��

�

Having in mind the behaviour in Top of the factorization described above� in an
M�complete category X � with the factorization system 	E �M
� a subobject of X � X is
a morphism m � M �� X inM� Denoting by subX the class of subobjects of X� subX
is a 	possibly large
 complete lattice� with its preorder de�ned as in the topological
setting� Every morphism f � X �� Y in X induces an image�preimage adjunction
f	�
 a f��	�
 � subY �� subX� with f��	n
 the pullback of n � subY along f � and
f	m
 the M�part of the factorization of f � m� One always has m � f��	f	m

 and
f	f��	n

 � n�

For more details on factorization systems see ��
�

��� Closure Operators

From now on we work in an M�complete category X with �nite limits and a proper
factorization system 	E �M
�

A closure operator c of the category X with respect to the factorization system
	E �M
 is given by a family of maps 	cX � subX �� subX
X�X such that�

�



�� m � cX	m
 for all m � subX�

�� if m� � m� then cX	m�
 � cX	m�
 for all m�� m� � subX�

�� f	cX	m

 � cY 	f	m

 for all m � subX and f � X �� Y in X �

Condition � can equivalently be expressed as cX	f
��	n

 � f��	cY 	n

 for all n in subY

and f � X �� Y in X �
A subobject m of X is c�closed if cX	m
 �� m� and it is c�dense if cX	m
 �� �X �
A closure operator c is idempotent if c	m
 is c�closed for every m � M� and is weakly

hereditary if jm is c�dense with m � c	m
 � jm�
The preorders of the classes subX induce in a natural way a partial order in the

conglomerate CL	X 
 of all closure operators in X 	w�r�t�	E �M

� that has meets and
joins formed pointwise�

For additional information on closure operators see ��
�

� Regular and coregular closure operators versus

connectedness

Given a closure operator c in X � an object X of X is called c�separated if its diago�
nal �X ��� �X � �X �� X �� X 	 X is c�closed� and it is called c�connected if �X is
c�dense� This way one de�nes the subcategories �	c
 of c�separated objects and r	c

of c�connected objects 	all the subcategories of X we consider are full and closed under
isomorphisms and we denote its conglomerate by SUB	X 

� The objects that belong to
�	c
 
 r	c
 are those whose diagonal is an isomorphism� which are exactly the preter�
minal objects�

The � and r assignments give rise to the functors

� � CL	X 
 �� SUB	X 
op

r � CL	X 
 �� SUB	X 


where the partially ordered conglomerates CL	X 
 and SUB	X 
 are considered as cat�
egories�

On the other hand� each subcategory of X de�nes two special closure operators� a
regular and a coregular closure operator we describe below�

De�nitions ��� 	��

 Let A be a subcategory of X � The regular and coregular closure
operators induced by A are locally de�ned by�

regAX	m
 ��
�
fh��	�A
 j h � X �� A�� A � A and h	m
 � �Ag�

coregAX	m
 �� m �
�
fh	�A�
 j h � A� �� X�A � A and h	�A
 � mg�

for every m � subX and every X � X �

We remark that every regular closure operator is idempotent and every coregular
closure operator is weakly hereditary�

Regular closure operators were introduced by Salbany in ���
 � with a di�erent
	but equivalent
 description � and were widely used in the literature� Coregular clo�
sure operators were introduced by Clementino and Tholen in ��
 in order to describe
r�subcategories�

Let A� B be subcategories of X � If A � B then coregA � coregB and regA � regB�
hence reg and coreg may be interpreted as functors�

�



Proposition ��� 	��



�� The functor reg � SUB	X 
op �� CL	X 
 is right adjoint to ��

�� The functor coreg � SUB	X 
 �� CL	X 
 is right adjoint to r�

Corollary ��� Let A be a subcategory of X and c a closure operator in X � Then�

�� �a� A � �	regA
 and c � reg��c��

�b� A � �	c

� c � regA	

�� �a� A � r	coregA
 and c � coregr�c��

�b� A � r	c

� c � coregA�

From this proposition one has that there is a bijection between 	co
regular closure
operators and delta	nabla
 subcategories�

� Coregular closure operators in T op

In this section we will present examples of coregular closure operators andr�subcategories
in the category of topological spaces�

It was proved in ��
 that r and � subcategories in Top extend disconnectednesses
and connectednesses as studied by Arhangel�ski�� and Wiegandt�

Proposition ��� Let A be a subcategory of Top� Then

�	coregA
 � r	A
 �� fX � Top j 	�A � A
 g � A �� X � g is constant g�

r	regA
 � l	A
 �� fX � Top j 	�A � A
 f � X �� A � f is constant g�

The subcategories of the type l	A
 and r	A
 are called left�constant and right�
constant� respectively and in the particular case of topological spaces� they are also
called connectednesses and disconnectednesses�

The following examples were studied in ��
�

Example ��� Let k be the Kuratowski closure operator� The subcategory r	k
 is the
class of Hausdor� spaces and �	k
 is the class of irreducible spaces� A topological space
X is irreducible if for U� V � X� open sets and U 
 V � �� U � � or V � ��

The class Con of connected spaces is not the nabla subcategory of the usual closure
operator k but� as we will see� is a nabla subcategory�

Example ��� Let conn be the connected component closure operator� de�ned by
connX	M
 ��

S
x�M compX	x
� where compX	x
 is the connected component of x� The

nabla subcategory of conn is the subcategory of connected spaces� We do not know if
the connected component closure operator is the coregular closure operator of Con�

Example ��� The path�connected component closure operator� de�ned like the con�
nected component closure operator is the coregular closure operator de�ned by the unit
interval ��� �
� Its nabla subcategory is the subcategory of path�connected spaces�

�



Below we outline the behaviour of some relevant coregular closure operators and the
respective r�subcategories� From this study it turns out that r�subcategories cover a
much richer range of subcategories than the connectednesses� We focus our study in the
least and largest of these closure operators and subcategories�

We will denote by D� E and S the discrete space with two points � and �� the
indiscrete space with two points and the Sierpinski space� respectively� 	in
disc denotes
the 	in
discrete closure operator�

The discrete closure operator is obviously the coregular closure induced by the sub�
category Sgl� The indiscrete closure operator is also coregular as we show next�

We remark that in Top each nabla subcategory is closed under continuous images�

Proposition ��	 For a subcategory A of Top closed under images
 the following con�
ditions are equivalent�

	i
 r	coregA
 �Top	
	ii
 coregA � indisc�
	iii
 D � A�

Proof� 	i
�	ii
 Obvious�
	ii
�	iii
 If coregA � indisc then coregAD	�
 � D� So� there is a continuous map

h � A� �� D with A � A� h	a� a
 � � for all a � A and h	b� c
 � � for two distinct
points b� c of A� For g � A �� A� de�ned by g	x
 � 	b� x
� the function h �g is continuous
and h � g	A
 � D� So D is in A because A is closed under images�

	iii
�	i
 Let X be a topological space� For 	x� y
 � X	X� one de�nes h � D� �� X�

with h	�D
 � �X and h	�� �
 � 	x� y
� The function h is continuous because its domain
is a discrete space� Hence coregA	�X
 � �X� and so X � r	coregA
�

Corollary ��
 If A is a nabla subcategory and A �� Top then A � Con�

Proof� Every nabla subcategory containing a disconnected space must contain D since
it is closed under images�

Proposition ��� Let X be a topological space and M � X� Then

coregEX	M
 � fx � X j 	�y �M
 � k	x
 � k	y
g�

Proof� Let x be an element of coregEX	M
� There is f � E	 E �� X with f	�� �
 � x
and ff	�� �
� f	�� �
g � M � Since E 	 E is indiscrete and f continuous� f	E 	 E
 is
indiscrete� and so k	x
 � k	f	�� �

�

Conversely� if for x � X exists y � M such that k	x
 � k	y
 then the function
f � E 	 E �� X de�ned by f	�� �
 � f	�� �
 � y and f	�� �
 � f	�� �
 � x is
continuous�

Corollary ��� The nabla subcategory induced by coregE is the subcategory of indiscrete
spaces�

Corollary ��
 If X is a T��space and M � X
 then coregEX	M
 �M�

Proposition ���� Let X � Top and M � X� Then

coregSX	M
 � fx � X j 	�z� w �M
 � z � k	x
 and x � k	w
g�

�



Proof� Let c �� coregS and x be an element of c	M
� There is f � S 	 S �� X with
f	�� �
 � x� f	�� �
 � w and f	�� �
 � z 	z� w �M
�

From k		�� �

 � S 	 S� we know that 	�� �
 � k		�� �

 and� by continuity
of f � f	�� �
 � x � k	w
� In the same way k		�� �

 � f	�� �
� 	�� �
g implies that
	�� �
 � k		�� �

 and �nally that z � k	x
�

Conversely� we have z � k	x
 and x � k	w
 with z� w �M and x � X� and we want
prove that x � c	M
� So� it is enough to show that the function f � S 	 S �� X with
f	�� �
 � f	�� �
 � x� f	�� �
 � w and f	�� �
 � z is continuous� Let F � X be a closed
set�

f��	F 
 �

�����
����

� if w �� F� x �� F e z �� F
S	 S if w � F 	� x � F � z � F 

S	 Snf	�� �
g if w �� F e x � F 	� z � F 

f	�� �
g if w �� F� x �� F e z � F

Since the inverse image of a closed set is closed� then f is continuous� and the proof is
complete�

From the de�nition of coregS we may conclude immediately the following results�

Corollary ���� If X is a T��space and M � X
 then
 coregSX	M
 �M�

Corollary ���� A space X belongs to r	coregS
 if and only if

	�x� y � X
 	�z� w � X
 � z � k	x
 
 k	y
 and fx� yg � k	w
�

From the results above we have the following chain of coregular closure operators�

disc � coregSgl � coregE � coregS � coregCon � coregD � indisc�

Moreover
 if c is a coregular closure operator di�erent from these
 then

coregS � c � coregCon�

In fact� if c � coregA with c �� disc and c �� coregE then there exists X � A such that
X has a non trivial open set because X can not be a singleton space or an indiscrete
space� Since nabla subcategories are closed under images� s � r	coregA
 which implies
that coregS � coregA�

Note that the trivial closure operator is not a coregular closure operator�

Since coregE and coregS are discrete in T� spaces and in T� spaces� respectively�
we could conjecture that the next coregular closure operator would be the largest one
discrete in T��spaces� coreg

r�k�� but that is not true� On the contrary� there are plenty
of coregular closure operators�

For an in�nite cardinal 	� letX� be a topological space 	X� T 
� where X has cardinal
	 and T is the co�nite topology�

Proposition ���� If 	 and 
 are two in�nite cardinals and 	 � 
� then�

coregX� � coregX� �

Proof� First� we will prove that X� �� r	coregX�
� which implies that coregX� ��
coregX� � Let h � X� �� X� be a continuous map� Then X� �

�
x�X�

h��	x
� with h��	x


a closed set for each x� But we know that X� is not the union of 	 �nite sets because
	 � 
� And so� one of the sets h��	x
 has to be equal to X�� and then h is constant�

�



Hence X� � r	fX�g
 � �	coregX�
 and therefore it cannot belong to r	coregX�
�
since only the singleton spaces and the empty space are in �	coregX�
 
r	coregX�
�

Next� we will prove that coregX� � coregX� � If x � coreg
X�

Y 	M
 nM� for a subspace
M of Y� then there is h � X� 	 X� �� Y such that h	�X�


 � M and h	a� b
 � x
for a� b in X�� Now� let us consider a subspace X� of X� such that a� b � X�� Then
x � hjX��X�	X� 	X�
� and so x � coregX�

Y 	M
�

The construction of the co�nite topology can be generalized� In fact� for two in�nite
cardinals � � 	� we de�ne the topological space X�

�� where the cardinal of X
�
� is 	 and

A � X�
� is closed if its cardinal is less than � or A � X�

�� For � � �� the topology
de�ned this way is the co�nite one�

Proposition ���� Let 	� 
� � and � be in�nite cardinals� If � � � � 	 � 
 then�

�� coregX
�
� � coregX

�
� �

�� coregX
�
� � coregX

�
� �

Proof� �� If � � �� then the identity map f � X�
� �� X�

� is continuous� therefore
coregX

�
� � coregX

�
� because the nabla subcategories are closed under images�

Next we will show that X�
� � r	fX�

�g
� Let g � X�
� �� X�

� be a continuous map�
If jg	X�

�
j � �� then g	X�
�
 has a proper subset F of cardinal larger or equal to �� But

jg��	F 
j � �� and so jF j � jg��	F 
j � �� This implies that jg	X�
�
j � � and so g	X�

�

is a discrete subspace of X�

�� A discrete space which is image of X�
� is a singleton�

In conclusion X�
� �� r	coregX

�
�
 and then coregX

�
� �� coregX

�
� �

The proof of � is similar to the case � � ���

Corollary ���	 Between coregS and coregr�k� there is a proper class of
coregular closure operators�

Remark ���
 For A � fX�
� j	 is an in�nite cardinalg� coregA � coregr�k�� We do not

know if they are equal�

� Coregular closure operators in ModR

Let ModR be the category of R�modules with its 	surjective homomorphisms� injective
homomorphisms
 factorization system 	i�e� 	epi� mono
�factorization

� So� in this case
a subobject is� up to isomorphism� a submodule�

De�nition ��� A preradical r inModR is a subfunctor of the identity functor inModR�
that is r � ModR �� ModR is a map such that r	M
 is a submodule of M and
f	r	M

 � r	f	M

� for each M�N � ModR and each homomorphism f � M �� N�

A preradical r is idempotent if r	r	M

 � r	M
 for every M � ModR� and it is a
radical if r	M�r	M

 � O for every M � ModR�

To each preradical r a torsion�free subcategory Fr � fM � r	M
 � Og and a torsion
subcategory Tr � fM � r	M
 �Mg are associated�

Preradicals and closure operators in ModR are closely connected� each closure op�
erator induces a preradical r by r	M
 �� cM	O
� on the other hand� each preradical
de�nes in a natural way two closure operators� minr and maxr� the least and the largest
one such that cM	O
 � r	M
 for every R�module M � They are called the minimal and
the maximal closure operators� respectively� and de�ned by

minrM	N
 � N � r	M


maxrM	N
 � 
��	r	M�N

�

where N is a submodule of M and 
 � M ��M�N is the canonical projection�
The next results are partially in ��
� ��
�

�



Proposition ��� Let r be a preradical in ModR� Then�

�� r	minr
 � r	maxr
 � Tr�

�� �	minr
 � �	maxr
 � Fr�

Proof� �� We already know that r	minr
 � r	maxr
� because minr � maxr� A module
N is in r	maxr
 if and only if maxrN�	�N 
 � N 	N� The equality maxrN�	�N
 � N 	N
means that 
��	r	N 	 N��N 

 � 
��	N 	 N��N 
 and� consequently� r	N 	 N��N 
 �
N 	N��N because 
 is surjective� By the isomorphism N 	N��N �� N � N � r	maxr

if and only if N � Tr�

At last� we show that Tr � r	minr
� If N � Tr� then r	N
 � N� A preradical is
�nitely productive� and so

minrN�	�N
 � �N � r	N 	N
 � �N � r	N
	 r	N
 � �N �N 	N � N 	N�

�� The proof of Fr � �	maxr
 � �	minr
 is similar to the �rst part of the proof of
�� To show the remaining inclusion� if N is in �	minr
� then �N � r	N 	N
 � �N � and
consequently r	N
	 r	N
 � �N � From this fact we have that r	N
 is a singleton and so
r	N
 � O�

Corollary ��� If c is a closure operator in ModR and r is the preradical induced by c

then

r	c
 � Tr e �	c
 � Fr�

From this result� we have that the torsion subcategories and the nabla subcategories
are exactly the same� and� at the same time� the free�torsion and the delta subcategories
coincide�

Now we investigate the 	co
regular closure operators in ModR�

Proposition ��� If r is a radical then regFr � maxr�

Proof� It is true in general that reg��c� � c� In particular for c � maxr� we know
that �	maxr
 � Fr from Proposition ���� and so regFr � maxr� To proof the other
inequality is enough to show that regFrM 	O
 � r	M
� From the former inequality we
have r	M
 � maxrM	O
 � regFrM 	O
� In ModR the regular closure operator may be
computed by

regFrM 	O
 �
�
fkerf j f � M �� X� X � Frg�

The quotient module M�r	M
 is in Fr� because r is a radical� Hence� for

 �M �M�r	M
 the canonical homomorphism� we have regFrM 	O
 � ker
 � r	M
�

Proposition ��	 If r is an idempotent preradical
 then coregTr � minr�

Proof� That coregTr � minr may be concluded analogously to the preceding proposi�
tion� We only have to show minrM	O
 � r	M
 � coregTr	O
� By de�nition of coregular
closure operator� we have

coregTrM	O
 �
�
fh	X�
 j h � X� ��M�X � Tr and h	�X
 � Og�

Let g � r	M
 	 r	M
 �� M be the homomorphism de�ned by g	x� y
 � x � y� Since
r	M
 � Tr because r is idempotent� g	�r�M�
 � O and g	r	M
 	 r	M

 � r	M
� we

conclude that r	M

 � coregTrM	O
 as claimed
Since every torsion�free 	torsion
 subcategoriy ofModR is induced by a radical 	idem�

potent preradical
 	cf� ��

 and every delta 	nabla
 subcategory is torsion�free	torsion
�
we have�

�



Theorem ��
 Let c be a closure operator in ModR�

�� c is a regular closure operator if and only if c � maxr for a unique radical r�

�� c is a coregular closure operator if and only if c � minr for a unique idempotent
preradical r�

We point out that in �	�
 the radical 	idempotent preradical
 is unique because there
is a one�to�one correspondence between maximal 	minimal
 closure operators and pre�
radicals� Hence� from the results above� it follows that there is a one�to�one correspon�
dence between the conglomerates of regular closure operators� radicals and torsion�free
subcategories as well as a one�to�one correspondence between coregular closure opera�
tors� idempotent preradicals and torsion subcategories in ModR�

In ��
� it is stated that every subcategory A ofModR induces a preradical tA de�ned
by�

tA	M
 ��
�
fkerf j f � M �� A� A � Ag�

which is exactly the preradical associated to regA�
For a subcategory A of ModR� we de�ne a preradical sA by

sA	M
 �� coregAM	O
�

Proposition ��� Let A be a subcategory of ModR and r be a preradical of ModR�
Then�

�� A � FtA and r � tFr �

�� A � TsA and r � sTr �

The proof follows directly from the de�nitions�

Proposition ��� For every subcategory A of ModR� we have�

�� tA is a radical	

�� sA is an idempotent preradical�

Proof� �� Since every regular closure operator is maximal� and by ��
 we know that
a maximal closure operator is idempotent if and only if the preradical it induces is a
radical� the preradical tA is a radical for every subcategory A of ModR�

For �� we use a similar result of ��
 which says that a minimal closure operator is
weakly hereditary if and only if it induces an idempotent preradical�

Proposition ��
 Let A be a subcategory of ModR� Then�

�� FsA � r	A
 �� fM � ModR j 	�A � A
 f � A ��M � f	A
 � Og�

�� TtA � l	A
 �� fM � ModR j 	�A � A
 g � M �� A � g	M
 � Og�

Proof� �� Let X be in r	A
� so that for every homomorphism f � A �� X with A � A�
we have f	A
 � O�

Let h � A� �� X be a homomorphism with A � A� If we de�ne f�� f� � A �� X by
f�	a
 �� h	a� �
 and f�	b
 �� h	�� b
� then f�	A
 � f�	A
 � O� which implies h	A	A
 �
O� From this fact� we have that coregAX	O
 � sA	X
 � O� and so X � FsA�

Conversely if X � FsA� then for all h � A� �� X� with A � A and h	�A
 � O� we
have h	A�
 � O�

Let f � A �� X be a homomorphism with A � A� and consider g � A 	 A �� X
de�ned by g	a� b
 �� f	a
 � f	b
� Since g	�A
 � O� g	A�
 � O� and consequently f is
constant�

�� Analogously for the left�constant subcategories�

�



Corollary ���� For every subcategory A of ModR �

�� r	A
 � �	coregA
�

�� l	A
 � r	regA
�

Proof� �� From the preceding proposition r	A
 � FsA� and by Corollary ��� FsA � �	c

for every closure operator c such that cM	O
 � sA	M
 for M � ModR� In particular�
FsA � �	coregA
�

The proof of � is similar�
If r is an idempotent radical� then the pair 	Tr�Fr
 is a torsion theory in sense of ��
�

The torsion and torsion�free subcategories of a torsion theory are the left and the right
constant subcategories� respectively� Each pair 	lA� rlA
 determines an idempotent
radical r such that Tr � lA and Fr � rlA� This idempotent radical is exactly the one
induced by regrlA and by coreglA�
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