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Abstract

Among closure operators -in the sense of Dikranjan and Giuli [5]- the regular
ones have a relevant role and have been widely investigated. On the contrary, the
coregular closure operators were introduced only recently in [3] and they need to
be further investigated. In this paper we study (co)regular closure operators -in
connection connectednesses and disconnectednesses- in the realm of topological
spaces and modules.

AMS subject classification: 54B30, 18B30, 18E40, 54D05.
Keywords: closure operator, (co)regular closure operator, connectedness,
preradical, torsion theory.

0 Introduction

Regular closure operators were introduced by Salbany [12] in 1976 in the category of
topological spaces and have been investigated and used by several authors, namely
because they play an important role in the study of epimorphisms. They have also been
used in the context of the “Diagonal Theorem”, that is, the characterization of delta
subcategories (see for instance [9], [10] and [7]).

The recent study of nabla subcategories by Clementino and Tholen [3] led these
authors to the definition of coregular closure operator which turned out to play exactly
the role of regular one in this context. Besides some interesting examples presented in
[3] not much is known about these closure operators, even in the category of topological
spaces.

In this paper we investigate the behaviour nabla subcategories and their respective
coregular closure operators in the category Top of topologoical spaces (section 3) and
Modp of modules over a ring R (section 4).

In Top we study in particular the least coregular closure operators and obtain a
proper class of coregular closure operators that do not form a chain (Proposition 3.14).

In Modgwe show in Theorem 4.6 that the regular and coregular closure operators
are exactly the maximal and the minimal closure operators defined by radicals and
idempotent radicals, respectively.

Acknowledgment: I thank Professor Maria Manuel Clementino for valuable dis-
cussion on the subject of this paper.

1 Preliminaries

We will first introduce some notions and techniques that will be used througout.
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1.1 Factorization systems

In the category Top of topological spaces and continuous maps the class M of em-
beddings has some special features that can be formulated in a categorical way. For
each space X the class M /X of embeddings with codomain X can be preordered
by <, where (m : M — X) < (n : N — X) if there exists ¢t : M — N such that
n -t = m. Considering in M/X the equivalence relation defined by: m = n if m <n
and n < m, it is obtains that each equivalence class corresponds exactly to an inclusion
of a subspace of X. In M/X one can form arbitrary meets (and so also arbitrary joins)
and the class M is stable under pullback.
Furthermore, every morphism f: X — Y can be factorized as follows

where @ is an embedding and e is a continuous surjection. Moreover, this factorization
is unique, up to isomorphism (that is, if f = a-e = a -e with a,a embeddings and e, €
surjections, there exists an isomorphism h such that h-e = ¢ and ¢ - h = a. The direct

image of M C X under f is obtained by factorizing M < X Ty as above, while the

inverse image of N C Y under f is exactly the pullback (=fibred product) of N < Y
along f.

This construction can be generalized straightforward to a general category X: given
two classes of morphisms £ and M closed under composition and containing the iso-
morphisms of X, one says that (£, M) is a factorization system for morphisms in X if
every X-morphism has a unique (up to isomorphism) (£, M)-factorization. That is, for
each morphism f : X — Y, there exists e : X — M and m : M — Y in M such
that f =m -e.

A factorization system is called proper if £ is a class of epimorphisms and M is a
class of monomorphisms. Consequently, £ contains the regular epimorphisms and M
the regular monomorphisms (cf. [8]).

The category X is said to be M-complete if X has M-pullbacks (i.e, the pullback of
a morphism in M along any morphism exists and belongs to M) and M-intersections
(i.e, X has limits of families of morphisms in M with common codomain , which be-
long to M). We remark that the M-completeness of X’ guarantees the existence of a
factorization system (£, M) for morphisms (see [1]).

Having in mind the behaviour in 7op of the factorization described above, in an
M-complete category X, with the factorization system (£, M), a subobject of X € X is
a morphism m : M — X in M. Denoting by subX the class of subobjects of X, subX
is a (possibly large) complete lattice, with its preorder defined as in the topological
setting. Every morphism f : X — Y in X induces an image-preimage adjunction
f(=) 4 f7Y=) : subY — subX, with f~!(n) the pullback of n € subY along f, and
f(m) the M-part of the factorization of f-m. One always has m < f~!(f(m)) and
f(fHn) < n.

For more details on factorization systems see [1].

1.2 Closure Operators

From now on we work in an M-complete category X with finite limits and a proper
factorization system (€, M).

A closure operator ¢ of the category X with respect to the factorization system
(€, M) is given by a family of maps (cx : subX — subX)xcx such that:



1. m < cx(m) for all m € subX;
2. if my < my then cx(my) < ex(ms) for all my, my € subX;;

3. flex(m)) < cy(f(m)) for all m € subX and f: X — Y in X.

Condition 3 can equivalently be expressed as cx (f~'(n)) < f~'(cy(n)) for all n in subY’
and f: X — Y in X.

A subobject m of X is c-closed if cx(m) = m, and it is c-dense if cx(m) = 1x.

A closure operator ¢ is idempotent if ¢(m) is c-closed for every m € M, and is weakly
hereditary if j,, is c-dense with m = ¢(m) « jp,.

The preorders of the classes subX induce in a natural way a partial order in the
conglomerate C'L(X') of all closure operators in X (w.r.t.(£, M)), that has meets and
joins formed pointwise.

For additional information on closure operators see [7].

2 Regular and coregular closure operators versus
connectedness

Given a closure operator ¢ in X, an object X of X is called c-separated if its diago-
nal oy =<1x,1x>: X — X x X is c-closed, and it is called c-connected if dx is
c-dense. This way one defines the subcategories A(c) of c-separated objects and V(c)
of c-connected objects (all the subcategories of X we consider are full and closed under
isomorphisms and we denote its conglomerate by SUB(X')). The objects that belong to
A(c) N'V(c) are those whose diagonal is an isomorphism, which are exactly the preter-
minal objects.
The A and V assignments give rise to the functors

A CL(X) —s SUB(X)™

V: CL(X) — SUB(X)

where the partially ordered conglomerates CL(X) and SUB(X) are considered as cat-
egories.

On the other hand, each subcategory of X defines two special closure operators, a
regular and a coregular closure operator we describe below.

Definitions 2.1 ([3]) Let A be a subcategory of X. The regular and coregular closure
operators induced by A are locally defined by:

regi(m) == N{h™"(d4) | h: X — A%, A€ Aand h(m) < b4},

coregy(m) :=m Vv \/{h(142) |h: A> — X, A € A and h(54) < m},
for every m € subX and every X € X.

We remark that every regular closure operator is idempotent and every coregular
closure operator is weakly hereditary.

Regular closure operators were introduced by Salbany in [12] — with a different
(but equivalent) description — and were widely used in the literature. Coregular clo-
sure operators were introduced by Clementino and Tholen in [3] in order to describe
V-subcategories.

Let A, B be subcategories of X. If A C B then coreg* < coreg? and reg” > reg?,
hence reg and coreg may be interpreted as functors.



Proposition 2.2 ([3])
1. The functor reg : SUB(X)? — CL(X) is right adjoint to A.
2. The functor coreg : SUB(X) — CL(X) is right adjoint to V.

Corollary 2.3 Let A be a subcategory of X and ¢ a closure operator in X. Then:

1. (a) AC A(reg?) and ¢ < reg”l®,
(b)) AC A(c) <= ¢ < reg?;

(

(

2. (a) AC V(coreg?) and c > coregV(®),
(b) A C V(c) <= c> coreg”

From this proposition one has that there is a bijection between (co)regular closure
operators and delta(nabla) subcategories.

3 Coregular closure operators in 7op

In this section we will present examples of coregular closure operators and V-subcategories
in the category of topological spaces.

It was proved in [3] that V and A subcategories in Top extend disconnectednesses
and connectednesses as studied by Arhangel’skii and Wiegandt.

Proposition 3.1 Let A be a subcategory of Top. Then
A(coreg?) = r(A) :={X € Top| (VA€ A) g: A — X = g is constant },
V(reg?) =I(A) :={X € Top| (VA€ A) f: X — A = f is constant }.

The subcategories of the type I(A) and r(A) are called left-constant and right-
constant, respectively and in the particular case of topological spaces, they are also
called connectednesses and disconnectednesses.

The following examples were studied in [3].

Example 3.2 Let k be the Kuratowski closure operator. The subcategory V (k) is the
class of Hausdorff spaces and A(k) is the class of irreducible spaces. A topological space
X is irreducible if for U,V C X, opensetsand UNV =0, U=0or V =10

The class Con of connected spaces is not the nabla subcategory of the usual closure
operator k£ but, as we will see, is a nabla subcategory.

Example 3.3 Let conn be the connected component closure operator, defined by
conny (M) := Uzen compy (z), where compy () is the connected component of z. The
nabla subcategory of conn is the subcategory of connected spaces. We do not know if
the connected component closure operator is the coregular closure operator of Con.

Example 3.4 The path-connected component closure operator, defined like the con-
nected component closure operator is the coregular closure operator defined by the unit
interval [0, 1]. Tts nabla subcategory is the subcategory of path-connected spaces.



Below we outline the behaviour of some relevant coregular closure operators and the
respective V-subcategories. From this study it turns out that V-subcategories cover a
much richer range of subcategories than the connectednesses. We focus our study in the
least and largest of these closure operators and subcategories.

We will denote by D, E and S the discrete space with two points 0 and 1, the
indiscrete space with two points and the Sierpinski space, respectively; (in)disc denotes
the (in)discrete closure operator.

The discrete closure operator is obviously the coregular closure induced by the sub-
category Sgl. The indiscrete closure operator is also coregular as we show next.

We remark that in 7op each nabla subcategory is closed under continuous images.

Proposition 3.5 For a subcategory A of Top closed under images, the following con-
ditions are equivalent:

(i) V(coreg*) =Top;
ii) coreg? = indisc;
iii) D € A.

Proof:  (i)=(ii) Obvious.

(ii)=>(iii) If coreg" = indisc then coregy(0) = D. So, there is a continuous map
h: A? — D with A € A, h(a,a) = 0 for all a € A and h(b,c) = 1 for two distinct
points b, c of A. For g : A — A? defined by g(z) = (b, z), the function h-g is continuous
and h - g(A) =D. So D is in A because A is closed under images.

(iii)=-(i) Let X be a topological space. For (z,y) € X x X, one defines h : D* — X?
with h(dp) C dx and h(0,1) = (z,y). The function h is continuous because its domain

is a discrete space. Hence coreg?(dx) = 1x2 and so X € V(coreg?). u
Corollary 3.6 If A is a nabla subcategory and A # Top then A C Con.

Proof:  Every nabla subcategory containing a disconnected space must contain D since
it is closed under images. ]

Proposition 3.7 Let X be a topological space and M C X. Then
coregS (M) ={r € X |(3y € M) : k(x) = k(y)}.
Proof. Let x be an element of coreg5 (M). There is f : E x E — X with f(0,1) =«
and {f(0,0), f(1,1)} € M. Since E x E is indiscrete and f continuous, f(E x E) is
indiscrete, and so k(x) = k(f(0,0)).
Conversely, if for € X exists y € M such that k(xr) = k(y) then the function
f:ExE — X defined by f(0,0) = f(1,1) = y and f(0,1) = f(1,0) = z is

continuous. m

Corollary 3.8 The nabla subcategory induced by coregt is the subcategory of indiscrete
spaces.

Corollary 3.9 If X is a Ty-space and M C X, then coregs- (M) = M.
Proposition 3.10 Let X € Top and M C X. Then

coregx (M) = {z € X | (Fz,w € M) : z € k(z) and z € k(w)}.



Proof: Let ¢ := coreg® and z be an element of ¢(M). There is f : S x S — X with
f(0, ): ,0)=w and f(1,1) =z (z,w € M).

From k((0, )) = S xS, we know that (0,1) € £((0,0)) and, by continuity
of f ( ,1) = 2 € k(w). In the same way £((0,1)) = {(0,1),(1,1)} implies that
(1, ) (( ,1)) and finally that z € k(x).

Conversely, we have z € k(z) and = € k(w) with z,w € M and = € X, and we want
prove that x e c(M). So, it is enough to show that the function f:S xS — X with
f(0,1) = f(1,0) =z, f(0,0) = w and f(1,1) = z is continuous. Let F' C X be a closed
set:

VQ\
A

0 fwgFegFezgF
1) = SxS fweF(=reF=z2¢cF)
I E) =9 52 9\[(0,0)} ifwgFexeF(=zcF)

{(1,1)} fwgFegFezeF

Since the inverse image of a closed set is closed, then f is continuous, and the proof is
complete. [
From the definition of coreg® we may conclude immediately the following results.

Corollary 3.11 If X is a Ti-space and M C X, then, coreg (M) = M.

Corollary 3.12 A space X belongs to V(coreg®) if and only if
(Vz,y € X) (Fz,w € X) : z € k(z) Nk(y) and {z,y} C k(w).

From the results above we have the following chain of coreqular closure operators:

Con

disc = coregS® < coregt < coreg® < coreg® < coregP = indisc.

Moreover, if ¢ is a coregular closure operator different from these, then
coreg® < ¢ < coreg®®"

In fact, if ¢ = coreg” with ¢ # disc and ¢ # coregF then there exists X € A such that
X has a non trivial open set because X can not be a singleton space or an indiscrete
space. Since nabla subcategories are closed under images, s € V(coreg”) which implies
that coreg® < coreg™.

Note that the trivial closure operator is not a coreqular closure operator.

Since coregE and coreg® are discrete in Ty spaces and in 7T} spaces, respectively,
we could conjecture that the next coregular closure operator would be the largest one

discrete in Th-spaces, coregV*) but that is not true. On the contrary, there are plenty
of coregular closure operators.

For an infinite cardinal «, let X, be a topological space (X, T), where X has cardinal
a and 7 is the cofinite topology.

Proposition 3.13 If a and (3 are two infinite cardinals and o < 3, then:
coreg™? < coreg™®

Proof.  First, we will prove that X, ¢ V(coregXs), which implies that coregX>

coreg?. Let h: X3 — X, be a continuous map. Then Xz = |J h~'(z), with A7 (z)
:L‘GXQ

a closed set for each x. But we know that Xz is not the union of « finite sets because

a < 3. And so, one of the sets h™'(x) has to be equal to Xg, and then h is constant.
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Hence X, € r({Xs}) = A(coreg®?) and therefore it cannot belong to V(coreg™s),
since only the singleton spaces and the empty space are in A(coreg™?) N V(coreg™s).

Next, we will prove that coregX® < coregXe. If z € coregh? (M) \ M, for a subspace
M of Y, then there is h : Xz x X3 — Y such that h(dx,) € M and h(a,b) = =
for a,b in Xz. Now, let us consider a subspace X, of Xg such that a,b € X,. Then

T € hlx,xx.(Xo X Xa), and so z € coregy (M). u

The construction of the cofinite topology can be generalized. In fact, for two infinite
cardinals 7 < a, we define the topological space X, where the cardinal of X is o and
A C X is closed if its cardinal is less than v or A = X]. For v = R, the topology
defined this way is the cofinite one.

Proposition 3.14 Let o, (3, v and n be infinite cardinals. If n < v < a < [ then:

n vy
1. coreg®e < coreg™e;

X7 ”
2. coreg” 8 < coregXe.

Proof: 1. If n < v, then the identity map f : X7 — X is continuous, therefore

coreg™e < coregXs because the nabla subcategories are closed under images.

Next we will show that X € r({X?}). Let g : X! — X be a continuous map.
If |g(X1)| > n, then g(X7) has a proper subset F' of cardinal larger or equal to 7. But
g7 (F)| < n, and so |F| < |g~'(F)| < n. This implies that |g(X)| < v and so g(X)
is a discrete subspace of X]. A discrete space which is image of X is a singleton.

In conclusion X7 ¢ V(coregX) and then coregX* # coreg™e.

The proof of 2 is similar to the case v = Ny. [ ]

Corollary 3.15 Between coreg® and coregV®) there is a proper class of
coreqular closure operators.

Remark 3.16 For A = {X%|« is an infinite cardinal}, coreg” < coregV*). We do not
know if they are equal.

4 Coregular closure operators in Modp

Let Modpg be the category of R-modules with its (surjective homomorphisms, injective
homomorphisms) factorization system (i.e, (epi, mono)-factorization)). So, in this case
a subobject is, up to isomorphism, a submodule.

Definition 4.1 A preradical r in Modp, is a subfunctor of the identity functor in Modg;
that is r : Modr — Modpg is a map such that r(M) is a submodule of M and
f(r(M)) Cr(f(M)), for each M, N € Modg and each homomorphism f: M — N.

A preradical r is idempotent if r(r(M)) = r(M) for every M € Modg, and it is a
radical if r(M/r(M)) = O for every M € Modg.

To each preradical r a torsion-free subcategory F, = {M : r(M) = O} and a torsion
subcategory T, = {M : r(M) = M} are associated.

Preradicals and closure operators in Modpg are closely connected: each closure op-
erator induces a preradical r by 7(M) := ¢y(0); on the other hand, each preradical
defines in a natural way two closure operators, min” and max”, the least and the largest
one such that ¢y (0) = r(M) for every R-module M. They are called the minimal and
the maximal closure operators, respectively, and defined by

minj, (N) = N + r(M)
max, (N) = 7' (r(M/N)),

where N is a submodule of M and 7 : M — M /N is the canonical projection.
The next results are partially in [3], [7].
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Proposition 4.2 Let r be a preradical in Modg. Then:
1. V(min") = V(max") = 7;;
2. A(min") = A(max") = F,.

Proof: 1. We already know that V(min") C V(max"), because min" < max”. A module
N is in V(max") if and only if maxy.(dy) = N x N. The equality max}.(0x) = N x N
means that 7 1(r(N x N/dy)) = 7 (N x N/dy) and, consequently, (N x N/dy) =
N x N/on because 7 is surjective. By the isomorphism N x N/dy =2 N, N € V(max")
if and only if N € 7,.

At last, we show that 7, C V(min"). If N € 7, then r(N) = N. A preradical is
finitely productive, and so

minfy.(dy) =0y +7(N X N) =y +7r(N) x r(N) =0y + N x N =N x N.

2. The proof of F, = A(max”) C A(min") is similar to the first part of the proof of
1. To show the remaining inclusion, if NV is in A(min"), then dy + (N x N) = dy, and
consequently r(N) x r(NN) C dy. From this fact we have that r(V) is a singleton and so
r(N) = 0. u

Corollary 4.3 If c is a closure operator in Modg and r is the preradical induced by c,
then
Vie)=T, e Ale) = F,.

From this result, we have that the torsion subcategories and the nabla subcategories
are exactly the same, and, at the same time, the free-torsion and the delta subcategories
coincide.

Now we investigate the (co)regular closure operators in Modg.

Proposition 4.4 If r is a radical then reg”" = max”.

Proof It is true in general that reg®(© > ¢. In particular for ¢ = max”, we know
that A(max”) = F, from Proposition 4.2, and so reg’* > max”". To proof the other
inequality is enough to show that reglr(O) = r(M). From the former inequality we

have r(M) = max},(0) C regy;(0). In Modg the regular closure operator may be
computed by

regh (0) = (({kerf | f: M — X, X € F.}.

The quotient module M/r(M) is in F,, because r is a radical. = Hence, for
7 : M — M/r(M) the canonical homomorphism, we have reg}r (0) C kerm = r(M). =

Proposition 4.5 If r is an idempotent preradical, then coreg” = min".

Proof: That coreg’ < min” may be concluded analogously to the preceding proposi-
tion. We only have to show min),(O) = r(M) C coreg” (0O). By definition of coregular
closure operator, we have

coreg-(0) = [ J{MX?) |h: X* — M, X € T, and h(dx) = O}.

Let g : r(M) x r(M) — M be the homomorphism defined by g(x,y) = = — y. Since
r(M) € T, because r is idempotent, g(d,)) = O and g(r(M) x r(M)) = r(M), we
conclude that r(M)) C coregl;(0) as claimed n

Since every torsion-free (torsion) subcategoriy of Modpy, is induced by a radical (idem-
potent preradical) (cf. [6]) and every delta (nabla) subcategory is torsion-free(torsion),
we have:



Theorem 4.6 Let ¢ be a closure operator in Modg.

1. ¢ is a regular closure operator if and only if c = max” for a unique radical r.

2. ¢ is a coreqular closure operator if and only if ¢ = min" for a unique idempotent
preradical r.

We point out that in 1(2) the radical (idempotent preradical) is unique because there
is a one-to-one correspondence between maximal (minimal) closure operators and pre-
radicals. Hence, from the results above, it follows that there is a one-to-one correspon-
dence between the conglomerates of regular closure operators, radicals and torsion-free
subcategories as well as a one-to-one correspondence between coregular closure opera-
tors, idempotent preradicals and torsion subcategories in Modg.

In [6], it is stated that every subcategory A of Modp induces a preradical ¢ 4 defined
by:

ta(M):=(kerf|f: M — A, Ae A},

which is exactly the preradical associated to reg”.
For a subcategory A of Modg, we define a preradical s4 by

s.4(M) := coregy(O).

Proposition 4.7 Let A be a subcategory of Modgr and r be a preradical of Modg.
Then:

1. AgftA Cmdrﬁtﬂ;
2. ACT,, andr > s7,.
The proof follows directly from the definitions.

Proposition 4.8 For every subcategory A of Modg, we have:
1. t4 is a radical;

2. s4 18 an idempotent preradical.

Proof: 1. Since every regular closure operator is maximal, and by [6] we know that
a maximal closure operator is idempotent if and only if the preradical it induces is a
radical, the preradical 4 is a radical for every subcategory A of Modpy.

For 2, we use a similar result of [6] which says that a minimal closure operator is
weakly hereditary if and only if it induces an idempotent preradical. [

Proposition 4.9 Let A be a subcategory of Modg. Then:
1. Fo,=r(A):={M € Modr| (VA€ A) f: A— M = f(A) = 0},
2. T, =1U(A):={M € Modg | VA€ A)g: M — A = g(M) = O}.

Proof: 1. Let X be in r(A), so that for every homomorphism f : A — X with A € A,
we have f(A) = O.

Let h: A2 — X be a homomorphism with A € A. If we define f;, fo : A — X by
fi(a) := h(a,0) and fo(b) := h(0,b), then fi(A) = fo(A) = O, which implies h(A x A) =
O. From this fact, we have that coregq(0) = s4(X) = O, and so X € F,,.

Conversely if X € F,,, then for all h : A> — X, with A € A and h(d4) = O, we
have h(A?) = O.

Let f: A — X be a homomorphism with A € A, and consider g : A x A — X
defined by g(a,b) := f(a) — f(b). Since g(64) = O, g(A?) = O, and consequently f is
constant.

2. Analogously for the left-constant subcategories. ]
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Corollary 4.10 For every subcategory A of Modpy, :

1. r(A) = A(coreg?);

2. 1(A) = V(reg?).
Proof: 1. From the preceding proposition 7(A) = F; ,, and by Corollary 4.3 F,, = A(c)
for every closure operator ¢ such that ¢p(0O) = s4(M) for M € Modg. In particular,
Fi, = A(coreg?).

The proof of 2 is similar. [

If r is an idempotent radical, then the pair (7;, F,) is a torsion theory in sense of [4].
The torsion and torsion-free subcategories of a torsion theory are the left and the right
constant subcategories, respectively. Each pair (IA,rlA) determines an idempotent

radical r such that 7, = [A and F, = rlA. This idempotent radical is exactly the one
induced by reg™ and by coregh*.
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