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Abstract—The design of meaningful audio features is a key need to advance the state-of-the-art in music emotion recognition

(MER). This article presents a survey on the existing emotionally-relevant computational audio features, supported by the music

psychology literature on the relations between eight musical dimensions (melody, harmony, rhythm, dynamics, tone color,

expressivity, texture and form) and specific emotions. Based on this review, current gaps and needs are identified and strategies for

future research on feature engineering for MER are proposed, namely ideas for computational audio features that capture elements

of musical form, texture and expressivity that should be further researched. Previous MER surveys offered broad reviews, covering

topics such as emotion paradigms, approaches for the collection of ground-truth data, types of MER problems and overviewing

different MER systems. On the contrary, our approach is to offer a deep and specific review on one key MER problem: the design of

emotionally-relevant audio features.

Index Terms—Affective computing, music emotion recognition, audio feature design, music information retrieval
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1 INTRODUCTION

MUSIC Emotion Recognition (MER) is attracting increas-
ing interest from the Music Information Retrieval

(MIR) research community. In fact, as pointed out by David
Huron nearly 20 years ago, “music’s preeminent functions
are social and psychological”, and so “the most useful
retrieval indexes are those that facilitate searching in confor-
mity with such social and psychological functions. Typi-
cally, such indexes will focus on stylistic, mood, and
similarity information” [1].

There is already a significant corpus of research on differ-
ent aspects of MER, e.g., classification using symbolic files
[2], single-label classification using raw audio excerpts [3],
[4], [5], multi-label classification [6], [7], dimensional
approaches using regression [8], [9], music emotion varia-
tion detection [10], [11], lyrics-based MER [9], bimodal/
multi-modal approaches [2], [4], following either classical
handcrafted feature design and machine learning [5] or
deep learning [10] approaches, with specific MER datasets,
e.g., [5], [8], [11]. Nevertheless, several limitations and prob-
lems still need to be addressed [5].

Most recent studies have devoted their attention to the
MER problems above, datasets and improved machine
learning techniques, while applying already existing audio
features developed in other contexts, such as speech recog-
nition or music genre classification.

On the other hand, in a previous work [5], we sustained that
features specifically suited to emotion detection are needed to
narrow the so-called semantic gap [12] and their lack hinders
the progress of research on MER. In that work, we designed
and implemented novel acoustic features, targeting particu-
larly music expressivity and texture, which led to 9 percent
classification improvement (F1-score). Hence, this study sup-
ports the argument that, to further advance the audio MER
field, research needs to focus on what we believe is its main,
crucial, and current problem: to capture the emotional content
conveyed inmusic through better designed audio features.

This perspective might as well be transversal to most
MIR problems, as pointed out in [13], where the authors
affirm that “stagnation on most MIR task results is already
acknowledged by MIR community”. There, the first hypoth-
esis raised is that “MIR approaches should perhaps be more
musical knowledge-intensive” since, currently, mostly
generic approaches are followed based on “the application
of information retrieval solutions for music, without relying
on musically meaningful features” [13]. As Pedro Domingos
boldly states, “at the end of the day, some machine learning
projects succeed and some fail. What makes the difference?
Easily the most important factor is the features used” [14].

State-of-the-art solutions are still unable to accurately
solve simple problems, such as classification with few emo-
tion classes (e.g., four to five). This is supported by both
existing studies [5], [15] and the small improvements
observed in the 2007-2019 Music Information Retrieval
Evaluation eXchange (MIREX)1 Audio Mood Classification
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task, an annual comparison of MER algorithms. There, the
best algorithm achieved 69.8 percent accuracy in a task com-
prising five categories. Moreover, this score has remained
stable for several years, which calls for methods that help
breaking the so-called “glass ceiling” [12].

Given the crucial importance of emotionally-relevant
audio features for MER, our goal in this survey is threefold:

� to summarize the most significant knowledge on the
relations between music and emotion; this review is
structured according to eight musical dimensions
(melody, harmony, rhythm, dynamics, tone color,
expressivity, texture and form) and sets the ground
to identify needs in the design of emotionally-rele-
vant audio descriptors;

� to review the current computational audio features
that are relevant for MER, particularly the ones avail-
able in different open-access audio frameworks, e.g.,
Marsyas, MIR Toolbox, PsySound and Essentia;

� to unveil possible directions for future research on
the topic of feature engineering for MER (based on
the above reviews and the identified research
needs), as a key effort to break the glass ceiling on
audio MER.

Over the years, other authors have offered surveys on
Music Emotion Recognition. The most recent we are aware
of is the one by Yang et al., from 2018 [15]. Other reviews
have been published already several years ago, e.g., the one
from 2012 by Yang and Chen [16] or erlier, e.g., [17]. The
common characteristic between all of them is that they pro-
vide broad MER reviews, tackling topics such as emotion
paradigms, approaches for the collection of ground-truth
data, types of MER problems (e.g., single-label, multi-label
or music emotion variation detection) and overviewing dif-
ferent MER systems. On the contrary, rather than providing
a broad but less specific survey, our approach is to offer an
updated, deep and specific review on one key MER prob-
lem: the design of emotionally-relevant audio features,
something that deserved only a somewhat shallow over-
view in the abovementioned works.

To further clarify the focus of this survey, it is important
to mention that approaches based on deep learning techni-
ques are out of the scope of this article, since the breadth
of this topic would probably merit a survey in itself. Nev-
ertheless, possible research directions on deep learning for
MER are briefly discussed. For the same reason, features
based on other modalities, e.g., symbolic or lyrics features,
are not covered either. Regarding symbolic features, since
some current approaches establish a bridge between the
audio and the symbolic MER domains by integrating an
audio transcription stage into the feature extraction stage
(as discussed in Section 4, e.g., [5]), possible research direc-
tions on the exploitation of symbolic features on MER are
also briefly discussed.

To summarize, this survey is focused on emotionally-
relevant audio features for MER, covering both low-level
(e.g., spectral features, MFCC, etc.), perceptual (e.g., rhythm
clarity, modality, articulation, etc.) and high-level semantic
features (e.g., genre, danceability, etc.) [18], [19].

This paper is organized as follows. Section 2 overviews
the relations between music and emotion, which are

detailed in Section 3. There, we describe specific associa-
tions between each of the eight musical dimensions and dif-
ferent emotions. Section 4 reviews the existing emotionally-
relevant computational audio features, organizing them by
musical dimension. Section 5 discusses the gaps and needs
to advance the study of audio feature design for MER and
points directions for future research. Finally, Section 6 con-
cludes the article.

2 MUSIC AND EMOTION: OVERVIEW

Music has been with us since prehistoric times, serving as a
language to express our emotions. This is regarded as musi-
c’s primary purpose [20] and the “ultimate reason why
humans engage with it” [21].

Our analysis of the relations between music and emo-
tions is structured according to the fundamental musical
dimensions usually presented in the musicology literature.
Musical dimensions are typically organized into four to
eight different categories (depending on the author, e.g.,
[22], [23]), each representing a core concept. Here, we
employ an eight-category organization comprising: melody,
harmony, rhythm, dynamics, tone color (or timbre), expres-
sivity, musical texture and musical form.

The organization of these dimensions is not strict. Many
musical features are somehow interconnected and may
interact and touch other dimensions. Thus, it can be argued
that some of them could be placed in different musical cate-
gories. In any case, through this organization, we can under-
stand: i) where features related to emotion belong; ii) which
features can be extracted from audio signals with the exist-
ing algorithms; iii) and thus, which musical dimensions
may lack computational models to extract audio features
relevant to emotion.

The relations between music and emotions have been
debated for millennia, with associations between modes
and emotions found in ancient texts, from Indian, Middle
Eastern (e.g., Persian), and far eastern (e.g., Japanese) tradi-
tions [21]. Natya Shastra (Naţya �Sastra), an ancient Sanskrit
Hindu text describing performance arts, estimated to have
been written somewhere between 500 B.C. and 500 A.D.
[24] suggests elements such as modes and musical forms as
able to express particular emotions.

In ancient Greece, Plato advocated that “good rhythm
wait upon good disposition, [. . .] the truly good and fair dis-
position of the character and the mind” [25]. In addition,
Plato considered harmony as capable of moving the listener,
arguing that both “rhythm and harmony find their way to
the inmost soul and take strongest hold upon it” [25]. Aris-
totle supported the same ideas, stating that “rhythms and
melodies contain representations of anger and mildness,
and also of courage and temperance” [26], while different
harmonies could range from relaxing to “violently exciting
and emotional” [26].

Scientific studies focusing on the relations between music
and emotions started more than a century ago. One of these
early examples is a study by Hevner, where the author eval-
uated the influence of musical factors such as rhythm, pitch,
harmony, melody, tempo and mode to each of the eight
emotion clusters earlier proposed by her [27]. Along with
such studies, music psychologists have proposed different
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emotion paradigms (e.g., categorical or dimensional) and
related taxonomies (e.g., [27], [28]).

Up to this day, this research problem is still far from
completely solved. Nevertheless, several contemporary
research works had already identified possible correlations or
in some cases causal associations between specificmusical ele-
ments and emotions. One of the most widely accepted is
mode: major modes are frequently related to emotional states
such as happiness, whereas minor modes are often associated
with sadness or anger [29]; simple, consonant, harmonies are
usually happy, pleasant or relaxed. On the contrary, complex,
dissonant, harmonies relate to emotions such as excitement,
tension or sadness, as they create instability in a musical piece
[4]. Many other musical elements have been related to emo-
tion, namely, e.g., timing, dynamics, articulation, timbre,
pitch, interval, melody, harmony, tonality, rhythm, mode,
loudness, vibrato ormusical form [4], [30].

Over the last decades, several associations have been
identified, relating specific emotional responses to the musi-
cal dimensions described above. The next section details the
most relevant findings in this area. For some musical ele-
ments, the research can be somewhat contradicting, which
can be caused by many factors, from different research
methodologies to differences in the scope of the studies
(e.g., induced or perceived emotion, significant differences
in methodologies, population, and others). This is also
caused by the complexity of the topic and indicates that fur-
ther research is needed.

Most of the associations that we describe below pertain
to music emotion perception2 or transmission, since most
studies tackled that problem. Still, some studies do not
clearly state whether their findings concern perceived or
induced emotion.

3 RELATIONS BETWEEN MUSICAL DIMENSIONS

AND EMOTIONS

In this section we review the known relations between the
eight musical dimensions and different emotions.

3.1 Melody and Emotion

Melody can be defined as a horizontal succession of pitches
(perceptual correlate of fundamental frequency), perceived
by listeners as a single musical line.

Given its central role in a musical piece, being (one of)
the most memorable elements in a song, associations
between melodic cues and emotions are expected and sug-
gested since Plato. Some of the strongest relations are found
between wider melodic ranges (pitch ranges) and energetic
emotions such as joy [31] or fear [32], while narrow ranges
are associated with lower arousal emotions, e.g., sadness,
melancholy or tranquility [32]. Other melodic elements,
such as ascending versus descending melodic contours,
have been studied and related to several emotions [27].
However, some of these are disputed in other studies,

arguing that the relation is more complex and involves
interactions with other elements such as rhythm and modes
[32]. These findings have been observed in cross-cultural
studies, where listeners have also associated joy with sim-
pler melodies and sadness with more complex ones [31],
even when exposed to unfamiliar tonal systems.

Table 1 summarizes the known relations between mel-
ody and emotion. There, ME stands for Musical Element.

3.2 Harmony and Emotion

If melody is said to be the horizontal part of music, harmony
refers to its vertical aspect, i.e., the sound produced by the
combination of various pitches (notes or tones) in chords.

Harmony, together with rhythm and melody, was
thought as able to elicit emotions since ancient times. Con-
sonant harmonies are usually associated with happiness,
tranquility, serenity, while dissonant complex harmonies
are related with negative emotional states, e.g., tension and
sadness, due to the instability they create in the piece [4].

In addition, major modes have been frequently related
with positive emotions (e.g., happiness), while minor modes
are linked to negative ones (e.g., sadness) [32]. Some authors
such as Cook et al. have tried to further understand this
affective response to major/minor chords and resolved/
unresolved chords, concluding that this emotional associa-
tion is “neither due to the summation of interval effects nor
simply arbitrary, learned cultural artifacts, but rather that
harmony has a psychophysical basis dependent on three-
tone combinations” [36].

TABLE 1
Relations Between Melodic Elements and Emotions

2. Emotion in music can be regarded as: i) perceived, as in the emo-
tion an individual identifies when listening; ii) induced or felt, regard-
ing the emotional response a user feels when listening, which can be
different from the perceived one; iii) or transmitted, representing the
emotion that the performer or composer aimed to convey [8].
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The relations between harmony and emotion are summa-
rized in Table 2.

3.3 Rhythm and Emotion

Rhythm represents the element of “time” in music, the pat-
terns of long and short sounds and silences found in music.

Rhythm, together with melody and harmony, is one of the
dimensions most associated with the emotional expression in
music. In fact, some authors consider it the most important
one, e.g., [37], [38]. Rhythm elements, such as the augmenta-
tion of tempo (from 90 to 150 bpm), has been shown to increase
happiness and surprise measures (i.e., induce) [39], while
decreasing sadness. In the study, the authors used two groups
of words to study different emotion types: 3 “basic emotions”
where users reported what they felt (i.e., induced emotion) on
a scale of 1 to 8; and 4 “descriptive words” (tension, expres-
siveness, amusement and attractiveness) to classify (i.e., per-
ceived emotion) themusical piece on a scale of 1 to 5.

In addition to tempo, the rhythmic unit of a piece has
also been shown to influence the emotional message of a
song. As an example, variations “of the rhythm of the mel-
ody without altering the musical line, harmonics or beat”
[39], such as changes from whole and half notes (theme) to
eighth or sixteenth, as well syncopated notes, were associ-
ated with specific emotions. Similar studies have supported
the idea that rhythm is somehow influencing the emotional
information in music, e.g., [40].

The associations between rhythm and emotion are sum-
marized in Table 3, based on the reviews presented in [32],
[33], [41], as well as the other mentioned papers.

3.4 Dynamics and Emotion

Dynamics represents the variation in loudness or softness of
notes in a musical piece.

The influence of dynamics, namely loudness and loud-
ness variations, in music emotions (both induced and per-
ceived) have been studied by some researchers, some of
which relate them with specific emotion states. Empirically,

an association of loud music (high intensity) with powerful
and intense emotions such as joy, anger or tension seems
logical. In contrast, soft music is mostly linked to calm,
serene or sad music. Such associations have been verified
by several researchers [42], [38], [43]. Variations in loudness
over a musical piece have also been studied. Namely, larger
variations are usually more negative [43], while smaller var-
iations are more positive [32].

Table 4 summarizes the associations between dynamics
and emotion.

3.5 Tone Color and Emotion

Tone color (or timbre) is related to lower level elements and
properties of the sound itself, e.g., amplitude and spectrum,
essential to differentiate instruments and voices.

Several sound properties have been associated with emo-
tional states. A rounder amplitude envelope is related with

TABLE 2
Relations Between Harmony and Emotions

TABLE 3
Relations Between Rhythm and Emotion

PANDA ETAL.: AUDIO FEATURES FOR MUSIC EMOTION RECOGNITION: A SURVEY 71

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on April 04,2024 at 08:23:29 UTC from IEEE Xplore.  Restrictions apply. 



negative emotions such as disgust, sadness or fear [32], [38],
while a sharper one gives rise to positive emotions such as
happiness or surprise [32], with some authors also linking it
to fear [38]. The number of harmonics has also been studied,
where a lower number is associated with boredom, happi-
ness or sadness [32], while a high number of harmonics is
usually related with emotions with high arousal and nega-
tive valence, e.g., anger, disgust, fear [32].

The tone color of specific instruments has also been
suspected to carry emotional expression cues. In fact,
composers and movie and marketing directors select spe-
cific instruments to express distinct emotions. This idea
has been supported by studies such as [45]. In this respect,
Hailstone et al. state that “timbre (instrument identity) inde-
pendently affects the perception of emotions in music after
controlling for other acoustic, cognitive, and performance
factors” [46]. These works highlight the importance of spec-
tral centroid (brightness) as a “significant component in
music emotion”. Moreover, spectral centroid deviation,
spectral shape, attack time and even/odd harmonic ratio
were all considered relevant [45].

A summary of the relations between tone color and emo-
tion is presented in Table 5.

3.6 Expressivity and Emotion

Expressive techniques in music encompass several orna-
ments and features that are used by both composers (to
enrich their pieces) and performers (to express their emo-
tions at specific moments). Both parts have been studied
and related with specific emotional states. As an example,
staccato articulation is normally associated with higher
intensity and energetic [32], mostly negative as with fear
and anger [38]. On the other hand, legato is associated with
softness [32] and sadness [38]. Similar research has been
conducted regarding vibratos and emotion expression,
observing that “singing an emotional passage influences
acoustic features of vibrato when compared with isolated,
sustained vowels” [48]. To assess this, classical singers were
asked to sing passages of their preference containing both
high and low levels of emotion. The analysis of the

recordings shows significant changes in vibrato characteris-
tics such as frequency modulation rate and extent.

Regarding emotion expression by the performer, some
studies highlighted that artists typically use different orna-
ments, such as accentuating specific notes considered
happy, whereas not doing the same for sadness [49]. In
addition, Timmers and Ashley studied the usage by flute
and violin performers of specific ornamentations such as
trills, turns, mordente, arpeggio and others, when they
intended to express one of four specific affect terms (happi-
ness, sadness, anger and love), and how these emotions
were perceived by listeners [50]. The accuracy between
intended versus rated emotions was lowest for happiness.
The performers employed more complex ornamentations
for angry and the least complex for sadness.

Table 6 summarizes the main relations between expres-
sivity and emotion.

3.7 Texture and Emotion

Musical texture refers to the way the rhythmic, melodic and
harmonic information produced by musical instruments and
voices is combined in a musical composition. It is thus related
to the combination and relations between the musical lines or
layers (one ormore instrumentswith the same role) in a song.

Fewer studies have been conducted regarding musical
texture and emotions and of these some contain contradict-
ing results. In one of the oldest studies, Kastner and Crowder
evaluated the emotional differences between monophonic
(melody only) and homophonic textures (melody with block
chords accompaniment) by children aged three to twelve. In
that study, the unaccompanied version (monophonic) was
rated as more positive [51]. A similar result was observed by
Webster and Weir, where nonharmonized melodies were
considered happier [52]. However, further studies attempt-
ing to replicate Kastner and Crowder’s findings observed
exactly the opposite result. There, not only children but also
adult subjects considered monophonic sounds as less happy
than accompanied ones [53], [54]. A possible explanation to
this contradicting results are the different versions of “dense
textures” used in each [55], where very basic/simple chords
and a single instrument were used in the studies observing
negative emotions, while the others usedmore complex (and
thus, with higher density) accompaniments taken from pub-
lished songbooks. These differences may influence greatly

TABLE 4
Relations Between Dynamics and Emotion

TABLE 5
Relations Between Tone Color (Timbre) and Emotion
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other musical dimensions (e.g., harmony) making it harder
to correctly compare the results.

Polyphonic textures, containing several voices, have also
been explored recently, suggesting that music with a higher
number of voices is perceived as more positive. Such musi-
cal excerpts were rated as “sounding more happy, less sad,
less lonely, and more proud” [55].

Although further studies are required to better under-
stand exactly how musical texture influences emotion, the
existing ones have demonstrated that it can indeed influ-
ence emotion in music either directly or by interacting with
other features such as tempo and mode [55].

Table 7 summarizes the associations between musical
texture and emotions.

3.8 Form and Emotion

Musical form or musical structure refers to the overall struc-
ture of a musical piece and describes the layout of a compo-
sition as divided into sections.

Some studies have investigated possible relations between
musical form and emotion. It seems that forms with lower
complexity are associated with positive emotions [56] such as
relaxation, joy or peace [31]. On the contrary, higher complex-
ity forms usually result in more negative emotions such as
sadness [31], which can be higher in arousal (e.g., aggressive)
or lower (e.g., melancholy) depending on the dynamism
(high or low, respectively) [56].

Some researchers explored the relation between emotion
and form by changing the order of sections (in classical
music) but no relevant results were obtained [57], [58].

The few associations found between musical form and
emotions are presented in Table 8.

3.9 Interactions Between Musical Dimensions

As described in the previous sections, each musical element
may influence distinct emotional expressions. In fact, emo-
tional content in music is not defined exclusively by a single
element but is built by the merging and interaction of several
factors. Beyond studying associations concerning musical
dimensions and emotions independently, these interactions
between several musical dimensions and the associated emo-
tional responses have also been studied and reviewed, e.g.,
[59], [60].

Such works unveil interesting indirect relations and
interactions regarding the variation of specific elements and
the corresponding emotional changes, as well as possible
interactions between elements, resulting in different emo-
tional states. One example is the interaction between tempo
and mode [60]: high tempo and minor mode results in only
high arousal, while the same high tempo, but with major
mode, results in high arousal and positive valence.

Several other authors have studied possible interactions,
such as mode and tempo [37], the influence of pitch height,
intensity and tempo in valence [42], the influence of rhythm,
melodic contour and melodic progression in happy music
[32] or interactions between tempo, texture and mode [52].

4 COMPUTATIONAL AUDIO FEATURES IN MER

In general terms, a feature is a characteristic part of some-
thing. Features help to distinguish one thing from another,
by providing the essential descriptive primitives by which
individual objects or works may be identified [61].

In musical terms, features may be characteristic of a
musical work, of a movement, of a composer, of a very spe-
cific musical dimension, of a genre, and so forth. As Huron
states, “what constitutes a feature depends on the scope of

TABLE 6
Relations Between Expressivity and Emotion

TABLE 7
Relations Between Texture and Emotion

TABLE 8
Relations Between Form and Emotion
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our gaze” [61]. For illustration, features can be employed to
represent any aspect that is relevant to the identification of
a song, from the chords, to abstract statistics regarding
physical aspects of the sound wave, rhythm information
and others. Summing it up, the goal of feature extraction is
to reduce the information of songs to descriptors that can
accurately describe them [15].

Over the last decades, several algorithms have been pro-
posed to extract information from audio signals. These fea-
tures have been developed to solve a myriad of problems,
from speech recognition, to content-based retrieval, index-
ing, and fingerprinting. More recently, a few works studied
how the human perception of music characteristics (e.g.,
tempo) correlates with these audio descriptors, e.g., [62],
[63]. It was observed that some features, “in particular those
related to loudness, timbre, harmony, and rhythm show
high correlations with perceived emotions” [63]. Still, such
studies are usually carried with small datasets or specific
genres and further research is needed.

Nowadays, most of these feature extraction algorithms
are implemented in state-of-the-art audio frameworks, com-
monly employed in most MIR studies. In this survey, we
have reviewed the emotionally-relevant features from 4
common audio frameworks (Marsyas [64], MIR Toolbox
(MIR TB) [65], PsySound [66] and Essentia [67]), based on
the identified relations between different musical elements
and emotions (as discussed in Section 3). The available
frameworks vary greatly in many aspects, from user-friend-
liness to computational efficiency or the number of imple-
mented algorithms. Some are aimed to research, requiring
specific environments (e.g., MATLAB), while others are
designed with performance in mind, more suited to be used
in industry. For an in-depth review, see [68], [69].

In the following, we catalog the audio features that have
been proposed in the literature over the years and are now
available in these frameworks, organizing them according
to the musical dimensions to which they are closest. Besides
these frameworks, which implement most of the state-of-
the-art audio features, in a recent work, we have contrib-
uted with a set of emotionally-relevant audio features, com-
prising mostly expressivity and musical texture feature [5].
As will be discussed, those features are noticeably under-
represented in the discussed audio frameworks.

Many of the features are extracted repeatedly for
smaller excerpts (analysis windows) of the entire audio
clip, returning series of data. These frame-level features are
usually integrated using statistical moments such as mean,
standard deviation, skewness and kurtosis, as well as max-
imum and minimum, before being used with machine
learning techniques.

4.1 Melody Features

In this section we describe the audio features that capture
information primarily related with melody and its compo-
nents, as summarized in Table 9.

4.1.1 Pitch

Pitch represents the perceived fundamental frequency of a
sound. It is one of the three major auditory attributes of
sounds, along with loudness and timbre. Pitch (as an audio

feature) typically refers to the fundamental frequency of a
monophonic sound signal and can be calculated using vari-
ous techniques. One common method to calculate pitch,
employed in Marsyas, MIR Toolbox and Essentia is the YIN
algorithm [70]. PsySound3 also implements Swipe and
Swipe0 algorithms proposed by Camacho [71].

4.1.2 Virtual Pitch Features

Ernst Terhardt et al. proposed an algorithm to extract virtual
pitch, which is related to the psychoacoustics and modelling
of the perceived pitch [72]. The PsySound3 framework
implements this algorithm.

4.1.3 Pitch Salience

The perception of pitch, in particular its salience, is a com-
plex idea that can be roughly explained as how noticeable
(that is, strongly marked) is the pitch in a sound, and was
proposed as a quick measure of tone sensation. Pure tones
have an average pitch salience value close to 0 whereas
sounds containing several harmonics in the spectrum have
higher salience values. Different approaches have been pro-
posed to extract pitch salience, e.g., [73]. This feature is pres-
ent in the MIR Toolbox and Essentia.

4.1.4 Predominant Melody F0

Several authors have proposed algorithms to estimate the
fundamental frequency (F0) of the predominant melody in
both polyphonic and monophonic music audio signals. This
is still an open research problem, and most of the audio
frameworks do not include polyphonic audio melody F0
extractors. Still, some of the proposed algorithms are nowa-
days available as separate tools, e.g., the MELODIA algo-
rithm [73], provided in Essentia.

4.1.5 Pitch Content

Tzanetakis proposed a set of simple features extracted from
folded and unfolded pitch histograms (in the folded pitch

TABLE 9
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histogram all notes are mapped to a single octave) to
describe pitch information [64]:

� FA0: Amplitude of the maximum peak of the folded
histogram;

� UP0: Period of the maximum peak of the unfolded
histogram;

� IPO1: Pitch interval between the two most promi-
nent peaks of the folded histogram;

� SUM: The overall sum of the histogram.
Although the author described these features in his PhD

thesis about the Marsyas framework, the current documen-
tation seems to ignore them. Due to this we could not con-
firm that the framework is able to extract them.

4.1.6 MIDI Note Number (MNN) Statistics

Panda et al. [5] proposed 6 statistics based on the MIDI note
number of each note: MIDImean, i.e., the average MIDI note
number of all notes, MIDIstd (standard), MIDIskew (skew-
ness), MIDIkurt (kurtosis), MIDImax (maximum) and MIDI-
min (minimum).

These features rely on the melody transcription of the
original audio waveform. In that work, the authors
employed the works by Salamon and G�omez [73] and
Dressler [74] to estimate predominant fundamental frequen-
cies as well as saliences. The resulting pitch trajectories are
then segmented into individual MIDI notes following the
work by Paiva et al. [75].

4.1.7 Register Distribution

This class of features proposed in [5] indicates how the notes of
the predominant melody are distributed across different pitch
ranges. Each instrument and voice type have different ranges,
which in many cases overlap. The authors selected 6 classes,
based on the vocal categories and ranges for non-classical sing-
ers. The resulting metrics are the percentage of MIDI note val-
ues in the melody that are in each of the following registers:
Soprano (C4-C6), Mezzo-soprano (A3-A5), Contralto (F3-E5),
Tenor (B2-A4), Baritone (G2-F4) andBass (E2-E4).

In addition, the authors also propose the register distri-
bution per second, as the ratio of the sum of the duration of
notes with a specific pitch range (e.g., soprano) to the total
duration of all notes.

4.1.8 Note Smoothness (NS) Statistics

Also related to the characteristics of the melody contour,
Panda et al. [5] propose a note smoothness feature as an
indicator of how close consecutive notes are, i.e., how
smooth is the melody contour. To this end, the difference
between consecutive notes (MIDI values) is computed. The
usual 6 statistics are also calculated.

4.1.9 Ratios of Pitch Transitions

In Panda et al. [5], the abovementioned extracted MIDI note
values are used to build a sequence of transitions to higher,
lower and equal notes.

The obtained sequence marking transitions to higher,
equal or lower notes is summarized in several metrics,
namely: Transitions to Higher Pitch Notes Ratio, Transitions
to Lower Pitch Notes Ratio and Transitions to Equal Pitch

Notes Ratio. There, the ratio of the number of specific transi-
tions to the total number of transitions is computed.

4.2 Harmony Features

In this section we describe the audio features that capture
information primarily related with harmony and its compo-
nents (Table 10).

4.2.1 Inharmonicity

The inharmonicity feature is based on number of partials
that are not multiples of the fundamental frequency. Inhar-
monicity influences the timbre perception of a given sound.
One approach to compute this was proposed by Peeters
et al. [76] and is implemented in Essentia. The MIR Toolbox
measures the inharmonicity as the amount of energy out-
side the ideal harmonic series, which presupposes that there
is only one fundamental frequency [65].

4.2.2 Chromagram

The chromagram (implemented in Marsyas, MIR Toolbox
and Essentia) is used to estimate the energy distribution
along pitch classes. It consists of a 12-dimension vector, one
for each note, from A to G# (12 semitone pitch classes), with
the respective intensities in each of these classes based on
the spectral peaks of the waveform. It is also known as Har-
monic Pitch Class Profile (HPCP) [65].

4.2.3 Chord Sequence

Extracting chords from an audio signal is a complex task, for
which researchers have yet to propose robust solutions. The
existing methods to estimate this are still experimental, based
on pitch class profiles [77]. Essentia implements an algorithm
based on this research, able to compute the sequence of
chords in a song. Such algorithm calculates the best matching
major or minor triad and outputs the result as a string (e.g.,
A#, Bm, G#m, C). The existing implementation is marked as
experimental and requires further work before being usable.

4.2.4 Tuning Frequency

The tuning frequency (available in Essentia) is an estimation
of the exact frequency (in Hz) on which a song is tuned. It is
used as an intermediary step for HPCP calculation and key
estimation but can also be applied for classification tasks
such as western vs. non-western music [77].

TABLE 10
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4.2.5 Key Strength

Key strength (MIR Toolbox and Essentia) consists in the
computation of the strength of each possible key candidate
to be the key of a given song (e.g., outputting scores
between 0 and 1, or -1 to 1). The algorithm is based on the
cross-correlation of the chromagram [77].

4.2.6 Key and Key Clarity

These features (implemented in the MIR Toolbox and
Essentia) give a broad estimation of tonal center positions
and their respective clarity. This is based on peak picking in
the key strength curve. There, the best key(s) is given by the
peak abscissa, while the key clarity is the key strength asso-
ciated with the best keys, i.e., the key ordinate [65].

4.2.7 Tonal Centroid Vector (6 dimensions)

In the MIR Toolbox, the tonal centroid is represented as a 6-
dimensional feature vector. It corresponds to a projection of
the chords along circles of fifths, of minor thirds and of
major thirds [78]. It is based on the Harmonic Network or
Tonnetz, which is a planar representation of pitch relations,
where pitch classes having close harmonic relations such as
fifths, major/minor thirds have smaller euclidean distances
on the plane. By calculating the euclidean distance between
successive analysis frames of tonal centroid vectors, the
algorithm detects harmonic changes such as chord bound-
aries from musical audio.

4.2.8 Harmonic Change Detection Function

PsySound3 implements the Harmonic Change Detection
Function (HCDF), which is a method for detecting changes
in the harmonic content of musical audio signals proposed
by Harte et al. [78]. It can be interpreted as the flux of the
tonal centroid, as in the distance between the harmonic
regions of successive frames [78].

4.2.9 Sharpness

Sound can be subjectively rated on a scale from dull to
sharp, and sharpness algorithms attempt to model this. Psy-
Sound3 implements several algorithms [66], which are
essentially weighted centroids of specific loudness.

4.2.10 Modality

Several algorithms exist to estimate modality, i.e., major vs.
minor, returning either a binary label, e.g., major / minor,
or a numerical value, e.g., between -1 (minor) and 1 (major)
[65]. In the MIR Toolbox and Essentia, the typical strategies
use the estimated strength of each key and consist of:

� the difference between the strength of the strongest
major and minor keys

� the sum of all the differences between each major
key and its relative minor key pair.

4.3 Rhythm Features

In this section we describe the audio features that capture
information primarily related with rhythm and its compo-
nents (Table 11).

4.3.1 Beat Spectrum

The beat spectrum (MIR Toolbox) has been proposed as a
measure of acoustic self-similarity as a function of time lag.
It is computed from the similarity matrix, obtained by com-
paring the spectral similarity between all possible pairs of
frames from the original audio signal [79].

4.3.2 Beat Location

Different beat tracking algorithms have been proposed over
time. These algorithms estimate the beat locations in an
input signal. The Essentia framework implements several
beat tracker and rhythm extractor functions, e.g., the multi-
feature beat tracker, which extends the idea of measuring
the level of agreement between a committee of different
beat tracking algorithms in a song-by-song basis [80]. Mar-
syas implements IBT, a real-time/off-line tempo induction
and beat tracking system based on a competing multi-agent
strategy that considers parallel hypotheses regarding tempo
and beats [81].

4.3.3 Onset Time

Another way of determining the tempo is based on the com-
putation of an onset detection curve, showing the successive
bursts of energy corresponding to the successive pulses [76].
Peak picking is automatically performed on the onset detec-
tion curve, to show the estimated positions of the note
onsets. This feature is provided by the MIR Toolbox and
Essentia. In the case of the MIR Toolbox, its onset function
is able to return the onset times using any of the following
options: peaks, valleys, attack phase and release phase [65].

4.3.4 Event Density

This feature (MIR Toolbox) estimates the “speed” of a song
based on the average number of events in a given time win-
dow, i.e., the number of note onsets per second [65].

TABLE 11
Rhythm Features

76 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on April 04,2024 at 08:23:29 UTC from IEEE Xplore.  Restrictions apply. 



4.3.5 Average Duration of Events

In the MIR Toolbox, the duration of events (e.g., a note) can
also be estimated from its envelope. One possible approach
to estimate this was proposed by Peeters et al. [76]. It con-
sists in detecting attack and release phases and measuring
the time (in seconds) between them when the amplitude is
at least 40 percent of the maximum.

4.3.6 Tempo

Several algorithms have been proposed to estimate tempo
[19], i.e., the speed of a given musical piece, usually indi-
cated in beats per minute (BPM). This feature, available in
Marsyas, the MIR Toolbox and Essentia through different
alternative algorithms, is typically estimated by detecting
periodicities from the onset detection curve [65].

4.3.7 Predominant Local Pulse (PLP) Novelty Curves

Grosche and Muller introduced a mid-level representation
for capturing dominant tempo and predominant local pulse
even from music with weak non-percussive note onsets and
strongly fluctuating tempo [82]. Essentia implements this
feature. While the PLP curve does not represent high-level
information such as tempo, beat level or location of onset
positions, it serves as a tool that may be used for tasks such
as beat tracking, tempo and meter estimation.

4.3.8 Harmonically Wrapped Peak Similarity (HWPS)

Tzanetakis described a set of rhythmic content features cal-
culated with recourse to the Beat Histograms of a song,
which proved useful for musical genre classification [64]:

� A0, A1: relative amplitude of the first (A0), and sec-
ond (A1) histogram peak;

� RA: ratio of the amplitude of the second peak
divided by the amplitude of the first peak;

� P1, P2: Period of the first and second peak in BPM;
� SUM: histogram sum (indication of beat strength)
Subsequently, HWPS, a feature following similar princi-

ples has been proposed and integrated into Marsyas to cal-
culate harmonicity by taking “into account spectral
information in a global manner” [83].

4.3.9 Metrical Structure

This feature provides a detailed description of the hierarchi-
cal metrical structure by detecting periodicities from the
onset detection curve and tracking a broad set of metrical
levels [65]. This extractor is used to calculate the meter-
based tempo estimation in the MIR Toolbox.

4.3.10 Metrical Centroid and Strength

These functions provide two descriptors derived from the
above metrical analysis performed in the MIR Toolbox:

� Dynamic metrical centroid: estimation of the metri-
cal activity, based on the computation of the centroid
of the selected metrical level [65];

� Dynamic metrical strength: an indicator of the clarity
and strength of the pulsation. Estimates whether a
“clear and strong pulsation, or even a strong metrical

hierarchy is present”, or if the opposite is true, where
“the pulsation is somewhat hidden, unclear” [65] or
a complex mix of pulsations.

4.3.11 Note Duration statistics

Panda et al. propose note duration statistics (the same six
ones, as proposed for the melody dimension), based on the
duration of each note [5].

4.3.12 Note Duration Distribution

Moreover, note duration distribution features are also pro-
posed in [5]: Short Notes Ratio, Medium Length Notes Ratio
and Long Notes Ratio. Similarly, the authors compute the
note duration distribution per second, for each of the three
duration classes defined.

4.3.13 Ratios of Note Duration Transitions

Finally, Panda et al. also propose ratios of note duration transi-
tions [5], namely, Transitions to Longer Notes Ratio, Transi-
tions to Shorter Notes Ratio and Transitions to Equal Length
Notes Ratio.

4.3.14 Rhythmic Fluctuation

This feature (present in the MIR Toolbox) estimates the
rhythm content of an audio signal. This estimation is based
on spectrogram computation transformed by auditory
modeling followed by spectrum estimation in each band
[84], i.e., the rhythmic periodicity along auditory channels.

4.3.15 Tempo Change

An indicator of tempo change over time is estimated by
computing the difference between successive values of the
tempo curve in the MIR Toolbox. This feature is expressed
independently from the choice of a metrical level by com-
puting the ratio of tempo values between successive frames
and is expressed in logarithmic scale (base 2) [65].

4.3.16 Pulse / Rhythmic Clarity

This feature (implemented in the MIR Toolbox and Essen-
tia) estimates the “rhythmic clarity”, an indicator of the clar-
ity and strength found in the beats estimated by tempo
estimation algorithms. Distinct heuristics exist to this esti-
mation. The most common uses the autocorrelation curve
that is computed during tempo estimation [65]. Essentia
computes an approximate metric calling it beats loudness.

4.4 Dynamics Features

In this section we describe the audio features that capture
information primarily related with dynamics and its com-
ponents (Table 12).

4.4.1 Root-Mean-Square (RMS) Energy

The RMS energy (implemented in Marsyas, the MIR Tool-
box and Essentia) is used to measure the power of a signal
over a window, or global energy. This is usually computed
by taking the root-mean-square (RMS) [64]. It roughly
describes the loudness of a musical signal.
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4.4.2 Low Energy Rate

Low energy rate (available in Marsyas and theMIR Toolbox)
measures the percentage of frames with less-than-average
energy [64]. This metric estimates the temporal distribution
of energy, in order to understand if this energy remains con-
stant between frames or if some frames are more contrastive
than others.

4.4.3 Sound Level

This descriptor (present in PsySound3) corresponds to the
power sum of the spectrum for each time window,
expressed in decibel. At a higher level, when appropriately
calibrated, this represents the unweighted sound pressure
level of the signal in each analysis window [66].

4.4.4 Instantaneous Level, Frequency and Phase

These features (implemented in PsySound3) consist in
applying a Hilbert transform to the audio waveform, result-
ing in three different outputs: the instantaneous level,
instantaneous frequency and instantaneous phase. The
instantaneous level can be regarded as the sound pressure
level derived from the Hilbert transform [66].

4.4.5 Loudness

Sound loudness is the subjective perception of the intensity
of a sound. This metric is measured in sones, where a dou-
bling in sones corresponds to a doubling of loudness [66].
Several loudness metrics have been proposed over the
years, which are available in PsySound3 and Essentia.

4.4.6 Timbral Width

Timbral width (PsySound3) is one of six measures of timbre
proposed by Malloch in a method called loudness distribu-
tion analysis [85]. Timbral width can be regarded as “a mea-
sure of the fraction of loudness that lies outside of the
loudest band, relative to the total loudness” [85].

4.4.7 Volume

Volume refers roughly to the perceived “size” of the sound,
or the auditory volume of pure tones. This concept was first
studied by Stevens [86] and, later on, Cabrera [87] devel-
oped a computational volume model for arbitrary spectra,
which was integrated into PsySound3. In his work, Cabrera
proposes two diotic volume models. The first uses a
weighted ratio between the binaural loudness and sharp-
ness, which is the specific loudness centroid on the Bark
scale. A second and better performing model uses a simpler
centroid to overcome limitations in the method of sharpness
calculation selected by the authors [87].

4.4.8 Sound Balance

Sound balance can be estimated through the Maximum
Amplitude Position to Total Envelope Length Ratio (Max-
ToTotal and MinToTotal), provided in the MIR Toolbox and
Essentia. This is a metric to understand howmuch the maxi-
mum amplitude (peak) in a sound envelop is off the center.
To this end, the ratio between the index of the maximum (or
minimum) value of the envelope of a signal and the total

length of the envelope is computed. If the peak amplitude is
found close to the beginning (e.g., decrescendo sounds), this
ratio will be close to 0. A value of 0.5 means that the peak is
close to the middle and near 1 if at the end of the sound
(e.g., crescendo sounds) [69].

4.4.9 Note Intensity statistics

Panda et al. compute the usual 6 statistics based on the
median pitch salience of each note [5].

4.4.10 Note Intensity Distribution

In addition, Panda et al., 2018 propose note intensity distri-
bution features [5]. This class of features indicates how the
notes of the predominant melody are distributed across
three intensity ranges, leading to the following features:
Low Intensity Notes Ratio, Medium Intensity Notes Ratio
and High Intensity Notes Ratio. The same features are also
computed per second.

4.4.11 Ratios of Note Intensity Transitions

Panda et al., 2018 also propose ratios of Note Intensity Tran-
sitions: Transitions to Higher Intensity Notes Ratio, Transi-
tions to Lower Intensity Notes Ratio and Transitions to
Equal Intensity Notes Ratio [5].

4.4.12 Crescendo and Decrescendo (CD) metrics

Panda et al. identify notes as having crescendo or decre-
scendo based on the intensity difference between the first
and the second half of the note [5]. From these, the authors
compute the number of crescendo and decrescendo notes
(per note and per second). In addition, they compute
sequences of notes with increasing or decreasing intensity,
computing the number of sequences for both cases (per note
and per sec) and the length of crescendo sequences in notes
and in seconds, using the 6 usual statistics.

TABLE 12
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4.5 Tone Color Features

In this section we describe the audio features that capture
information related with tone color (timbre) and its compo-
nents (Table 13).

4.5.1 Attack/Decay Time

One of the aspects influencing tone color is the sound enve-
lope, which can be divided into four parts: attack, decay,
sustain and release. Several descriptors can be extracted
from it, mostly related with the attack phase, i.e., from the
starting point of the envelope until the amplitude peak is
attained. One of these descriptors is the attack time (present
in the MIR Toolbox and Essentia), which consists in the esti-
mation of temporal duration of the various attack phases in
an audio signal [76]. The MIR Toolbox is also able to com-
pute the decay time.

4.5.2 Attack/Decay Slope

The attack slope (available in the MIR Toolbox) is another
descriptor extracted from the attack phase [76]. It consists
on the estimation of the average slope of the entire attack
phase, since its start to the peak. The MIR Toolbox is also

able to extract the same information from the decay phase,
related to its decrease slope [65].

4.5.3 Attack/Decay Leap

The attack leap is a simple descriptor related to the attack
phase. In the MIR Toolbox, it consists in the estimation of
the amplitude difference between the beginning (bottom)
and the end (peak) of the attack phase [65]. As with the pre-
vious features, the MIR Toolbox outputs a similar descriptor
related with the decay phase.

4.5.4 Zero Crossing Rate (ZCR)

The Zero Crossing Rate (Marsyas, MIR Toolbox Essentia)
represents the number of times the waveform changes sign
in a window (crosses the x-axis). It can be used as a simple
indicator of change of frequency or noisiness. As an exam-
ple, heavy metal music, due to guitar distortion and heavy
percussion, will tend to have much higher zero crossing val-
ues than classical music [64]. Sometimes the ZCR derivative
is also computed, representing the absolute value of the
window-to-window change in zero crossing rate.

4.5.5 Spectral Flatness

The spectral flatness (Marsyas, MIR Toolbox, Essentia) indi-
cates whether the spectrum distribution is smooth or spiky,
i.e., estimates to which degree the frequencies in a spectrum
are uniformly distributed (noise-like) [65]. It is usually com-
puted as the ratio between the geometric mean and the
arithmetic mean [76]. Marsyas adopts a different approach,
proposed in [88], calculating the spectral flatness in differ-
ent spectral bands.

4.5.6 Spectral Crest Factor (SCF)

The spectral crest factor [88] is a measure of the “peakiness”
of a spectrum and is inversely proportional to the spectral
flatness measure. It is commonly used to distinguish noise-
like from tone-like sounds due to their different spectral
shapes, where noise-like sounds have lower spectral crests.
In Marsyas, the SCF is computed as the ratio of the maxi-
mum and mean spectrum powers of a subband.

4.5.7 Irregularity

Irregularity, also known as spectral peaks variability, is the
degree of variation of the amplitude of successive spectral
peaks [65]. This feature is present in the MIR Toolbox.

4.5.8 Tristimulus

The tristimulus feature [76], implemented in Essentia, quan-
tifies the relative energy of partial tones by three parameters
that measure the energy ratio of the first partial (tristimu-
lus1), second, third and fourth partials (tristimulus2) and
the remaining (tristimulus3).

4.5.9 Odd-to-Even Harmonic Energy Ratio

The odd-to-even harmonic energy (Essentia) ratio
“distinguishes sounds with predominant energy at odd har-
monics (such as clarinet sounds) from other sounds with
smoother spectral envelopes (such as the trumpet)” [76].
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4.5.10 Spectral Moments: Centroid, Spread,

Skewness, and Kurtosis

The four spectral moments (implemented in the MIR Tool-
box, PsySound and Essentia) are useful measures of spectral
shape [76]. The spectral centroid (also available in Marsyas)
is the first moment (mean) of the magnitude spectrum of
the short-time Fourier Transform (STFT).

The spectral spread represents the standard deviation of
the magnitude spectrum. Thus, it is a measure of the disper-
sion or spread of the spectrum.

Spectral skewness is the third central moment of the
magnitude spectrum and it is a measure of its symmetry.

Finally, in simple terms, spectral kurtosis, or the fourth
central moment of the magnitude spectrum, captures infor-
mation about existing outliers.

4.5.11 Spectral Entropy

The spectral entropy of a signal is a measure of its spectral
power distribution, based on Shannon entropy [89] from
the information theory field. This feature is implemented in
the MIR Toolbox and Essentia.

4.5.12 Spectral Flux

Spectral flux (Marsyas, MIR Toolbox, Essentia) is a measure
of the amount of spectral change in a signal, i.e., the distance
between the spectra of successive frames [64]. Spectral flux
has also been shown by user experiments to be an important
perceptual attribute in the characterization of the timbre of
musical instruments [90].

4.5.13 Spectral Rolloff

Spectral rolloff (Marsyas,MIRToolbox, Essentia) is often used
as an indicator of the skewness of the frequencies present in a
window. According to Tzanetakis [64], the spectral rolloff is
defined as the frequency R_t below which 85 percent of the
magnitude distribution is concentrated. The percentage varies
among authors, but 85 percent is the current default value for
most frameworks.

4.5.14 High-Frequency Energy

Several algorithms have been proposed to estimate the
high-frequency content in a signal. Brightness (also called
high-frequency energy) is one of such algorithms, imple-
mented in the MIR Toolbox. This typically consists in fixing
a minimum frequency value and measuring the amount of
energy above that frequency [65]. The Essentia framework
implements a different algorithm, named high-frequency
content (HFC), to measure the amount of high-frequency
energy from the signal spectrum. HFC is computed by
applying one of the several algorithms, e.g., [91].

4.5.15 Cepstrum (Real/Complex)

The cepstrum is the result of taking the inverse Fourier
transform of the logarithm of the estimated spectrum of a
signal [92]. It can be regarded as a measure of the rate of
change in the different spectral bands. Cepstral analysis has
applications in fields such as pitch analysis, echo detection
and human speech processing, by providing a simple way

to separate formants (due to filtering in the vocal tract) from
the vocal source [93]. Cepstral analyzers are available in
PsySound3.

4.5.16 Energy in Mel/Bark/ERB Bands

In audio signal processing, it is often important to decom-
pose the original signal into a series of audio signals of dif-
ferent frequencies (i.e., low to high-frequency channels),
enabling the study of each channel separately. This is
inspired by the human cochlea, which can be regarded as a
filter bank, distributing the frequencies into critical bands.
Several scales have been proposed, each one using a partic-
ular range of frequencies, e.g., the Mel, Bark or Equivalent
rectangular bandwidth (ERB) scales [94]. The energy in the
Mel/Bark bands is computed in the MIR Toolbox and in
Essentia. The energy in the ERB bands is computed in the
same two frameworks, as well as PsySound3.

4.5.17 Mel-Frequency Cepstral Coefficients (MFCC)

MFCCs [95] are another measure of spectral shape. The fre-
quency bands are positioned logarithmically on the Mel
scale and cepstral coefficients are then computed based on
the Discrete Cosine Transform of the log magnitude spec-
trum. Typically, only the first 13 cepstral coefficients are
usually returned by audio frameworks. These 13 coefficients
are mostly used for speech representation but Tzanetakis
states that “the first five coefficients are adequate for music
representation” [64]. This descriptor is provided by Mar-
syas, the MIR Toolbox and Essentia.

4.5.18 Linear Predictive Coding Coefficients (LPCC)

Linear predictive coding is used in speech research to repre-
sent the spectral envelope of a digital speech signal in com-
pressed form, using to this end information of a linear
predictive model [96]. LPCCs, available in Marsyas and
Essentia, represent the cepstral coefficients derived from
linear prediction and have been used in a wide range of
speech applications, such as speech analysis, encoding and
speech emotion recognition [96].

4.5.19 Linear Spectral Pairs (LSP)

Linear Spectral Pairs (available in Marsyas) are an alterna-
tive representation of linear prediction coefficients (LPC)
for transmission over a channel. LSPs have several proper-
ties (e.g., smaller sensitivity to quantization noise) that
make them superior to direct quantization of LPCs. Thus,
LSPs are useful in speech recognition and coding [97].

4.5.20 Spectral Contrast

The octave-based spectral contrast is a feature proposed by
Jiang et al. [98] to represent the spectral characteristics of an
audio signal, specifically the relative spectral distribution.
According to the authors, the feature has been tested in
music type classification problems, demonstrating a “better
discrimination among different music types than mel-fre-
quency cepstral coefficients (MFCC)” [98], which is one of
the features typically used in such problems. It is imple-
mented in Essentia.
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4.5.21 Roughness (Sensory Dissonance)

Sensory dissonance, also known as roughness, is related to
the beating phenomenon that occurs whenever a pair of
sinusoids are close in frequency [99]. This feature is imple-
mented in Marsyas, the MIR Toolbox and Essentia using
different algorithms, the method by Sethares, which esti-
mates total roughness by averaging all dissonance estimates
across all possible peak pairs of the spectrum [100].

4.5.22 Spectral and Tonal Dissonance

PsySound3 computes spectral and tonal dissonance fea-
tures. Dissonance measures the harshness or roughness of
the acoustic spectrum [66]. The dissonance generally
implies a combination of notes that sound harsh or are
unpleasant to people when played at the same time. Psy-
Sound3 provides two descriptions of acoustic dissonance:
“spectral dissonance” which uses all Fourier components,
and “tonal dissonance” which uses a peak extraction algo-
rithm before calculating dissonance.

4.6 Expressivity Features

In this section we describe the audio features that capture
information primarily related with expressiveness. As will
be observed, we are only aware of one feature of this type in
the analyzed audio frameworks. Hence, we have recently
proposed a set of novel features targeting expressivity fea-
tures [5]. Table 14 summarizes the available expressivity
features.

4.6.1 Average Silence Ratio (ASR)

Average Silence Ratio is a feature proposed by Feng et al. as
an estimation for articulation [3]. It is defined as the ratio of
silence frames in one-second time windows. According to
the author “lower ASR means fewer silence frames present
in musical piece, or legato in articulation, and the higher
ASR means more silence frames present in musical piece, or
staccato in articulation”. This feature is implemented in the
MIR Toolbox.

4.6.2 Articulation Metrics

Articulation is a technique affecting the transition or conti-
nuity between notes or sounds. Panda et al. [5] proposed an
approach to detect legato (i.e., connected notes played
“smoothly”) and staccato (i.e., short and detached notes).
Based on their algorithm, all the transitions between notes
in the song clip are classified and, from them, several met-
rics are extracted such as ratio of staccato, legato and other
transitions and longest sequence of each articulation type.

4.6.3 Glissando Metrics

Glissando is another kind of expressive articulation, which
consists in the glide from one note to another. It is used as
an ornamentation, to add interest to a piece and thus may
be related to specific emotions in music. Panda et al. [5] pro-
posed a glissando detection algorithm based on which sev-
eral glissando features are extracted, e.g., glissando
presence, extent, duration, direction, slope and glissando to
non-glissando ratio (i.e., the ratio of notes containing glis-
sando to the total number of notes).

4.6.4 Portamento Metrics

Computational models of portamento, the smooth and
monotonic increase or decrease in pitch from one note to
the next, were proposed in [101] by using Hidden Markov
Models in the vibrato-free pitch curve (flatten out).

4.6.5 Vibrato Metrics

Vibrato is an expressive technique used in vocal and instru-
mental music that consists in a regular oscillation of pitch.
Its main characteristics are the amount of pitch variation
(extent) and the velocity (rate) of this pitch variation. Panda
et al. [5] proposed a vibrato detection algorithm based on
the analysis of F0 sequence of each note, from which several
features are extracted, e.g., vibrato presence, rate, extent,
coverage, high-frequency coverage, vibrato to non-vibrato
ratio and vibrato notes base frequency. Other approaches to
extract vibrato parameters were proposed, such as using fil-
ter diagonalization methods [101] or directly from the spec-
trogram using predefined vibrato templates [102].

4.6.6 Tremolo Metrics

Tremolo is a trembling effect, somewhat similar to vibrato
but regarding change of amplitude. Although, in the survey
presented in Section 3, we have not found any relations
between tremolo and emotion, we decided to extract a num-
ber of tremolo metrics, based on a tremolo detection algo-
rithm, similar to our vibrato detection approach [5]. There,
the sequence of pitch saliences of each note is used instead
of the F0 sequence, since tremolo represents a variation in
intensity or amplitude of the note. Several tremolo features
are extracted, e.g., tremolo presence, rate, extent, coverage,
and tremolo to non-tremolo ratio.

4.7 Texture Features

In this section we describe the audio features that capture
information primarily related with musical texture. To the
best of our knowledge, none of the features studied or
found in the analyzed audio frameworks are primarily
related with musical texture. As such, we have recently pro-
posed a set of novel musical texture features in [5], where
the sequence of multiple frequency estimates was employed
to measure the number of simultaneous layers in each frame
of the entire audio signal, leading to the features summa-
rized in Table 15 and described below.

4.7.1 Musical Layers Statistics

Panda et al. proposed musical layer statistics [5]. There, the
number of multiple F0s are estimated from each frame of

TABLE 14
Expressivity Features
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the song clip. The number of layers in a frame is defined
as the number of obtained multiple F0s in that frame. Then,
the 6 usual statistics regarding the distribution of the num-
ber of musical layers across frames were computed.

4.7.2 Musical Layers Distribution

Additionally, in [5] the number of F0 estimates in a given
frame is divided into four classes: i) no layers; ii) a single
layer; iii) two simultaneous layers; iv) and three or more
layers. The percentage of frames in each class is computed.

4.7.3 Ratio of Musical Layers Transitions

Panda et al. [5] proposed these features to capture informa-
tion about the changes from a specific musical layer
sequence to another. They employ the number of different
fundamental frequencies in each frame, identifying conse-
cutive frames with distinct values as transitions and nor-
malizing the total value by the length of the audio segment
(in secs). In addition, they also compute the length in sec-
onds of the longest segment for each musical layer.

4.8 Form Features

In this section we describe the audio features that capture
information primarily related with musical form. Extracting
musical form and structure information directly from the
audio signal is more difficult when compared to other lower
level features (e.g., spectral/timbral statistics). Thus, few
computational extractors are available today, as presented
in Table 16 and described below.

4.8.1 Structural Change

The amount of change of various underlying basis features
at different time intervals, combined into a meta-feature,
correlates with the human perception of complexity in
music [103]. The typical implementation uses chroma,
rhythm and timbre information and exclusively aims at dis-
covering the quantity of change, illustrating it with a visual
audio flower plot [103].

4.8.2 Similarity Matrix

Some approaches estimate musical structure based on the
similarity between adjacent segments or frames [65]. These
similarities are often represented using an inter-frame or
inter-segment similarity matrix, showing the differences
between all possible pairs of frames from the input audio
signal. The similarity matrix computation uses a specific set
of frame statistics (e.g., spectral features) and a distance
function, to calculate the proximity between each pair of
frames. As an example, the MIR Toolbox can use MFCCs,

key strength, tonal centroid, chromagram and others with
one of several distance functions.

4.8.3 Novelty Curve

Based on the specific musical characteristics of each seg-
ment or frame, obtained for instance with a similarity
matrix, a novelty curve can be obtained by comparing the
successive frames to estimate temporal changes in the song
[65]. In this novelty curve, implemented in the MIR Toolbox,
the probability of transitioning to a different state over time
is represented by the curve peaks.

4.8.4 Higher-Level (HL) Form Analysis

Modeling the fundamental aspects of musical sections in a
unified way to identify song elements such as intro, bridge
or chorus is still and open problem. Some of the most prom-
ising approaches apply higher-level solutions combining
low-level features, statistics and machine learning. These
include hierarchical semi-markov models [104], convex
non-negative matrix factorization, spectral clustering [105]
and deep learning [106].

4.9 Vocal Features

A few works have studied emotion in speaking and singing
voice [107], as well as the related acoustic features [108]. In
fact, “using singing voices alone may be effective for sepa-
rating the “calm” from the “sad” emotion, but this effective-
ness is lost when the voices are mixed with accompanying
music” and “source separation can effectively improve the
performance” [15].

To this end, Panda et al. [5] applied the singing voice sep-
aration approach proposed by Fan et al. [109] (although sep-
arating the singing voice from accompaniment in an audio
signal is still an open problem) and the Voice Analysis Tool-
kit, a “set of Matlab code for carrying out glottal source and
voice quality analysis”3 to extract the features summarized
in Table 17 and described below.

4.9.1 All Features From the Vocals Channel

Besides extracting features from the original audio signal,
Panda et al. [5] also extracted the previously described fea-
tures from the signal containing only the separated voice.

4.9.2 Voice and Unvoiced Statistics

In [5], the authors also proposed statistics related to the
amount of voiced and unvoiced sections in a song. These
include, among others, the number of voice segments, the
mean, maximum, minimum, standard deviation, kurtosis

TABLE 15
Texture Features

TABLE 16
Form Features

3. https://github.com/jckane/Voice_Analysis_Toolkit.
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and skewness of the duration of voice segments, as well as
the number of voice segments per second.

4.9.3 Creaky Voice Statistics

Panda et al. [5] computed statistics related with the presence
of creaky voice, “a phonation type involving a low fre-
quency and often highly irregular vocal fold vibration,
[which] has the potential [. . .] to indicate emotion” [110].

4.10 High-Level Features

Finally, frameworks such as the MIR Toolbox and Essentia
provide a few experimental higher-level features, related
with complex concepts such as emotion, genre or danceabil-
ity. Most, if not all, of these are predictors, combining classi-
fication algorithms and previously gathered data to label
the source audio files into a fixed set of tags. A summary of
these predictors is presented in Table 18 and listed below.

4.10.1 Emotion

The MIR Toolbox extracts an emotion descriptor based on
the analysis of the audio content of a given recording. The
output is given in two distinct paradigms: a categorical
approach comprising 5 emotions and a 3-dimensional space
composed of activity (energetic arousal), valence (pleasure-
displeasure continuum) and tension (tense arousal).

The classification process is based on the work by Eerola
et al. [111] and uses multiple linear regression with the 5
best performing predictors. Given its reliance on previously
established weights, this extractor is only reliable in the
MIR Toolbox version (v1.3) where it was initially
“calibrated”. Newer versions output “distorted results” [65].

The Essentia library implements a similar feature, classi-
fying songs in 4 distinct emotions. It contains pre-trained
models and requires the Gaia library to apply similarity
measures and classifications on the extracted features [67].

4.10.2 Classification-Based Features (Genre, etc.)

In a similar way to the emotion descriptor extractor (or pre-
dictor), Essentia also includes Gaia trained models for [67]:

� musical genre (using 4 different databases)
� ballroom music classification
� western / non-western music
� tonal / atonal
� danceability
� voice / instrumental
� gender (male / female singer)
� timbre classification
These musical descriptors work as a typical classification

problem, by extracting a set of features from the source
audio signals and feeding them to classification models
trained with them in other datasets.

The genre feature is particularly relevant for music emo-
tion recognition since some emotions are frequently associ-
ated with specific genres, as concluded by Laurier [4]. The
author used automatic genre classification to improve his
previous emotion classification results.

4.10.3 Danceability

As opposed to the aforementioned danceability extractor
built as a pre-trained classification model, Streich proposed
a low-level audio feature derived from Detrended Fluctua-
tion Analysis (DFA) to characterize audio signals in terms
of its danceability [112].

4.10.4 Dynamic Complexity

Streich also studied the automated estimation of the com-
plexity of music based on the musical audio signal, propos-
ing a set of complexity descriptors [112]. The proposed
algorithms focus on aspects of acoustics, rhythm, timbre,
and tonality. The Essentia library implements an extractor
to estimate dynamic complexity, or whether a song contains
a high dynamic range. This descriptor consists in the aver-
age absolute deviation from the global loudness level esti-
mate on the dB scale.

5 DISCUSSION AND RESEARCH DIRECTIONS

5.1 Feature Analysis Along Musical Dimensions

Table 19 presents the number of described features per
musical dimension.

As abovementioned, many of these features are frame-
level features, which are normally integrated using statisti-
cal moments. This increases the final number of descriptors
to several hundred [5] and is especially true for tone color
features, where some features divide the audio signal in
bands and output time-series data (e.g., MFCCs). As such,
and based on the figures in Table 19, we conclude that the
number of available audio features is very unbalanced

TABLE 17
Vocal features

TABLE 18
High-Level Features

TABLE 19
Number of Audio Descriptors Per Musical Dimension
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across musical dimensions. Musical texture, expressivity
and form are especially lacking, in contrast to tone color,
which is the most represented category, mostly due to the
large set of spectral features available (centroid, etc.). In [5],
we have contributed to reduce that imbalance by proposing
emotionally-relevant features, particularly for the expressiv-
ity and texture dimensions.

The low number of texture, form and expressivity fea-
tures is not a surprise. We believe this is caused by two
main reasons: i) on the one hand, the difficulty to create
robust algorithms to capture such music elements; ii) on the
other hand, the lack of music psychology studies on the
relations between emotion and those dimensions, which
could drive the creation of computational models.

Regarding the analysis of the importance of specific fea-
tures to emotion recognition, few studies have addressed this
issue in a systematicway, e.g., [5]. There, the conducted analy-
sis, based on Russell’s emotion quadrants [28], suggested that
tone color features (particularly spectral features) dominated
all quadrants, possibility due to their prevalence (as discussed
above). Nevertheless, texture features were in the top5 for
quadrant 2 (anxiety quadrant, or Q2) and proved relevant for
Q1 (happiness), as well, helping to improve the classification
performance of the proposed algorithm. Vibrato was also an
important feature forQ2.As forQ3 (depression), besides tonal
features, texture, inharmonicity and tremolo also proved rele-
vant, along with vocal features. Finally, dynamics, texture
and expressivity features (namely, vibrato) were important to
discriminate Q4 (contentment).

Besides the lack of texture, form and expressivity fea-
tures, “more features are needed to better discriminate Q3
from Q4, which musically share some common characteris-
tics such as lower tempo, less musical layers and energy,
use of glissandos and other expressive techniques” [5].
Thus, in the next section we discuss research directions to
advance the state-of-the-art in the creation of novel emo-
tionally-relevant features for each musical dimension.

5.2 Novel Audio Futures: Research Directions

5.2.1 Form

Regarding computational models of form complexity, we
are only aware of one work, which might work as a surro-
gate of musical complexity [103]. Higher-level features to
capture form types from audio are still missing and some
recent works have been attacking the problem with higher
level solutions, e.g., employing machine learning to identify
elements such as verse and chorus [104], [105], [106].

The impact of other elements of form on emotion, e.g., orga-
nizational levels (passage, piece, cycle) or song elements (intro-
duction, chorus, bridges, etc.), should be further researched by
themusic psychology community, despite a few computational
models found in the literature thatmight partially capture such
information (e.g., similaritymatrix and novelty curve).

5.2.2 Texture

The texture dimension, as abovementioned, requires further
music psychology studies to better understand how it influ-
ences emotion. Nevertheless, the features we proposed in
[5] proved relevant, namely the number of musical layers in
the recognition of happy music.

These features only approximate the actual number of
layers in a song, hence more advanced computational mod-
els are needed, probably requiring robust source separation
and instrument recognition in polyphonic music. This is an
active research problem (e.g., [113]), with great advances in
the last years due to the application of deep learning mod-
els, as is the case of the Spleeter library, able to perform vari-
ous types of separation (e.g., vocals, accompaniment,
drums, bass, and others) [114].

Tackling this problem would also serve the creation of
algorithms for the detection of texture types (monophonic,
homophonic, polyphonic) and density (thin, thick), for
which no computational models are known (see Table 15).

5.2.3 Expressivity

Regarding expressivity, the music psychology community
has offered important inputs to understand its impact on
emotion. Yet, despite our contributions with several articu-
lation (staccato and legato), glissando, vibrato and tremolo
metrics, this dimension still lacks computational models,
particularly for the detection of ornamentations other than
glissando and portamento (see Tables 6 and 14). Also, the
algorithms we proposed were only indirectly evaluated
through their impact on emotion classification, and so
ground truth data on those problems is needed.

5.2.4 Melody

As for the other musical dimensions, music psychology
researchers have provided a great amount of knowledge
that could be further exploited to create computational
models that capture such musical elements.

Starting with melody, most melodic elements are reason-
ably covered, as summarized in Table 9. However, features
for melodic intervals are still missing. Moreover, further
computational features related to melodic movement, direc-
tion and contour should be developed. As with many other
problems in Music Information Retrieval, problems such as
full or melody transcription are still open, which limits the
accuracy of current MER systems that rely on them. This
also applies to computational models of the dimensions dis-
cussed below (e.g., tonality and rhythm).

5.2.5 Harmony

As for harmony, all elements with emotional relevance have
computational features to capture them (Table 10): har-
monic perception (e.g., inharmonicity), tonality (e.g., tonal
centroid vector) and mode (e.g., modality).

5.2.6 Rhythm

Regarding rhythm, although most rhythmic elements are
reasonably covered this dimension is missing computa-
tional features that capture rest characteristics (Table 11).
Still, higher-level audio features that capture the types of
rhythm (regular, irregular, complex, fluent, etc.) are still
missing (see Tables 3 and 11).

5.2.7 Dynamics

As for dynamics, all elements have associated features
(Table 12). Still, computational models to detect the types of
dynamic levels (forte, piano, etc.) would be beneficial.
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5.2.8 Tone Color

The tone color dimension is also reasonably well covered,
particularly regarding spectral characteristics (see Table 13).
Still, as with musical texture, tone color would also benefit
from accurate instrument recognition in polyphonic context.
Moreover, this dimension would also benefit from higher-
level features on the types of amplitude envelope (e.g.,
round, sharp).

5.2.9 Vocal Features

As for vocal features, with the recent advances in areas such
as source separation, as previously described, new paths
should be explored. For instance, additional features that
proved useful for speech emotion should be taken into con-
sideration [16]. Moreover, the idea can be extended, e.g., by
further separating the accompaniment and analyzing each
layer in isolation, since they may sometimes carry different
emotional information [15]. This can be complemented with
genre or even lyrical information (natural language process-
ing) and integrated with a meta-classifier.

5.3 Deep Learning Perspectives

Finally, besides the classical handcrafted feature engineer-
ing approach, deep learning/feature learning techniques
have attracted great attention in the last years. The most
notable example is the resurgence of neural network techni-
ques, specifically deep learning, to a myriad of problems,
fueled by the improvements in computer processing (e.g.,
using graphic processing units). Several MER studies have
already employed techniques such as convolutional and
recurrent neural networks [10].

Despite (so far) slight improvements in classification
accuracy, such approaches raise several points that must be
considered. First, to fully exploit the potential of deep learn-
ing solutions, massive amounts of good quality data are
required. Unfortunately, the creation of large MER datasets
have been known to be problematic due to the associated
subjectivity and complexity of data collection [5]. Hence,
strategies to obtain sizeable and good quality data for audio
MER are a key need.

Also, deep learning models are opaque in the sense
that the extracted features are often difficult to interpret,
which hinders the possibility to acquire novel knowledge
regarding the relations between emotions and the
extracted features. In fact, “although deep neural net-
works have exhibited superior performance in various
tasks, interpretability is always [the] Achilles’ heel” of
such approaches, despite a few efforts to address it, as
surveyed in [115]. Hence, interpretability issues in deep
neural networks are another important problem to tackle
in the future.

5.4 Audio-Based Symbolic Features

As discussed, some approaches bridge the audio and the
symbolic MER domains by integrating an audio transcrip-
tion step into the feature extraction stage. Hence, the
approached followed in [5] can be further exploited by inte-
grating symbolic (MIDI) features available in several frame-
works, e.g., MIDI Toolbox or jSymbolic [2].

6 CONCLUSION

This article offered a comprehensive review of the current
emotionally-relevant computational audio features. Unlike
previous broad MER surveys, this review offered a deep
and specific review on that key MER problem.

This survey was supported by the music psychology lit-
erature on the relations between eight musical dimensions
(melody, harmony, rhythm, dynamics, tone color, expres-
sivity, texture and form) and specific emotions. From this
review, we concluded that computational audio features
able to capture elements of musical form, texture and
expressivity are especially needed to break the current glass
ceiling in MER, as shown in [5]. Moreover, the development
of such computational tools would benefit from further
music psychology studies, particularly regarding the actual
impact of musical form and texture on emotion. We believe
this article opens several research lines to expand the state-
of-the-art on Music Emotion Recognition.
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