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nonlinear second order ODE, and prove existence of a unique solution for
small data using a contraction argument.
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1. INTRODUCTION

The problem of a stationary flow of a viscous incompressible fluid with
a free boundary has been subject to numerous articles, see, e.g., [8, 12,
1, 13, 7, 5] and all the references cited therein. For most of these works
the method of reasoning to find the velocity field v and the unknown free
boundary ¢ can be reduced to the following steps: 1) find an equilibrium
solution (v, ¢p), often corresponding to the “zero data” solution; 2) lin-
earize around (vg, ¢) and write the equations for the perturbation (o, gzNS),
ie. v =wy+7,p = Ppo+¢; 3) define a change of coordinates that transforms
the domain with the free boundary Q4 into a fixed domain {2y corresponding
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to the equilibrium solution; 4) solve (for small data) the coupled equations
for the pair (7, ¢) in Qg by a fixed point argument.

Here, we shall study a free boundary problem corresponding to the steady
flow of an incompressible, homogeneous viscoelastic fluid down an inclined
open infinite straight channel. The data of the problem are the inclination
of the channel bed, the atmospheric pressure at the free boundary and
the velocity flux over the channel bed cross section. For the model under
consideration - the (Rivlin-Ericksen) fluid of second-grade — it makes sense
to assume that the flow is rectilinear. Let us point out that also in a straight
pipe with an arbitrary smooth cross section the equations of motion of the
second-grade fluid admit solutions in which the velocity field is of Poiseuille
type, cf. [9] and also [6, 16]. The hypothesis that the flow is rectilinear leads
at each cross section, say {14, to a coupled problem composed of a mixed
boundary value problem for the Laplacian and of a nonlinear second order
ODE for the free boundary. This problem differs from the corresponding
Navier-Stokes problem in two ways. First, one has a nonhomogeneous
Neumann condition for the Laplacian at the free boundary and, second,
additional nonlinear terms are present in the ODE. Consequently, there is
no hope, not even in the case when the channel bed is of a simple shape,
of finding an (almost) explicit solution in an integral form as can be done
for the Navier-Stokes fluid, cf. [4].

In this paper, we analyze the solvability of the coupled problem at each
cross section {24 when the contact points where the fluid meets the channel
bed are known, the case in which the flux condition becomes redundant. In
a forthcoming work [15] we shall consider the problem with contact points
that are not known a priori and show that for any given flux and for a small
enough inclination of the channel bed, there exists a solution to the coupled
set of equations that corresponds to a (unique) small perturbation of the
equilibrium solution. Let us point out that in this case the transformation
of coordinates becomes rather more complicated.

The article is organized as follows. In Section 2, we introduce the physical
formulation of the problem and present the corresponding mathematical
model. In Section 3, we define and study the transformation of coordinates
from €24 into a fixed domain €29. The main result, the existence of a unique
solution for small data, is formulated and proven in Section 4 by means of
a fixed point argument. Finally, Sections 5 and 6 are devoted to the study
of a boundary value problem for the Laplacian and to the analysis of a
nonlinear second-order ODE, respectively, which are the ingredients for
the proof of the main theorem.
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2. THE PHYSICAL PROBLEM AND THE MATHEMATICAL
MODEL

Consider the flow of an incompressible Rivlin-Ericksen fluid of second-
grade down an infinite inclined open channel II. Let us denote by B the
wetted part of the channel bed and by S the fluid surface with unit outward
normal vector n. Assume that the channel bed forms an angle 8 with the
horizontal line and that the axis of the channel is parallel to the z-axis, see
Figure 1.

FIG. 1.

The equations of motion governing the stationary flow of an incompress-
ible fluid are

pv-Vv+Vp=pf+V . Tg, V-v=0, in II (1)

with v denoting the velocity field, p the hydrostatic pressure, T g the extra-
stress tensor (T = —pI 4+ Tg is the usual Cauchy stress), f the external
body force and p the constant density of the fluid.

In an incompressible Rivlin-Ericksen fluid of second-grade the extra-
stress tensor T is related to kinematic variables by, see [10],

Tp = nA1(v) + a1 A2(v) + azAf(v), (2)

where A;(v) and Ay (v) denote the first two Rivlin-Ericksen tensors defined
by

A (v)=Vv+ (Vv)T,

(3)
Ar(v) = (v V)AL(V) + A1 (v)VV + (V)T A (v),

and 7, @; and ay stand for material constants. For the second-grade fluid

to be consistent with thermodynamics, the material constants must satisfy,
cf. [2],

n >0, a; >0, ap + as = 0. (4)
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The constitutive relation (2) together with the equations (1) lead to the
following set of equations for (v, p)

—nAv —ayv-VAv + Vp = pf + V- N(v)
V.-v=0

with the nonlinear term N(v) given by
N(v) = a1(Vv) Ay (v) = pv @ v,

and where we have taken into account the thermodynamical restriction
(4)s. As the boundary conditions are concerned, at the wetted part of the
channel bed we assume the adherence condition

v=0 on B (6)

and at the free surface S the usual kinematic and dynamic conditions,
respectively, see, e.g., [13],

v-n=0 and Tn — ocKn = pyn on S, (7)

where K = K(x,y,z) denotes the mean curvature of S, ¢ is the surface
tension coefficient and py a given exterior pressure. Finally, to complete
the formulation (5)—(6)—(7), we impose the flux condition

/Evds:é, (8)

where ¥ denotes an arbitrary cross section of II and ® € R stands for a
prescribed flux.

In an infinite straight cylinder with an arbitrary smooth cross section, the
second-grade fluid equations (5), complemented with appropriate boundary
and flux conditions, admit a solution having a flow pattern of Poiseuille
type, cf. [9], so it is reasonable also here to look for a velocity field in the
form

v =(0,0,w(z,y)). 9)

Let B and I stand, respectively, for the intersection of the wetted part of
the channel bed and the fluid surface with the xy-plane and suppose that
the channel bed cross section is given by a smooth function y = f(z), see
Figure 2.
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FIG. 2.

Assume that the flow is driven (only) by the gravitational force, hence f =
VG with G = g(—y cos 8+ 2z sin 3), where g is the (constant) acceleration of
gravity and suppose, furthermore, that the pressure function has the form

p=p(z,y). (10)
Substituting (9) and (10) into (5), yields
0ep = G-0:|V (2 yyw]* + 010, w Ay yw
Oyp = %0y|V (o yyw|* + 10w A, yyw — pgcos B (11)
—NA(yw = pgsin B
and from (11) one readily obtains

ay a1 pgsin 3
p= 7|V(x,y)UJ|2 + Tu} — pg cos By + pe, (12)

where p. € R.

Next, let us consider the boundary conditions. We denote by n =
(n1,m2,0) the unit normal vector to the free surface and choose a tan-
gential vector of the form

1
T =—(n2,—n1,1) .
\/5( # = 1)
Taking the scalar product of (7), with 7, one easily obtains the following

Neumann condition for w

ow «
= 71(((8?/11;)2 — (0pw)?) nina + pw Oyw (nf — n%)) onT .
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Observe also that (7); is automatically satisfied and that condition (6)
reduces to

w=0 on B.

On the other hand, taking the scalar product of (7), with n, we obtain
the equation for the unknown free surface S

aK(a:,y,z):(—p+n-TEn—pg)|3. (13)

Assuming that the free boundary I' at the channel bed cross section is
described by the equation y = ¢(z), condition (13) takes the form of the
following ordinary differential equation for ¢(x)

” ¢II _ (al
(1+9¢%)3

2

ow
_p_p0)|y=¢(z) . (14)

on

(Observe that here we have tacitly assumed that the fluid stays always
below the surface I'.) The boundary conditions for (14) are obtained by
assuming that the fluid surface cross section I' and the wetted channel bed
cross section B meet at the contact points (—a, f(—a)) and (a, f(a)), with
f(=a) = f(a). Note that, by fixing the contact points, we have made
the flux condition (8) redundant and, in fact, it will be absent from our
formulation.
Now, at the free boundary given by y = ¢(z), one may write

n= ﬁ(-ﬁ@,o),

and, hence, the problem is to determine (¢, w) satisfying

[ Aw = f’ffj;“/f im0,
w = 0 on B
ow/on =  Gw,d) on ¢ (15)
o = Mwsws,d) on (<a.q)
[ #(-a) = ¢(a) = f(a)
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with
Qy = {(m,y) €ER? : —a<z<a, flr)<y <1/J(a:)},
a1 2 2\ ¥’ 1—¢'2
Glu,w) = 2 (((0ew)* = (0,0)?) 1 — Deudyu 154 ),

By0,0) = 2t (02 (Beug)? — 208 Oy Oy + (Byuy)?) (1)

a1 2 _ aipgsinf pg cos B pg cos 3
— 55| Vuy|* - vy + L824 — Po,

on o

Uy = U(l‘,l[](l’)),

where we have redefined pp and dropped the subscripts -(, ) since all the
functions depend at most on = and y.

3. THE TRANSFORMATION OF COORDINATES

We shall show in the next section that, for small data, problem (15) ad-
mits a unique solution. The proof is achieved using Banach’s fixed point
theorem and an essential ingredient are estimates that require the compar-
ison of functions. The functions to be compared must be defined in the
same domain and, hence, we are led to introduce the reference domain

QOZ{(Zl,ZQ)ERQ D —a<zn <a, f(21)<22<f(a)}.

Now, using a transformation of coordinates Fy : €1y — €}y defined by the
expression

fla) — f(=z)
p(z) — f(x)
we can shift to {)y from any domain of the type Q4. In order to simplify

the computations that follow let us introduce the functions, defined in the
interval (—a,a),

@w%—ﬂmwﬂ=<% @—f@»+fu0, w7)

f@) - £©)
O =50 f© (18)
and
g6 = 28 =1 4
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so that
z1 =, 22 = s(x)y + q(x)

and, by inversion,

T =z, y:@[@—ﬂzl)]-

It will also be useful in the sequel to work with the function defined in g
by

s'(&1)
s(&1)

From now on, we assume that the function y = f(z) that defines the
channel bed is regular and symmetric with respect the y-axis, monotone
increasing for # > 0 and such that f(0) = 0. Furthermore, we assume that

T(fl,fz) =

& —ae)] +d(&) - (19)

0< f(z) < =% 27, Vz € [—a,al. (20)
LeEMMA 3.1. Given ¢ € C?[—a,a] such that ¢(a) = ¢(—a) = f(a) and

fla

o f@lles +Iglles < T2

a

the functions s and r defined by (18) and (19) are, respectively, of class

C?[~a,a] and C*(Qo) (after being appropriately defined at +a and 09 ).
Moreover, it holds

Isllc= + [Irfler < cellflle= - (21)

Proof. Both functions s and r can be shown to be well defined at
& = za and (&,&) = (ﬂ: a,f(a)) respectively, together with some of
their derivatives (it is obvious how to extend r to the other points in 9€).
Let’s show this for example for r and s; the case of the derivatives is
similar, although somehow more technical. Letting m(&1) = f(a) — f(&)
and n(&) = ¢(&) — f(&), we can write

. m’nn:nmn’ [£2+f(% _1)} —f'(% 3 1) _f(m’nn—2mn’)

(™Yo - -7 (™ 1)

m n
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and so in the limit, we get

. __¢'(a)f'(a)
Elllga r(£17£2) - ¢,(a) _ f,(a) . (22)
§2—f(a)
For s one easily gets
. __ f'(a)

S (ORTON -

Concerning the interior, assumption (20) implies in particular that
66) - 16> D@ —e)ar26), Ve e,

Hence, observing that since from (20) it also follows that

(@) > 2L,

a

one has |f'(a) — ¢'(a)| < Bféa) and concludes, after a simple computation,
that

f'(a)
fa)’
A similar estimate can be obtained in [—a,0]. On the other hand, it is easy
to see that

|s(§1)| <2a V& €10,a] .

fla) =& < (a—&)|f(£a)], 0<& <a, f(&)<& < f(a)

and similarly in the other half of Q. Using this, together with (20), in (19)
yields the estimate

[f"(@)]?
f(a)

where we have also taken into account that

max |r(§1,§2)| <c (

(€1,62)EQ0

@) |

[f'&)] < |f'(xa)|, V& €[~a,al.

The derivatives of s and r can be estimated analogously. [
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4. THE EXISTENCE RESULT

In this section we prove our main theorem, namely the existence of a
unique solution to problem (15) under the assumptions stated below

(A1) f is a regular, even function such that f(0) = 0, f'(z) > 0, for
z > 0, and (20) holds.
(A2) po = f(a)+0, 6K 1.
™
(A3) 3By >0, fok 1 : 0<|ﬂ|§/30<§-

THEOREM 4.1. Under assumptions (A1)—(A3), problem (15) admits a
unique solution (¢, w) € C*[—a,a] x W>P(Qy), provided p > 2 is such that

tan ( - (p”f 1)) > +f/(+a) . (24)

Proof. 'We apply the contraction mapping principle of Banach to an
operator 7 : X x Y — X x Y, where the Banach spaces X and Y are

X = {I/N} € C?[-a,d] : Y(+a) = 0}
and Y = W??(Qp). We define a closed ball in X x Y by
B, = {(w) X xY : |[Pllcs + lullo < of-
The operator T is defined as follows. Given (’L/NJ,’U,) € X xY,lety =

¢+ f(a) and consider the transformation of coordinates Fy associated with
¢ and defined in the previous section by (17). The boundary value problem

. .
_aa o= PSS g,
n
u = 0 on B , (25)
ou
L a_n = g(uoj:lb:z/}) on 1/}

is transformed, using Fy and F, ~1 into the following problem in Q:

Av = pgsin in Qo
n

v = 0 on B . (26)

ov

\ 82’2

Go(u,r) on Ty
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To the free boundary now corresponds the straight line
Iy = {(21,2’2) D —a<n<a, zy= f(a)}

and the new differential operator is given by

Av = _[82_1} + (r? +82)82_v]

2 2
027 023

0% _(8r 8r)8v

T 92002 \0z | 02) 02

822 ’

where s and r, that are defined in (18) and (19), obviously depend on ;
the boundary function is

gg(u,r):—al 8u<8u GU) -

W 92 \0z | 0z

In fact, observe that the derivatives read, in new coordinates,

9 _ 90n 0 0m_ 0

92 " 0s 02 T 9mor o v Rg;
and
O _ 0 0m _ s(z )i
Oy Oz Oy ! 0zs
and the second derivatives
0?2 0?2 or ory\ 0 0?2 N 9?
222 ~ 022 (55 +79:) 70 oo 022
and
82 ) 82
2y ° 9.2
Yy 023

It is then clear how to get the first and second conditions in (26). Concern-
ing the Neumann condition, observe that the normal to the free surface is,
in the new coordinates, the constant vector (0,1) and, since now ' = 0,
we easily get the third condition. We solve problem (26) in section 5 below
(cf. lemma 5.1) and obtain a unique function v € W?2P()y). Note that
condition (29) in lemma 5.1 can be satisfied for sufficiently small p in view
of assumption (24). It is obvious that v =4 o }'Jl, ie. 4 =wvoFy.

With v at hand, we consider the ordinary differential equation for ¢
(recall the definition of h from section 2)

"

¥

W:h(uofw,vo}‘w,@b) ; (27)
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with the boundary conditions

p(—a) = ¢(a) = f(a) , (28)
and solve it in section 6 (cf. lemma 6.1) obtaining a unique solution ¢ €
C?*[-a,a).

Next, we set ¢ = ¢ — f(a) and finally define the mapping 7 by
T(@,u) = (3,0).

It is apparent that the definition is unambiguous. On the other hand, from
estimates (30) and (38), see lemmas 5.1 and 6.1 below, it follows that T
maps the ball B, into itself, provided Sy, d, 0 < 1 are chosen small enough.
Moreover, again for small enough g, d and g, lemmas 5.2 and 6.2 guarantee
the existence of a constant v < 1 such that

HT(Z/~11,U1) - T(I/Nﬂmw)HXXy <y || (@1, u) - (1/;%“2)“

XxY

Therefore, one concludes from Banach’s contraction principle that 7" pos-
sesses a unique fixed point 7 (¢*, u*) = (¢*,u*). Then the pair

(@) = (3 + F (@0 0 Figeygay))

is the unique solution of problem (15). 1|

5. ANALYSIS OF THE BVP

In this section we analyze the boundary value problem (26) and prove
the existence and uniqueness of a weak solution and establish the estimates
needed for the use of the fixed point theorem.

LEMMA 5.1. Given u € W?P(Qq) and ¢ € C*[—a,a], problem (26) ad-
mits a unique solution v € WP(Qyg) provided

f'(£a) F tan (4(;—51))

1+ f'(£a) tan (4(;—51)) '

¢ (£a) 2 (29)

Moreover, the following estimate holds

ol < e (s -+l (14 rlen) ) (30)
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REMARK 5.1. Note that with ¢ we define the r that appears in (26) and
(80) through (19).

Proof. To show that the problem has a unique solution, we use well
known results from elliptic theory (see [3]). Observe that the operator A
can be written in the form

2

0 O 2. ov
Av = Z a—ZZ(a”a—ZJ) +;ai6_zi

ij=1
with

app = —1 or
a; = ——
82’2

a2 = a21 = —T and
or
ay = r—
Az = —r2 -2 023

The operator is strongly elliptic since, for a certain a > 0,
a116; + 2a1 2616 + a2 285 < —al€]’, VE=(&,&) € R\ {0}
In fact, this is equivalent to
(€1 +76)" +5°6 > alff + &)
and dividing by &2 (the case & = 0 is trivial) and putting ¢ = & /&, to
(r+s*—a)®+2r(+(1—a)>0, V(#£0.
Standard computations show that this holds provided
a<r’+s’ and - (P +s>+Da+s><0
and a sufficient condition is that
JABC>0 : A<s’<B and r2<C.

We clearly see that these conditions hold due to (23), the fact that a sim-
ilar conclusion is valid for z; — —a, and the remark that the continuous
function s?> > 0 (it is obvious that it never vanishes), properly redefined
at 21 = —a and z; = q, attains its minimum 4 > 0 and maximum B > 0
in the compact [—a,a]. A reasoning of this type (using (22)) can also be
made to conclude for the existence of C' > 0 such that r2 < C.
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In view of lemma, 3.1 and Sobolev imbeddings (p > 2) one easily sees that

Go(u,r) € Wl_%’p(l"o). We could now apply classical results from elliptic
theory to obtain existence and uniqueness of a solution v € WP (Qy) if it
weren’t for the lack of smoothness at the contact points p, = (a, f(a)) and
p—a = (—a, f(a)). To overcome this difficulty, we consider the problem in
a neighborhood of, say, p,

Q5= NV({Pa,d) , 0<6<1.

To start with, considering the new function
z1+22
9=v-V with V= / [gg(u,r)] (s — f(a)) ds,
z1+f(21)

we obtain the following problem, for which the boundary conditions are
homogeneous:

(40 = P98 Ay q
n
¥ =0 on B
oY
v r
\ 622 0 on 0

Now, we linearize this problem by freezing the coefficients of the operator A
and neglect the terms containing the lower order derivatives. The freezing
is performed by taking the limit of the coefficients as p, is approached.
Owing to (22) and (23) this leads to the linear operator

07 0? 0?
L=z Mg g e,
where
@] (@] +1) 7'(@) ¢ @
" 2 S T
[71(a) = ¢/(@)]
We next perform a change of variables defined by
Z1 1 0 21

- Ko 1

2 _\//<51—/<622 VE1L — K22 2
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and obtain in the new coordinates (21, Z2) a problem for the Laplace oper-
ator in a domain Q4. Since AV € LP({s), we can now use the results of
[3] to conclude that this problem has a unique W?P-solution provided the

angle @ at the contact point in ﬁ; satisfies the relation
mp

4p-1)°

The change of variables (31) transforms the contact angle w = arctan f'(a)

in Qs into the original contact angle arctan f'(a)—arctan ¢’(a) in Q because
the point (—1,0) is transformed into (—1, —¢'(a)) since

&< (32)

Thus, we get
@ = arctan f'(a) — arctan ¢’ (a)
and using this in (32) we obtain condition (29) at a. Similarly, one obtains
the condition at —a.
Finally, estimate (30) can be proven directly using Sobolev imbeddings. |
In the next result we estimate the norm of the difference of two solutions

in terms of the differences of the data. Note that it is possible to choose
¢ < 1 if the data is small.

LEMMA 5.2. Let v; € W2P(Qq),i = 1,2 denote two solutions of (26)
corresponding to u; € W>P(Qo),i = 1,2 and ¢; € C?[—a,a),i = 1,2,
respectively. Moreover, assume that ¢;, i = 1,2 satisfy the assumptions of
lemma 3.1. Then the following estimate holds

lon = vallzp < ¢ (Ilun = usllo + 61 = d2llcz ), (33)

for some positive constant ¢ = c(||u||2,p, ||uzll2,p, || fllc2) -

Proof. Let s; and r; be the auxiliary functions (see definitions (18) and
(19)) associated with ¢;,i = 1,2. The difference v = v; — vy satisfies the
following boundary value problem

A(T1,51)’U - F(’U17U27T177l2751752) in QO
v = 0 on B (34)
Ov = H(uy,u2,71,72) on Iy

02
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where

821)2 82’1}2
2

0z3 + r821822

F(vi,ve,71,72,81,82) = —(r(rl +72) + s(s1 + 32))

. ( or ory or ) vy

- r— rog— | ——
82’1 82’2 82’2 82’2,

Hur, s, r1.15) = o <8u (8u1 8u1) 3

T \02\0z oz

Ous [ Ou Ous ou
G (e g ) )
for u =uy —ug, r =71 — 792 and s = 57 — 9. Taking the proof of lemma
5.1 and the results of [3] into account, we are left to prove that F' € LP()
and H € W'=%7(T).

We start with the differences s = s;1 — s5 and 7 = r;{ —r3. One may write
them in the form

! i !
Nna(nNy — N — N1 —nao)n ny —ns9
r = (1 2) ( )2(f_22)+flm
ninz ninz
nz2 — Ny ¢ — ¢1
S = m = S1 S2 5
ning m

where m(z1) = f(a) — f(21),i = 1,2 and n;(21) = ¢i(21) — f(21),i = 1,2.
One readily obtains the estimate

$2(21) — ¢1(21)

m(z1)

a

< oy 16— il

max
z1€[—a,a]

and concludes that

IN

max _ |r(z1,22)] c

(21,22)€Q0o [ (a)]2
|f'(a)]

7'(@) .
e el < el (14 ) 1ok g

We have used lemma 3.1 and, in particular, the fact that

|f'(a)? <1+ |f'(a)]

2
2O g, 5 e

(35)

i s(s1) = -1 (@)0h(@) — (@)

e (05(@) = F'(@) (¢ (@) ~ f'(a))
I (o) = — W @P@@ - ¢
e (0h() — F'(@) (@ (@) ~ F'(a))

za—f(a)
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Estimating the derivatives of r in a similar manner leads to the following
conclusion

Irlles < ellfllczllgy — il

and since by Sobolev imbeddings it holds u; € C'(Qo),i = 1,2, one obtains
the estimates

‘|F(U1av2ﬂrlar2a81:82)H < cllvallz,p (||f||c2 + 1)||¢1 — ¢1lle»
p
and

|| <o (U IFllez) (lnllap + luzllap) i = uallz
13 llgn = d1llc)

Now, from lemma 5.1 one finally concludes the existence of a unique solu-
tion v € W2P(Q) to (34) satisfying the estimate (33). |

6. ANALYSIS OF THE ODE

In this final section we treat the ordinary differential equation for the free
surface (27) with the boundary conditions (28). We rewrite the boundary
value problem in the form

—p" +A(x)p =H(z)+A(x)pp, —a<z<a

) (36)
p(=a) = p(a) = f(a)
where
A(m)zw(l+¢l2)%>0
and
- 2\ 2 ,2%2_ /%% %2
H(z) = a(1+¢>) {¢ (am) S +(8y)}
) ()

with gy = goFy. It is clear that the functions ug and vs which are defined
in Qg, are here evaluated at y = ¢(x).



18 J.M. URBANO AND J.H. VIDEMAN

LEMMA 6.1. Let ¢ € C?[—a,a] and u,v € W>P(Qq) be given. Problem
(36) admits a unique solution ¢ € C*[—a,a]. Moreover, if

lllc2r—a,a) + llull2p < € (37)

and £ K 1 is chosen sufficiently small, then the following estimate holds

||(10 - f(a)HCO[—a,a] + ||(p,||01[—a,a] <

(38)
<C <6 + e+ 4 (1+¢) sinfo ||v||2,p>-

Proof. By classical results on ordinary differential equations it follows
that (36) has a unique C? solution. In fact, the assumptions on ¢, u and
v, the geometrical properties of our two-dimensional domain and Sobolev’s
embedding theorem (recall that p > 2) imply that A and H are continuous
functions on [—a,a], which together with the fact that A is positive is
enough to guarantee the result.

To obtain the estimates, observe that letting ¥ (x) = ¢(z) — f(a) and
taking (A2) into account, problem (36) transforms into

" —f-A(l‘)l/J — H(l‘) —|—(5A(£L’) , —a<zr<a
(39)

Hence, we have the estimate
[llcor-am < C (1Ellcoa,n + 0 4llco-aa) -
In order to estimate H, let us point out that

1(Vto)ly=s(allcor-a < Clluller max IVFgly=6(z):

where Fy, = (F},F7) is the mapping defined by (17). Therefore, in view
of (37), lemma 3.1 and Sobolev’s embedding theorem, one obtains

(V) ly=¢()llcof-a,a) < C llull2p < Ce.

Now, one easily concludes that

Hllcop-aa) < C (£ + (1 +2)sin follol]
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and
||A||CO[7a,a] < C (1 + 8)5
where we have used (37) and the fact that ¢ <« 1. This gives the desired esti-

mate. |

LEMMA 6.2. Let ¢1,¢02 € C?[—a,a] and uy,uz,vi,va € W2P(Qp) be
giwen. If

pillce + lluill2p < e, i=1,2 (40)
and £ K 1 is chosen sufficiently small, then the following estimate holds
lor —ollee <
<C ((5 +etellvillzp) ll¢1 — g2llc2 + e lur — uz|l2,p + sin Bo [lor — U2||2,p) ;

(41)

where @1 (respectively o) is the unique solution to problem (36) corre-
sponding to the data ¢1,uy,v1 (respectively ¢o,usz,v2).

Proof. Let ¢;(z) = ¢;(z) — f(a), i = 1,2 be two solutions and
$(@) = (@) —ale) = 1 (2) — () -
We then have that
"+ Ai(2)) = Hi(e) = Hy(2) + (Ar(@) = Ax(2)) (5~ va(a))

and consequently

l¥ll= < € [IlH) = Halloo + 1|41 = Aslleo [[dallo= + 8 |41 = Aallco] -
Now

A — 4, =C [(1+¢>l'2)g - (1+¢2’2)3] =1,

with f; = /O \/1+ ¢;*, hence

fi=1 2
T o (fi +fife+ 15)

_ (¢1'+¢2')(¢1'2+¢1'¢2'+¢2'2)( ' '
- N N ¢1 _¢2)
(1+¢:7)% + (1+¢2"7)7

A — Ay =
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and
|41 — Asllco < C € [|¢1 — dollon -
On the other hand, setting “fbi =u;oFy;, 1 =1,2, one gets

||(vuél)|y:¢l(m) - (Vuiz)|y:¢2(m)||00[—a,a] <

< Cllur = uzf[en Iglffa] |V7:¢%1|y=¢1(w)+
+uz | e (Vi y=o1(x) = (VFG)ly=6s(x)

Observing that

1 0
(VFo)(x, d(x)) = ;
r(z1, f(a)) s(z1)

and taking estimates (35) of lemma 5.2 into account, one obtains

max
z€[—a,a)

Therefore, for € <« 1 sufficiently small, one easily concludes that

|Hy — Hal|co < C ((1 + [Jvillco) €2 [lgr — 2ller + € [lur — uallen

+ sin fy ||U1 — U2||Co) ,

(VEZ ) y=61(2) = (VF3)y=po(x)| < Cllg1 — @2llcn -

(42)

which together with (42) and Sobolev’s embedding theorem gives the de-

sired estimate. |

ACKNOWLEDGMENT

The authors would like to thank S. Nazarov and V. Solonnikov for useful suggestions

and remarks concerning the paper.

REFERENCES

1. J. BEMELMANS, On a free boundary problem for the stationary Navier-Stokes equa-

tions, Ann. Inst. Henri Poincaré, 4 (1987), 517-547.

2. J.E. DUNN - R.L. Fospick, Thermodynamics, Stability and Boundedness of Fluids
of Complezity 2 and Fluids of Second Grade, Arch. Rational Mech. Anal., 56 (1974),

191-252.



10.

11.

12.

13.

14.

15.

16.

A VISCOELASTIC FLUID WITH A FREE SURFACE 21

. P. GrisvarD, Elliptic problems in nonsmooth domains, Monographs and Stud-
ies in Mathematics 24, Pitman, Boston, 1985.

. E.B. HANSEN - V.A. SOLONNIKOV, An ezistence theorem for Poiseuille flow with
surface tension in an open channel, Math. Meth. Appl. Sci., 13 (1990), 23-30.

. S. NazArov - K. PILECKAS, On noncompact free boundary problems for the plane
stationary Navier-Stokes equations, J. Reine Angew. Math., 438 (1993), 103-141.

. K. PILECKAS - A. SEQUEIRA - J.H. VIDEMAN, Steady Flows of Viscoelastic Fluids in
Domains with Outlets to Infinity, J. Math. Fluid. Mech., to appear.

. K. PILECKAS - V.A. SOLONNIKOV, On stationary Stokes and Navier-Stokes systems
in an open infinite channel, I, Lit. Mat. Sb., 29 (1989), 90-108; II, Lit. Mat. Sb., 29
(1989), 347-367 (in Russian).

. V.V. PucHNACHOV, The plane stationary problem with a free boundary for the
Navier-Stokes equations, Zh. Prikl. Mekh. Tekh. Fiz., 3 (1972), 91-102; Engl. Transl.:
J. Appl. Mech. Techn. Phys. 13 (1972).

. R.S. RIVLIN, Solution of some problems in the ezxact theory of visco-elasticity, J.
Rational Mech. Anal., 5 (1956), 179-188.

R.S. RIVLIN - J.L. ERICKSEN, Stress-deformation relations for isotropic materials,
J. Rational Mech. Anal., 4 (1955), 323-425.

J.F. RODRIGUES - J.M. URBANO, Degenerate elliptic problems in a class of free
domains, J. Math. Pures Appl. (9), 78 (1999), 819-840.

D. SATTINGER, On the free surface of a viscous fluid, Proc. R. Soc. London A, 349
(1976), 183-204.

V.A. SOLONNIKOV, On the Stokes equations in domains with non-smooth boundaries
and on viscous incompressible flow with a free surface, Colléege de France Seminars,
3 (1980/81), 340-423.

J.M. UrRBANO, On the mathematical analysis of a valley glacier model, in: Free
boundary problems: theory and applications (Crete, 1997), 237-245, Res. Notes
Math. 409, Chapman & Hall/CRC, Boca Raton, FL, 1999.

J.M. UrRBANO - J.H. VIDEMAN, A free domain problem for a viscoelastic fluid subject
to a fluz condition, (in preparation).

J.H. VIDEMAN, Mathematical Analysis of Viscoelastic Non-Newtonian Flu-
ids, PhD Thesis, Instituto Superior Técnico, Technical University of Lisbon, (1997).



