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Abstract

The estimation of distribution functions of pairs of associated variables is addressed based on
a kernel estimator. This problem is motivated by the need to approximate covariance functions
appearing as the limiting covariances of the empirical process sequence. Results characterizing
the asymptotics and convergence rates of the estimator are obtained. From these we derive

the optimal bandwidth convergence rate, which is of order n~!. Finally, we give conditions

for the asymptotic normality of the finite dimensional distributions, characterizing their limit
covariance matrix. Besides some usual conditions on the kernel function, the conditions typically
impose a convenient decrease rate on the covariances Cov(Xy, Xy,).

1 Introduction

The interest on approximating distribution functions of random pairs arises from the character-
izations of the limiting distribution of empirical processes, which has been a subject of interest
for many statisticians. In general, given random variables X,,, n > 1, with common distribution
function G, the empirical process is defined

Za(t) = % 3 (LX) —G(),  teR,
=1

where 14 represents the characteristic function of the set A. Many testing procedures are based on
the asymptotic properties of the sequence Z, or on some convenient transformation of Z,. Some
examples include the ”goodness of fit” tests proposed by Watson [23] or by Anderson, Darling [1],
where integral transforms of Z,, are used as testing statistic. There exist, in the literature, many
more examples of integral transformations of Z,, being used of which we mention the Cramer-von
Mises test. In some other applications, it is required to compute the supremum of Z,(¢t). These
suggested the study of the asymptotic distribution of Z,, in the Skhorohod space. Note that, for
the characterization of the convergence of the empirical process, considering the quantile function
corresponding to G, it is enough to consider the variables X,,, n > 1, to be uniformly distributed
on [0,1]. The first results concerning the asymptotic distribution of the sequence date back to
Donsker [5], for independent underlying variables X,,, n > 1, where the limit process was found
to be the Brownian bridge. The extension of this characterization to nonindependent variables
was eventually studied. Supposing the sequence X,, n > 1, to be stationary, the asymptotic

*This author was partially supported by Centro de Matematica da Universidade do Minho
"This author was supported by grant PRAXIS/2/2.1/MAT/19/94 from FCT and Centro de Matemdtica da
Universidade de Coimbra



distributions were studied by Billingsley [2] and Sen [18] for ¢-mixing sequences, later replaced
by strong mixing sequences. The best rate of convergence of the strong mixing coefficients a,, for
which the convergence has been proved, was obtained by Shao [19] requiring o, = O(n~ %), with
a > 2. In all cases, the limiting process is Gaussian centered with covariance function

[(z,y) = Gz Ay) - G(z)G(y) +
(1)

+ 30 [(P(N < 0, Xt <) — G@)GW) + (P(X: <y, X < 2) — Gla)Gly)].
k=1

where z A y = min(z,y).

Another way of controlling dependence is association, introduced by Esary, Proschan, Walkup
[6]. The random variables X,, n > 1, are associated if, given n € IN and f,g : R — R
coordinatewise increasing,

Cov(f(X1,..., Xn), 9(X1,.., Xn)) >0,

whenever the covariance exists. For associated variables, it follows from Theorem 10 in Newman [12]
that the covariances Cov(X;, X;) completely determine the dependence structure. So, for associated
stationary variables it is natural to impose conditions on the decrease rate of Cov(Xy, X,). The
convergence in distribution of the empirical process for associated underlying variables was studied
by Yu [22] and later by Shao, Yu [20] who obtained convergence for uniform [0, 1] variables such
that Cov(X1, X,,) = O(n™%) with a > (3 + v/33)/2 ~ 4.373.

As mentioned before, in many applications, we consider integral transforms of the empirical
process, so it is natural to restate the problem seeking convergence in the weaker space L2. This
case was studied in Oliveira, Suquet [13] who proved that, for uniform [0, 1] variables, it suffices
that

o0
> Cov'/3(Xy, X,) < oo (2)
n=2
In [13] were also considered strong mixing coefficients. As, in this article, we will consider only
the associated case we do not quote the strong mixing characterization here. Extensions of these
results to LP[0, 1], p > 2, were considered in Oliveira, Suquet [14].
Note the appearance of the exponent 1/3. This is due to the inequality,

Cov (T, (Y1), T(e,y(¥2)) < B Cov'/3(V1, Ya), (3)

for some constant B > 0, where Y7, Y5 are associated random variables with common distribution
function with a bounded density (see Sadikova [17]).

The characterizations described above are of theoretical nature, giving a limiting covariance
function I' defined by (1). The purpose of the present article is to study approximations of each
term P(X; <z, Xjy1 <vy) in (1).

2 Definitions and assumptions

As described above, we are interested in the estimation of F(z,y) = P(X; < z, X;11 < y) with
k fixed, a bivariate distribution function. A natural estimator would be the empirical distribution
function

R 1 n—k
Pnl,y) = — > (oo, 2 x (o0, ] (Xis Xiga)-
i=1




The behaviour of this estimator was studied in Henriques, Oliveira [7]. Here we will be interested
in the kernel estimator of F', defined by

x—X; y XkH) / ((II—S y—t) N
E, — = 4
(z,y) E U( W ]RZZ/I I dpn (ds, dt), (4)

where U is a given distribution function and h,, n > 1, is a sequence of positive numbers converging
to zero.

Analogous estimation problems have been addressed to by Cai, Roussas [3] and Roussas [15] for
univariate distribution functions based on associated samples, and by Jin, Shao [10] for multivariate
distributions functions but based on independent samples.

We now introduce the set of assumptions that will be referenced to throughout the text.

(A1) X,,n > 1, is a strictly stationary sequence of associated random variables with bounded
density function g;

(A2) k is a fixed integer and F the distribution function of (X1, X;,1). F has bounded and
continuous partial derivatives of first and second orders;

(A3) For each positive integer j, F} is the distribution function of (X1, Xj41,X;, Xi44). Fj has
bounded and continuous partial derivatives of first and second orders;

(A4) U is twice differentiable. If u = T it satisfies
/ zu(z,y) dedy = / yu(z,y) dedy =0
R? R?

/ 22 u(z,y) drdy < oo, / y? u(z,y) dedy < oo;
R? R?
(A5) The sequence of bandwidths is such that n h2 — 0;

(A6) Z n Cov'/3(X1, X,,) < oo

n=1

(A7) V = x—y is such that
/ 22V (z,y) dzdy < oo and / y? V(z,y) dedy < oco.
R? R?

Note that conditions (A1), (A2), (A4) and (A6) have already been used in Cai, Roussas [3]
for the treatment of the univariate case. Note further that (A6) implies (2) which, as mentioned
previously, implies the L?[0,1] weak convergence of the empirical process, as proved in Oliveira,
Suquet [13].

In sections 3 and 4 we study the convergence and mean square error of ﬁ'n, with a treatment
that follows the same lines as in Cai, Roussas [3]. Section 5 considers the asymptotic distribution
of the finite dimensional distributions of F,. Similar results were obtained by Roussas [16] for the
estimation of density functions but only for unidimensional marginal distributions of the estimator,
and by Cai, Roussas [4] for the estimation of distribution functions considering multivariate dimen-
sional margins but for negatively associated variables. Here we consider multidimensional marginal



distributions of ﬁ'n, the estimator of the bivariate distribution function we are interested in. Note
that, changing our focus from estimating density functions, as in Roussas, to estimating distribu-
tions functions, as in this article, and from supposing the variables to be negatively associated, as
in Cai, Roussas [4], to supposing the variables to be (positively) associated enables a relaxation on
the conditions imposed, mainly on the kernel function. In fact, we will need only some second order
integrability assumptions on the density associated to our kernel, as described by conditions (A4)
and (AT), whereas Roussas [16] supposed the kernel to be of bounded variation and decreasing
fast enough to zero at infinity. The main reason for this difference relies on the fact that, being
interested on estimating a distribution function, we transform the variables by a conveniently cho-
sen distribution function, thus keeping the association property after the transformation. Besides,
we do not need any assumption linking the bandwidth and the covariances Cov(X;, X,,) as was
needed in Roussas [16] or Cai, Roussas [4]

3 Consistency of the estimator

We first show that F), is asymptotically unbiased, characterizing also the convergence rate of
E [Fn(x,y)] Then, to derive the asymptotic consistency of F,, we apply a strong law of large

z—X;
n

. X
numbers to the random variables U (—h , ki
n

) ,i=1,...,n — k. To achieve this last step

we shall need to characterize the behaviour of each entry of the covariance matrix of the random
vector whose entries are the preceding variables, establishing their limits and convergence rates.

Theorem 3.1 Suppose the variables X, n > 1, satisfy (A1), (A2) and (A4). Then, for each
z,y € IR,

O*F

2
o W(w,y)/ s2u(s,t) dsdt+
T

B|Fu(e,y)| = Fle.y) + 3

0*F 2

+—3xay($,y) / stu(s, ) dsdt+887§(x,y) / t2u(s, t) dsdt| + o(h2).

Proof : As E[p,(z,y)] = F(z,y) it follows from (4) that

~ — —1

E [Fn(ac,y)] :/ u (x S, Y ) dF(s,t) :/ w(w,v) F(x —why, y — v hy) dwdv.
IR2 hn hn IR2

Using a Taylor expansion of order 2 of F' and taking account of (A2) and (A4), and of the

continuity of the second order partial derivatives of F' (assumption (A2)) the theorem follows. W

Note that assumptions (A2) and (A4) are only required in order to establish a convergence

rate. In fact, E [ﬁn(az, y)] — F(z,y) follows from an application of the Dominated Convergence
Theorem.

In order to establish the almost sure convergence of F, we will apply a strong law of large
numbers proved by Newman [11]. In course of proof we will need to control some covariances that

are described in the following lemma.

Lemma 3.2 Suppose the variables X, n > 1, satisfy (A1), (A2), (A3) and (A4). Then, for
each j € N and z,y € IR,

o (552 58 (2, 5

= Fi(z,y,z,y) — F?(x, +Oh721.




Proof : Rewrite the covariance as

r— X3 y—Xk+1> (ﬂE—Xj y_Xk+j>
COV[“( PR T AR G S

r—s y—t rT—w Yy—uv / (x—s y—t) >2
ot (50 5 u (5 1) et = ([ u (52 ) arte

The second term on the right is just E? [ﬁ'n(ac, y)], so its behaviour has been described in Theorem

3.1. As for the first term, writing the function i/ as an integral and using Fubini’s Theorem,

r—8 y—t r—w Yy—v
dF;(s,t =
Jot (555 0 u (5 ) amtsstweo)

:/4 u(a, b) u(c,d)Fj(z — ahp,y — bhyp,x — chy,y — dhy) dadbdcdd.
R

Expanding F}j to the second order and using (A3) and (A4), this integral is equal to Fj(z,y,z,y)+
O(h2), which, together with the mentioned behaviour of E [ﬁ’n(m,y)], completes the proof of the
lemma. H

We may now prove the almost sure convergence of the estimator ﬁ'n

Theorem 3.3 Suppose the variables Xy, n > 1, satisfy (A1), (A2), (A3), (A4), (A7) and (2).
Then, for every z,y € R, F,(x,y) — F(x,y) almost surely.

Proof : As proved in Theorem 3.1, E [ﬁn(x, y)} — F(z,y), so it is enough to prove that the

variables U (“rfhﬂ, y*),fw) , m > 1, satisfy a strong law of large numbers. These variables are

stationary and associated, as U is coordinatewise nondecreasing. Then, according to Newman [11],
they satisfy a strong law of large numbers if

, 1k t— X1 y— Xpi1 - Xj y— Xy
nlggon—k;%v[”< by ' ha )“( b b )

= 0. (5)

From Lemma 3.2 and using (3), it follows

L{(gU_Xl,y_XkH),L{(x_Xj,y_XkH)

C
o i Fon i Fon

= Fj(z,y,2,y) — F*(z,y) + O(h}) <

<4BCov'3(Xy, X;) + O(h2).

Now, condition (5) is a consequence of (2) and association, so the theorem follows. B
Requiring an exponential decrease rate on the covariances, instead of (2), we may give a rate
for the preceding convergence.

Theorem 3.4 Suppose the variables Xy, n > 1, are strictly stationary and that there exists a > 1
such that

Cov(X1, X,) = O(a™"). (6)
Choose a,, —» +00 such that %—n — 0 and ¢, = ¢ 2/3”17/32, for some constant ¢; > 0.
oz % log?/3 n

Then ~ ~
Yn (Fn(x,y) —E [Fn(x,y)]) —0 a.s..



Proof : Using (3) it follows from (6) that

z— X1 ?J—Xk+1> (fﬁ—Xp ?/_Xk+p> _ -p/3
u( ot )Y T =0 (a77%).

Now, according to Ioannides, Roussas [8], for each € > 0, there exist positive constants ¢y and ¢
such that,

C(z,y,p) := Cov

Tn &2

<cpe V7 (7)

P [d)n (Fu(z,9) = B [Fu(z,p)]) > &

where 7, is the largest integer less or equal than %

n

and p, — +o00, provided that

C(z,y,pn) < exp (—M> :
Yn
It is also required that r, — +00. We now check that it is possible to find such sequences. This
last inequality follows from
) Tn € ,rn5a2/3log2/3n
Pn >c % =c n1/3 ’

where ¢’ stands for some positive constants, not necessarily the same. As r,, ~ 2}%, this is equivalent
to

no_ e a?/310g?/3 d o2/? log?/* n

T nl/3 % ni/3 ’
so that the choice of r, is compatible with the choice made for the sequence «;,. We should then
choose 1, as large as possible fulfilling this last inequality, that is, we choose

/ n2/3

' =C 73
(07}

logl/3 n

It follows then that

T €2

P2
so that the probability in (7) defines a convergent series, thus the almost sure convergence follows
from the Borel-Cantelli Lemma. B

We may, in fact, prove the uniform consistency of the estimator under the same set of conditions
as in Theorem 3.3.

Theorem 3.5 Suppose the variables X,,, n > 1, satisfy (A1), (A2), (A3), (A4), (A7) and (2).
Then

Dn ~ n1/3oz}/3 logl/3 n and = cay, logn,

sup ﬁ’n(w,y) — F(:B,y)‘ —0 a.s.

z,y€R

Proof : The proof follows the usual steps after a decomposition of IR? on a fixed set of suitably
chosen points and establishing convenient inequalities. Let M > 1 be fixed and @ the quantile
function corresponding to G (recall that G is the marginal distribution of both the coordinates of
(X1, Xk+1)). Define the points zar; = Q(i/M), i =1,..., M. Then, from Theorem 3.3, it follows

that ] ) ] )
~ 1 1
Now, as ﬁ’n is nondecreasing, it follows easily that, for all z,y € R,

2
M’

Ay, = max
" 0<ig<M

|Fule,y) = Fla,y)| < Aara +

from which the theorem follows, as M is arbitrary. B



4 The behaviour of the mean square error

In this section we study the asymptotics and convergence rate of the mean square error. This char-
acterization will then be used to derive the optimal bandwidth convergence rate. This convergence
rate for the bandwidth is, as it will be explained later, of order n~!, thus a different convergence
rate than the one in the independent case. This confirms a modification on the behaviour of h,
already noticed in Cai, Roussas [3].

As usual we write

MSE [ﬁ’n(m,y)] = Var [ﬁ’n(az,y)] + (E [ﬁn(:ﬁ,y)] — F(:I:,y))Q.

The behaviour of E [ﬁ'n(ac, y)] being known (cf. Theorem 3.1), we need to describe the asymptotics
and convergence rate for the variance term. For this purpose write

~ 1 - X - X
Var [Fn(m,y)] = mVar [L{ <$ - 1, i - k+1>

_l’_

(8)

r — X1 y_Xk+1> (fL'_Xj y_Xk-i-j)}
Uu U .
( N ’ hn ' hn

2 n—k
B k-1
—i-(n_k)QjZZ(n j+ 1) Cov

The asymptotic behaviour of all these terms has been described in Lemma 3.2. Just notice that the
variance term, which corresponds to the choice 7 = 1 in Lemma 3.2, gives as limit F(z,y,z,y) —
F?(z,y) = F(z,y) — F?(z,y). The convergence rate for MSE [ﬁn(x,y)} now follows readily. We
now state the result that summarizes the procedure.

Theorem 4.1 Suppose the variables X,,, n > 1, satisfy (A1), (A2), (A3), (A4), (A5), (A6)
and (AT). Then, for all z,y € R,

(n — k) MSE [f’n(x,y)] = F(z,y) — FQ(:Jc,y) +2 Z (Fj(ac,y,x,y) — F2(x,y)) + O(hy, +nh%) +ap,
=2
where
1 o0 ) o0
an=—— Z G =1 (B9, 2,9) - F2(z,y)) - 2}_%1 (B9, 2,9) — F2(2,p)) -

Note that a, — 0, according to the assumptions made, and that a, is independent of the
bandwidth choice.
It is now evident that an optimization of the convergence rate of the MSE is achieved by choosing

hp =cn~ L

5 Finite dimensional distributions

We now study the asymptotic behaviour of the finite dimensional distributions of the estimator.
The method of proof is based on a decomposition of the sum (4) into the sum of several blocks.
These blocks will afterwards be coupled with independent variables with the same distributions
as the original blocks followed by an application of the Lindeberg Central Limit Theorem. This



coupling is controlled via Newman’s inequality [12]. As the proof is somewhat long and quite
technical we will divide it into several lemmas.
In order to state our result in a more tractable way let us define, for every z,y, w,v € IR,

an(z,y) = Vn—k (Fu(z,9) — B [Fu(z,9)])
JQ(x,y,w,v) =F(z Aw,y ANv) — F(z,y)F(w,v) + 2 io: (Fj(x,y,w,v) — F(:Jc,y)F(w,v)).
j=2

Theorem 5.1 Suppose that the random variables X,,, n > 1, satisfy (A1), (A2), (A3), (A4),
(A5), (A6) and (A7). Then, given s € N, and z1,...,Zs,y1,---,Ys € R, the random vector
(an(xl,yl), . ,an(xs,ys)) converges in distribution to a Gaussian centered random vector with
covariance matric

02(x1,y1,x1,y1) 02(301,y1,362,y2) 02(961,y1a$q,yq)
7 — 02 (z2,y2,21,y1)  02(T2, Y2, T2, y2) - 0 (T2,Y2, Tqs Yq)
02($Q7yqa$17y1) 02(xQ7yQ7$27y2) U 02($l]7yqaxqayq)

We start by describing the asymptotics of the covariances depending on the «,, at different
points.

Lemma 5.2 Suppose that the random wvariables X,,, n > 1, satisfy (A1), (A2), (A3), (A4),
(A5), (A6) and (A7). Then, for every x,y,w,v € R,

Cov [an(2,9), an(w,v)] — o*(z,y,w,v).
Proof : Using the stationarity of the variables we may write

Cov (an(z,y), an(w,v)) =

r— X y—Xk+1> (w—X1 U—Xk+1>
”(hn’ o )Y T T

= Cov

+ (9)

2 n_k . :E—Xl y—Xk+1 w—Xj U_Xk-i-j
+n_k§2(""“_””cov[”< o ()|

Repeating the arguments of the proof of Lemma 3.2, it follows that for j =1,...,n —k,

:E—Xl y—Xk+1> (w—Xj ’U—Xk+j>
C
ofu () (P,

= Fj(z,y,w,v) — F(z,y)F(w,v) + O(h2).

Inserting these characterizations in (9) we find that the sum is equal to

n—k n—k
S (B, ,w,0) = Flae, ) Fw,0)) = —— 3 (1= 1) (Ey(,y,w,0) = Fla,y)F(w,0)) + O 2.
j=2 j=2



Now, using (3), it follows

( (z,y,w,v) — F(:B,y)F(w,v)) <

(]I(foo,x]x(foo,y] (Xl, Xk+1)a I[(foo,w]x(foo,v] (X] ’ Xk+])) <

4B "X 1/3
<— 3 jCov!3(Xy, X;) — 0.

=2

according to (A6). B

For the lemmas concerning directly the proof of the asymptotic normality we need some further
notation. Denote n = n — k and, given an integer r < n, let m be the largest integer less or equal
to n/r. Define

Tt~ (525 ) (22 o)

Iy hon hn hn,
1 &
}/}r(]:ay) = W Z Tﬁ,i(xay)a W Z Cl] $q,yq
i=(j—1)r+1
and
S
Z’ﬁ,z = Z ch’ﬁ,i(xqv?/q)v Z j Z qu T, (TqsYq)-

q:l =1

The random variable Z- is the linear combination of the coordinates of (an(acl, Y1)y .oy p(Ts, ys))

required for the application of the Cramer-Wold Theorem. Define further
1 mr
c Y (g, Yq) Wi =— Z~
i S e = g 3w = s S

which replaces the sum up to n by a sum with a multiple of » numbers of terms. Note also that,
as follows from Lemma 5.2,

s—1 s
Var(Z;) — Z Cq o? (g, Yq> Tq» Yq) —1—22 Z CqC1o (:ch,yq,xl,yl) (10)
q=1 g=ll=q+1

Further, for each r fixed, it follows from Lemma 3.2 that

Var [Y{ (z,y)] = Cov [ Z Ty, 7 z:: ]
(11)

ﬁli—t

2_: (F\z i1 (@Y, my) — F(x, y)) +O(rh2)



and

Var (W, Z CqCyq Cov[ "(24:Yq)s Y (zq, Yy )} =
0,9'=
S 1 T
= Z cch’ ; Z (ﬂi’7i+1\($qayqaxq’ayq’) —F(Iq,yq)F(IEq/,yq/)) +O(’)”hi)
q,¢'=1 i,i'=1

We now proceed directly to the proof of Theorem 5.1. First replace the sum of n terms defined
by Z by the sum Z7, to get only a sum of the blocks W

Lemma 5.3 Suppose the assumptions of Theorem 5.1 are satisfied and let v be fized. Then

it L~ it 7 *
‘Eez ~ — EeltZmr| — 0.

Proof : Using Hélder’s inequality, we find

[Be'7 — Be i | <24 B|Z; — Zy,| < 20t Var'/2(Z; - Zy,)

(12)

9 ~ 271/2
1 1 n
TR

Now, as |Z~ g=1 lcgl, it follows

‘Eenz}f — EeitZmr

1/2
1 1 . —mr
<2V2 |t [(W - ﬁ) Var(Z,. Z |cq|] — 0,

according to (10). H

We may now replace the sum Z~ by the sum Z . as what convergence in distribution is regarded.
The variable Z} . is a sum of m blocks, so we are trying to prove a Central Limit Theorem for the
sum of the dependent variables W{, W3, .... Each of these variables is a linear combination of the
Y, which are decreasing functions of the original variables X, n > 1. It follows then that the Y
are associated and we may apply a convenient variation of Newman’s inequality [12] to the variables
Wi, W3, ... as proved in Lemma 4.1 from Jacob, Oliveira [9] when coupling these variables with
independent ones with the same distribution as each of the W7

Lemma 5.4 Suppose the assumptions of Theorem 5.1 are satisfied and let v be fized. Then

R m _it T
Ee!tZmr — H Eevr i
j=1

< 2t? {Var (\/% g T%,i) Var(Y{ } Z CqCq
i=

¢,¢'=1

Proof : According to Lemma 4.1 in [9] we have

EeitZmr HEe\/_ <2— Z Cov(W, WT)—

t,j=1
1#j

10



2

=92 Z Z CqCq COV[ (xqa?/q) Y (xq,yq )] -

m

= —

’iﬂ;éj ¢,q'=1

1

=2¢? CqCql Cov {— "(g,Yq), —=Y (z4,y )}

q,qZI q%q’ %:1 \/— qrJq \/ﬁ 7 q q

17]
S 1 mr m 1

=2¢ cqCy | Var .| — Var(—Y-") =

q,9'=1

S mr
=2¢? Z CqCq (Var (\/:W Z T%,i) — Var(er))’

due to the stationarity of the variables. B

The next step is the proof of a Central Limit Theorem for the coupling of the variables W;. In
order to keep the notation as simple as it seems possible, we will denote these variables also by W}
Of course, during the next lemma, and on this lemma only, we will suppose that the variables are
independent. To describe the variances appearing on the next lemma let us define

r
Z chq Z (Flz"fiJrl\(xqayqvxq’qu’) - F(xquq)F(%’qu’))-
q,4'=1 zi’:l

Lemma 5.5 Suppose the assumptions of Theorem 5.1 are satisfied and let v be fized. Then

2 2

m it wr t7o,
H Eevm i —e™ 72
J=1

— 0.

Proof : We will apply the Lindeberg condition to the variables m*I/QW]T,j =1,...,m.

Remembering that Z*, = m /2 71 W} and (10), it follows that the verification of the Lindeberg
condition reduces to checking that

1 T
Z /{|m 1/2WT|>502} m(W7 )2 dP — 0. (13)

Using now Lemma 4 in Utev [21] the integral in (13) is bounded above by

Loy
j:lmz‘:(jfl)rJrl {

T2 dP.
n,.

0'2 vmr
T~ >E—%}

n,i|—

Now, as for each 7 = 1,...,mr and n € N, T, < 2 23:1 c¢q the integration set is, for 7 large
enough, empty, so each integral in this last sum is equal to zero. B

Proof (of Theorem 5.1) : Let us define a = 33 .y ccq0?(24,yq, Zg, Yq ). The proof of the
theorem reduces to verifying that

itZ~ _t%a
2

‘Ee n—e — 0.

11



We have

‘Ee n—e 2

itZ~ t2a <

+

it Z~ 7
< ‘Eez » — EettZmr +

m .
7w _it_yyr
Ee'tZmr — I I Eevr i
j=1

Supposing, for the moment, that r is fixed, it follows from the previous lemmas that

. it Z~
lim sup ‘EeZ n—e
m——+00

2 2
t7op 7t2a
2

e 2 —e

t2 a 5
? Z CqCq +

q,9'=1

<22

1 mr .
Var (\/W Z T’ﬁJ) — Var(Y7)

Letting now r — 400 it follows that this upper bound converges to zero on account of (11) and
the stationarity of the variables X,,, n > 1, thus proving the theorem. H
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