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Abstract

Let Xn, n ∈ IN , be a sequence of associated variables with common density function. We
study the kernel estimation of this density, based on the given sequence of variables. Sufficient
conditions are given for the consistency and asymptotic normality of the kernel estimator. The
assumptions made require that the distribution of pairs (Xi,Xj) decompose as the sum of an
absolutely continuous measure with another measure concentrated on the diagonal of IR × IR
satisfying a further absolute continuity with respect to the Lebesgue measure on this diagonal.
For the convergence in probability we find the usual convergence rate on the bandwidth, whereas
for the almost sure convergence we need to require that the bandwidth does not decrease to fast
and that the kernel is of bounded variation. This assumption on the kernel is also required for
the asymptotic normality, together with a slightly strengthened version of the usual decrease
rate on the bandwidth. The assumption of bounded variation on the kernel is needed as a
consequence of the dependence structure we are dealing with, as association is only preserved
by monotone transformations.

1 Introduction

The estimation of the density of random variables or random vectors is a quite classical statistical
problem for which there exists a well established theory and a very wide literature. There are several
methods proposed and we will be here interested in the nonparametric approach. Naturally, the
problem was first studied supposing that the data collected satisfied an independence assumption.
A nice account of results and existing literature is given in Bosq and Lecoutre [6]. Eventually
the same problem was treated for depend sampling, considering mixing samples as in Roussas
[18], Pham and Tran [17] or Masry [14] (see the monograph Bosq [5] for existing literature and a
presentation of the asymptotic properties of the kernel estimator). More recently there was some
interest in considering data satisfying a positive dependence assumption, namely supposing the data
to be associated. For this dependence structure Bagai and Prakasa Rao [1, 2] and Roussas [19]
established the consistency of the kernel estimator for the density while Dewan and Prakasa Rao
[7] proved an uniform exponential rate of convergence supposing a convenient decrease rate on the
covariances of the variables. This last reference deals with a general estimator that includes both
the kernel and the histogram estimator, among others, although the conditions imposed essentially
exclude the histogram from their results. The asymptotic normality, for the kernel estimator, was
established in Roussas [20]. We note that in Roussas [20], besides some more or less usual conditions
on the covariance structure of the data (which is a natural way of controlling the dependence for
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associated variables, as it follows from Theorem 10 in Newman [15]), it is supposed that the pairs
of random variables are absolutely continuous, while in this article we will suppose the distribution
of these pairs of variables to have some mass concentrated on the diagonal of IR×IR. This property
appears in simple models of associated random variables.

The assumptions we will make are suggested by a point process approach to estimation problems.
This approach consisted on defining convenient point processes or random measures ξ and η with
mean measures such that IEξ � IEη and then estimate the Radon-Nikodym derivative dIEξ

dIEη . This
Radon-Nikodym derivative may be conveniently interpreted representing, for a suitable choice of
ξ and η, the density we want to estimate. We may estimate this Radon-Nikodym derivative using
histograms or kernels and this correspond to the usual estimators defined in the classical framework.
A point process approach to density estimation was first used in Ellis [8] in a context that was
slightly different from ours. For an approach corresponding to the one that has directly influenced
this article there exists some literature available: for independent sampling, Jacob and Oliveira [11]
considered the histogram, while Jacob and Oliveira [12] considered the kernel; for strong mixing
sampling, Bensäıd and Fabre [3] studied the kernel and Bensäıd and Oliveira [4] the histogram;
for associated sampling, Ferrieux [10] treated the kernel estimator and Jacob and Oliveira [13] the
histogram. In all these references it is supposed that one samples the point processes themselves,
that is, a sample is a collection of possible realizations of the point processes. This is, in fact,
equivalent to the usual sampling in density estimation, as well as in other models that may be
included in this point process approach, as explained in those references. We refer the interested
reader to Jacob and Oliveira [11, 12, 13] for more details on how the point process approach models
some more classical estimation problems. Now, while independence or strong mixing of the sampled
point processes corresponds to independence or strong mixing of the underlying variables (the ones
that define the points), the same is not true for association. In fact, as noted by Ferrieux [10] and
Jacob and Oliveira [13] association of point processes seems to have no relation with association of
the underlying variables, thus the results in Ferrieux [10] or Jacob and Oliveira [13] do not overlap
with those in Bagai and Prakasa Rao [1, 2], Roussas [19, 20], Dewan and Prakasa Rao [7]. To be a
little more precise, a random variable is always associated with itself while the point process with
just one point defined by this random variable is associated (as point process) with itself only in
degenerate cases. This is due to the fact that the order defined in the space of discrete measures is
only a partial order. Thus, the idea of approaching the same problem as in Jacob and Oliveira [13],
but supposing instead that the points are associated. Several proofs in Jacob and Oliveira [13] are
no longer valid in the new context. Moreover, the assumptions used there make little sense in the
framework we are placing ourselves throughout this article. When dealing with point processes we
are lead to the control of second order moment measures, which are defined on the product of the
base space by itself, and it becomes natural to suppose that those measures may decomposed as
the sum of an absolutely continuous measure with a measure which is concentrated on the diagonal
of the product space. When regarding this decomposition in terms of the distribution of a pair of
random variables this means that there is some probability concentrated on the diagonal, so there is
no absolute continuity with respect to the product measure if this measure is, for example, diffuse.
The need for such a decomposition appeared even when dealing with independent sampling of point
processes. In fact, this sort of decomposition was first used in Jacob and Oliveira [11] and later
adapted to dependent sampling in Ferrieux [10], Bensäıd and Fabre [3], Jacob and Oliveira [13]
and Bensäıd and Oliveira [4]. The conditions we will use here are suggested by this point process
approach but we will try to keep the language on the usual level, thus avoiding the use of point
processes as much as possible. Further, this article will concentrate on the kernel estimator. The
same approached may be used to find conditions for similar results for the histogram.
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2 Definitions, assumptions and preliminaries

Let X1, X2, . . . be an associated sequence of random variables with the same distribution as X for
which there exists a density function f . Let K be a fixed probability density and hn a sequence of
real numbers converging to zero. The kernel estimator of the density function f is defined as

f̂n(x) =
1

nhn

n∑
j=1

K

(
x − Xj

hn

)
.

This estimator is well known to be asymptotically unbiased if there exists a suitable version of the
density, as a consequence of the Bochner’s Lemma.

LEMMA 2.1. If f is bounded and continuous then IE(f̂n(x)) −→ f(x) uniformly on any compact
set.

This means also that, in order to establish the convergence of f̂n(x), it is enough to prove that
f̂n(x) − IEf̂n(x) −→ 0 in the appropriate mode of convergence.

Let us now present the assumptions we will suppose throughout this article. On what follows
λ∗ represents the Lebesgue measure on the diagonal Δ of IR × IR, and λ2 represents the Lebesgue
measure on IR2.

(D)

• For each j, k ∈ IN , the distribution of (Xj , Xk) is the sum of a measure m1,j,k on
IR × IR \ Δ with a measure m2,j,k on Δ, such that m1,j,k � λ2 and m2,j,k � λ∗;

• For each j, k ∈ IN , there exists a bounded version g1,j,k of dm1,j,k

dλ2 ;

• For each j, k ∈ IN , there exists a bounded and continuous version g2,j,k of dm2,j,k

dλ∗ .

Note that we allow the pairs to have some mass concentrated on the diagonal, thus they need
not to be absolutely continuous with respect to λ2, as it was supposed in Roussas [20]. A simple
example where this property is required arises from a method used to construct sequences of
associated variables from an independent sequence of variables, as described next. Suppose that
Zn, n ∈ IN , are independent and identically distributed absolutely continuous random variables.
Let m be some fixed integer and define, for each n ∈ IN , Xn = min(Zn, · · · , Zn+m). The variables
Xn, n ∈ IN , are associated, have a common absolutely continuous distribution but the random
pairs (Xn, Xn+j), j = 0, . . . , m, are not absolutely continuous. Nevertheless their distribution
decomposes according to (D).

In order to prove the convergence results we will need some control on Radon-Nikodym deriva-
tives introduced in the previous condition.

(A)

Suppose (D) is satisfied and

• 1
n

n∑
j,k=1

|g1,j,k(x, y) − f(x)f(y)| converges uniformly to a bounded function g1;

• 1
n

n∑
j,k=1

g2,j,k(x, x) converges uniformly to a bounded and continuous function g2.
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Remark that, if the variables X1, X2, . . . are strictly stationary, it is easy to check that

1
n

n∑
j,k=1

|g1,j,k − f ⊗ f | ≤
n−1∑
j=0

|g1,1,j − f ⊗ f |

and analogously for the other summation in (A). Then, as in Bensäıd and Fabre [3] or Bensäıd
and Oliveira [4], it is enough to assume the convergence of the upper bounds.

The main tool for proving convergence is stated in the following lemma.

LEMMA 2.2. Suppose (D) and (A) are satisfied. If the kernel K is bounded then

1
nhn

n∑
j,k=1

Cov
(

K

(
x − Xj

hn

)
, K

(
x − Xk

hn

))
−→ g2(x, x)

∫
K2(u) du

uniformly on any compact set.
Proof. Write

1
hn

Cov
(

K

(
x − Xj

hn

)
, K

(
x − Xk

hn

))
=

(1)

=
1
hn

∫
IR2

K

(
x − u

hn

)
K

(
x − v

hn

)(
g1,j,k(u, v) − f(u)f(v)

)
dudv +

1
hn

∫
Δ

K2

(
x − u

hn

)
g2,j,k du.

Now the first integral in (1) is bounded above by∫
IR2

K

(
x − u

hn

)
K

(
x − v

hn

)
|g1,j,k(u, v) − f(u)f(v)| dudv,

so that, for n ∈ IN large enough

1
nhn

n∑
j,k=1

∫
IR2

K

(
x − u

hn

)
K

(
x − v

hn

)(
g1,j,k(u, v) − f(u)f(v)

)
dudv ≤

≤ 2hn
1
h2

n

∫
IR2

K

(
x − u

hn

)
K

(
x − v

hn

)
g1(u, v) dudv ≤ 2hn sup

u,v
|g1(u, v)| −→ 0,

as hn −→ 0. For the second integral in (1), it leads to

1
hn

∫
Δ

K2

(
x − u

hn

)
1
n

n∑
j,k=1

g2,j,k(u, u) du −→ g2(x, x)
∫

K2(u) du

using the Bochner’s Lemma after renormalizing K2 to find a density. �
Note that the limit obtained in this lemma is exactly the diagonal density. So, if we had

supposed the absolute continuity of the random pairs (Xj , Xk) this limit would have been zero. As
this term appears when dealing with the convergence of the estimator, if it converges to zero most
of the convergences would follow with relaxed assumptions on the bandwidth sequence hn.
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3 Convergence of the estimator

In this section we state conditions for convergence in probability and almost surely of f̂n(x).

THEOREM 3.1. Suppose (D) and (A) are satisfied. If the kernel K is bounded and

nhn −→ +∞ (2)

then f̂n(x) converges in probability to f(x), for every x ∈ IR.
Proof. As

IP
(∣∣∣f̂n(x) − IE(f̂n(x))

∣∣∣ > ε
)
≤ 1

ε2nhn

1
nhn

n∑
j,k=1

Cov
(

K

(
x − Xj

hn

)
, K

(
x − Xk

hn

))
the theorem follows immediately taking account of Lemmas 2.1 and 2.2. �

The almost sure convergence requires some further assumptions on the kernel K and on the
bandwidth sequence. This is due to the fact that the variables K

(
x−Xj

hn

)
are, in general, not

associated. In order to keep the association we should apply only monotone transformations to the
original variables, which is not the case with a general kernel. This may resolved supposing the
kernel K to be of bounded variation. There are some additional technical assumptions required by
the method of proof, which follows closely the proof of Theorem 2.7.1 in Ferrieux [9].

THEOREM 3.2. Suppose (D) and (A) are satisfied, K is of bounded variation such that K(αx),
for fixed x ∈ IR, is a decreasing function of α > 0, and

hn ↘ 0,
∞∑

n=1

1
n2hn2

< ∞,
h(n+1)2

hn2

−→ 1.

Then f̂n(x) converges almost surely to f(x), for every x ∈ IR.
Proof. We first check that the subsequence corresponding to terms of order n2 converges al-

most surely. This is immediate consequence of the Borel-Cantelli Lemma, Lemma 2.2 and the
assumptions made, as

IP
(∣∣∣f̂n2(x) − IE(f̂n2(x))

∣∣∣ > ε
)
≤ 1

ε2n2hn2

1
n2hn2

n2∑
j,k=1

Cov
(

K

(
x − Xj

hn2

)
, K

(
x − Xk

hn2

))
.

For the remaining terms we write, for an integer k ∈ (n2, (n + 1)2],∣∣∣(f̂k(x) − IEf̂k(x)
)
−

(
f̂n2(x) − IEf̂n2(x)

)∣∣∣ ≤
≤ 1

n2
max

n2<k≤(n+1)2

∣∣∣∣∣ 1
hk

k∑
j=1

[
K

(
x − Xj

hk

)
−IE K

(
x − Xj

hk

)]

− 1
hn2

n2∑
j=1

[
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]∣∣∣∣∣ +

+
1

n2hn2

∣∣∣∣∣∣
n2∑

j=1

[
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]∣∣∣∣∣∣ ,
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thus leaving the first term to be treated. Now

1
hk

k∑
j=1

[
K

(
x − Xj

hk

)
−IE K

(
x − Xj

hk

)]
− 1

hn2

n2∑
j=1

[
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]
=

=
k∑

j=1

(
1
hk

− 1
hn2

) [
K

(
x − Xj

hk

)
−IE K

(
x − Xj

hk

)]
+

+
k∑

j=1

1
hn2

([
K

(
x − Xj

hk

)
−IE K

(
x − Xj

hk

)]
−

[
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)])
+

+
k∑

j=n2+1

1
hn2

[
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]
.

Let us denote the maximum over k ∈ (n2, (n + 1)2] of each of the three preceding terms by an, bn

and cn, respectively. The almost sure convergence to zero of an
n2 , bn

n2 and cn
n2 , that concludes the

proof of the theorem, is proved in the following lemmas. �
LEMMA 3.3. Under the assumptions of Theorem 3.2,

an

n2
−→ 0 almost surely.

Proof. As hn is decreasing and using the decreasing assumption on the kernel, it follows that

0 ≤
(

1
hk

− 1
hn2

)
K

(
x − u

hk

)
≤

(
1

h(n+1)2
− 1

hn2

)
K

(
x − u

hn2

)
.

Now, for every k ∈ (n2, (n + 1)2],∣∣∣∣∣∣
k∑

j=1

(
1
hk

− 1
hn2

) [
K

(
x − Xj

hk

)
−IE K

(
x − Xj

hk

)]∣∣∣∣∣∣ ≤
(3)

≤ 1
n2

(n+1)2∑
j=1

(
1

h(n+1)2
− 1

hn2

) [
K

(
x − Xj

hn2

)
+IE K

(
x − Xj

hn2

)]
.

Let us first look at the terms with the mathematical expectation. On one side we have

1
n2h(n+1)2

(n+1)2∑
j=1

IE K

(
x − Xj

hn2

)
=

(n + 1)2

n2

hn2

h(n+1)2

1
hn2

IE K

(
x − X

hn2

)
−→ f(x)

using Lemma 2.1. Analogously, it follows

1
n2hn2

(n+1)2∑
j=1

IE K

(
x − Xj

hn2

)
−→ f(x).
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Thus, in (3) the terms corresponding to the mathematical expectations converge to zero. This
allows replacing the sign + on the right hand side of (3) by a sign - as, given δ > 0, for n large
enough, the right hand side in (3) becomes smaller than

1
n2

(n+1)2∑
j=1

(
1

h(n+1)2
− 1

hn2

) [
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]
+ δ,

and it is enough to verify that this term converges almost surely to zero. Like this, Chebyshev’s
inequality gives an upper bound with a variance term: for any ε > 0,

IP

⎛⎝ 1
n2

∣∣∣∣∣∣
(n+1)2∑

j=1

(
1

h(n+1)2
− 1

hn2

) [
K

(
x − Xj

hn2

)
−IE K

(
x − Xj

hn2

)]∣∣∣∣∣∣ > ε

⎞⎠ ≤

≤ 1
ε2n2

(
1

h(n+1)2
− 1

hn2

)2 (n+1)2∑
j,j′=1

Cov
(

K

(
x − Xj

hn2

)
, K

(
x − Xj′

hn2

))
=

=
1

ε2n2

(
hn2

h(n+1)2
− 1

)2
1

n2hn2

(n+1)2∑
j,j′=1

Cov
(

K

(
x − Xj

hn2

)
, K

(
x − Xj′

hn2

))
,

which defines a convergent series, taking account of Lemma 2.2 and the assumptions made on the
bandwidth sequence. �
LEMMA 3.4. Under the assumptions of Theorem 3.2,

bn

n2
−→ 0 almost surely.

Proof. Using the decreasing assumption on the kernel, it follows that, for every k ∈ (n2, (n+1)2],

|bn|
n2

≤ 1
n2hn2

(n+1)2∑
j=1

([
K

(
x − Xj

hn2

)
+IE K

(
x − Xj

hn2

)]
−

[
K

(
x − Xj

h(n+1)2

)
+IE K

(
x − Xj

h(n+1)2

)])
.

As in the previous lemma, it is easy to check that the terms with the mathematical expectations
cancel each other in the limit. So, we are left with checking the almost sure convergence to zero of

1
n2hn2

(n+1)2∑
j=1

[
K

(
x − Xj

hn2

)
−K

(
x − Xj

h(n+1)2

)]
.

Given ε > 0,

IP

⎛⎝ 1
n2hn2

∣∣∣∣∣∣
(n+1)2∑

j=1

[
K

(
x − Xj

hn2

)
−K

(
x − Xj

h(n+1)2

)]∣∣∣∣∣∣ > ε

⎞⎠ ≤

≤ 1
εn4h2

n2

(n+1)2∑
j,j′=1

Cov

(
K

(
x − Xj

hn2

)
−K

(
x − Xj

h(n+1)2

)
, K

(
x − Xj′

hn2

)
−K

(
x − Xj′

h(n+1)2

))
.
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Using Lemma 2.1 and
h(n+1)2

hn2
−→ 1, it follows that the sum of these covariances, divided by n2hn2 is

convergent (to 4g2(x, x)
∫

K2(u) du). As there remains the term 1
n4h2

n2
we have in fact a convergent

series defined by the probabilities. �
Notice that the association and the fact that K is of bounded variation has not yet been used.

These assumptions are required to prove the almost sure convergence of the remaining term.

LEMMA 3.5. Under the assumptions of Theorem 3.2,
cn

n2
−→ 0 almost surely.

Proof. Write K = K1 − K2, with K1, K2 increasing functions. The variables K1

(
x−Xj

hn2

)
, j =

1, 2, . . ., being monotone transformations of associated variables, are associated. Then, we may
apply the generalization of Kolmogorov’s inequality for associated variables proved by Newman
and Wright [16], to obtain that, given ε > 0,

IP

⎛⎝ 1
n2

max
n2<k≤(n+1)2

∣∣∣∣∣∣
k∑

j=n2+1

[
K1

(
x − Xj

hn2

)
−IE K1

(
x − Xj

hn2

)]∣∣∣∣∣∣ > ε

⎞⎠ ≤

≤ 2
ε2n4h2

n2

(n+1)2∑
j,j′=n2+1

Cov
(

K1

(
x − Xj

hn2

)
, K1

(
x − Xj′

hn2

))
.

Using the association this sum is bounded above by the sum with j, j′ ranging from 1 to (n + 1)2

and then the proof is completed repeating the arguments of the two previous lemmas. The terms
corresponding to K2 are treated analogously. �
4 Asymptotic normality of the estimator

We now look at the asymptotic normality of the kernel estimator. We will prove the asymptotic
normality under conditions similar to those of Theorem 4.2 in Jacob and Oliveira [13], which is
somewhat weaker than second order stationarity. As the proof is quite long and technical we will
divide it into several lemmas that will be put together at the end of the section to state the general
result. For the remaining of the section let k be an integer smaller than n and m = 	n

k 
 the greatest
integer less or equal than n/k. Let us further define the random variables

Tn,i =
1√
hn

(
K

(
x − Xi

hn

)
−IE K

(
x − Xi

hn

))
i = 1, . . . , n, n ∈ IN

Tn =
1√
n

n∑
i=1

Tn,i, and Yn,j =
1√
k

jk∑
l=(j−1)k+1

Tn,l, j = 1, . . . , m.

Note that Tmk = 1√
m

∑m
j=1 Ymk,j = 1√

mk

∑mk
i=1 Tmk,i. The first lemma describes the behaviour of

the variances and is just a restating of Lemma 2.2.

LEMMA 4.1. Suppose (D) and (A) are satisfied. Then

σ2
mk = Var(Tmk) −→ g2(x, x)

∫
K2(u) du.
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This first step towards the asymptotic normality is proving that it is enough to look at those
values of n that are multiples of k.

LEMMA 4.2. Suppose (D) and (A) are satisfied. Let k be fixed and suppose further that

hn −→ 0,
hn+1

hn
−→ 1,

K is bounded and lim
|u|−→∞

K(u) = 0.

Then ∣∣IEeiuTn − IEeiuTmk
∣∣ −→ 0.

Proof. As
∣∣IEeiuTn − IEeiuTmk

∣∣ ≤ |u|Var1/2(Tn − Tmk) it is enough to prove the convergence to
zero of this variance. Now we write

Var1/2(Tn − Tmk) ≤ Var1/2

⎡⎣ 1√
n

mk∑
j=1

(Tn,j − Tmk,j)

⎤⎦ +

(4)

+Var1/2

⎡⎣(
1√
mk

− 1√
n

) mk∑
j=1

Tmk,j

⎤⎦ + Var1/2

⎡⎣ 1√
n

n∑
j=mk+1

Tn,j

⎤⎦ ,

and prove that each of these terms converges to zero. As for the first term

1
n

Var

⎡⎣ mk∑
j=1

(Tn,j − Tmk,j)

⎤⎦ =

=
1
n

mk∑
j,j′=1

[
Cov

(
1√
hn

K

(
x − Xj

hn

)
,

1√
hn

K

(
x − Xj′

hn

))

−Cov

(
1√
hn

K

(
x − Xj

hn

)
,

1√
hmk

K

(
x − Xj′

hmk

))

−Cov

(
1√
hmk

K

(
x − Xj

hmk

)
,

1√
hn

K

(
x − Xj′

hn

))

+ Cov

(
1√
hmk

K

(
x − Xj

hmk

)
,

1√
hmk

K

(
x − Xj′

hmk

))]
.

From Lemma 2.2, as n
mk −→ 1, it follows that the summation over the first and last terms of this

expansion is convergent to 2g2(x, x)
∫

K2(u) du. The remaining terms are of the form

1
n

mk∑
j,j′=1

1√
hnhmk

(∫
K

(
x − u

hn

)
K

(
x − v

hmk

)
(g1,j,j′ − f ⊗ f) dudv+

+
∫

K

(
x − u

hn

)
K

(
x − u

hmk

)
g2,j,j′(u, u) du

)
.

9



The part corresponding to the first integral converges to zero as it is easily checked reproducing
the arguments in the proof of Lemma 2.2. As for the second integral, rewrite it as

1
n

√
hn

hmk

mk∑
j,j′=1

∫
K(z)K

(
z

hn

hmk

)
g2,j,j′(x − hnz, x − hnz) dz,

which, by the Lebesgue Dominated Convergence Theorem, (D) and the assumption hn+1

hn
−→ 1,

converges to g2(x, x)
∫

K2(u) du. So, it follows that

1
n

Var

⎡⎣ mk∑
j=1

(Tn,j − Tmk,j)

⎤⎦ −→ 0.

The second term in (4) may be rewritten as

(
1√
mk

− 1√
n

)2

Var

⎡⎣ mk∑
j=1

Tmk,j

⎤⎦ =

(
1 −

√
mk√
n

)2
1

mkhmk

mk∑
j,j′=1

Cov
(

K

(
x − Xj

hmk

)
, K

(
x − Xj′

hmk

))

As
(
1 −

√
mk√
n

)
−→ 0, the convergence to zero of this term follows from Lemma 2.2. Finally, for the

third term in (4):

1
n

Var

⎡⎣ n∑
j=mk+1

Tn,j

⎤⎦ =

=
1

nhn

n∑
j,j′=mk+1

∣∣∣∣Cov
(

K

(
x − Xj

hn

)
, K

(
x − Xj′

hn

))∣∣∣∣ ≤
≤ 1

nhn

n∑
j,j′=1

(∫
IR2

K

(
x − u

hn

)
K

(
x − v

hn

) ∣∣g1,j,j′(u, v) − f(u)f(v)
∣∣ dudv +

+
∫

Δ
K2

(
x − u

hn

)
g2,j,j′(u, u) du

)
,

which converges to zero due to the nonnegativity of the terms and hn+1

hn
−→ 1. �

The variables Tmk are the sum of m−1/2Ymk,1, . . . , m
−1/2Ymk,m, thus we need to prove a Central

Limit Theorem for this sum. Note that the variables Ymk,j , j = 1, . . . , m, are not associated as
they are not obtained by monotone transformations of the variables Xj , j ∈ IN . Thus, in order to
be able to use this association, we need, as before, some extra assumption on the kernel: we will
suppose K to be of bounded variation. This means that K = K1 −K2 with K1 and K2 monotone
functions. Corresponding to these two functions we define, for each n ∈ IN the analogous of the
auxiliary variables introducing in this section:

Tn,i,q =
1√
hn

(
Kq

(
x − Xi

hn

)
−IE Kq

(
x − Xi

hn

))
, q = 1, 2, i = 1, . . . , n,

Yn,j,q = 1√
k

∑jk
l=(j−1)k+1 Tn,l,q, q = 1, 2, j = 1, . . . , m.
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Remark that Lemma 2.2 is still applicable when replacing K by any of the functions K1 or K2

obtaining, evidently, a different normalization on the limit.
First we control the difference between the situation we are dealing with and what we would

find if the variables were independent.

LEMMA 4.3. Suppose (D) and (A) are satisfied. Suppose the kernel K is of bounded variation
with K1 and K2 being bounded. If, for each k fixed,

lim
m→+∞

1
m

m∑
j=1

jk∑
l,l′=(j−1)k+1

g2,l,l′ = g2,k (5)

uniformly, where g2,k is bounded and continuous, then

lim sup
m→+∞

∣∣∣∣∣∣IEeiuTmk −
m∏

j=1

IEe
i u√

m
Ymk,j

∣∣∣∣∣∣ ≤ Mu2(g2(x, x) − g2,k(x, x)),

where M =
∫

K2
1 (u) + K2

2 (u) + 2K1(u)K2(u) du.
Proof. As the variables Ymk,j , j = 1, . . . , m, are not associated but, nevertheless, functions of

associated variables, we apply the extended version of Newman’s inequality (see Theorem 16 in
Newman [15]) to obtain∣∣∣∣∣∣IEeiuTmk −

m∏
j=1

IEe
i u√

m
Ymk,j

∣∣∣∣∣∣ ≤ u2

2m

m∑
j,j′=1
j �=j′

Cov(Ymk,j,1 + Ymk,j,2, Ymk,j′,1 + Ymk,j′,2).

After expanding this covariance, we find four terms which are controlled in the same way as the
following one:

1
m

m∑
j,j′=1
j �=j′

Cov(Ymk,j,1, Ymk,j′,1) =
1
m

m∑
j,j′=1

Cov(Ymk,j,1, Ymk,j′,1) − 1
m

m∑
j=1

Var(Ymk,j,1).

From Lemma 2.2, it follows that

1
m

m∑
j,j′=1

Cov(Ymk,j,1, Ymk,j′,1) −→ g2(x, x)
∫

K2
1 (u) du.

As for the other term,

1
m

m∑
j=1

Var(Ymk,j,1) =
1

mk

m∑
j,j′=1

Cov(Ymk,j,1, Ymk,j′,1) −→ g2,k(x, x)
∫

K2
1 (u) du

reproducing the arguments in the proof of Lemma 2.2. So the lemma is proved. �
Note that, if the variables Xn, n ∈ IN , are second order stationary, condition (5) is satisfied.
The next step towards the proof of the asymptotic normality of the estimator is to prove

a Central Limit Theorem for the variables Ymk,j , j = 1, . . . , m, treating them as if they where
independent, in view of the preceding lemma (in fact we should introduce a new collection of
independent variables with the same distributions as the ones we have; we shall not do so to avoid
further notation).

11



LEMMA 4.4. Suppose (D), (A), (2) and (5) are satisfied. If, for any constant c > 0,∫
{K2

(
x−X
hn

)
>cnhn}

1
hn

K2

(
x − X

hn

)
IP −→ 0, (6)

then m−1/2
∑m

j=1 Ymk,j converges in distribution to a centered gaussian random variable with co-
variance g2,k(x, x)

∫
K2(u) du.

Proof. As before, it is easy to check that

1
m

Var

⎡⎣ m∑
j=1

Ymk,j

⎤⎦ −→ g2,k(x, x)
∫

K2(u) du,

so that the Lindeberg condition reduces to verifying

m∑
j=1

∫
{|Ymk,j|>cg2,k(x,x)

√
m}

1
m

Y 2
mk,j IP −→ 0.

This integral is, using Lemma 4 in Utev [21], bounded above by

2
m

m∑
j=1

jk∑
l=(j−1)k+1

∫
{|Tmk,l|> cg2,k(x,x)

2

√
m
k
}
T 2

mk,l IP =
2
m

mk∑
j=1

∫
{|Tmk,j|> cg2,k(x,x)

2

√
m
k
}
T 2

mk,j IP

and this sum converges to zero using a Cesàro argument and (6) (see Theorem 10 in Jacob and
Oliveira [12] for the computational details). �

It remains now to gather all the partial results to find a set of conditions ensuring the asymptotic
normality of the kernel estimator, as announced earlier. Given a real number v, we define σ2(v) =
v

∫
K2(u) du.

THEOREM 4.5. Suppose (D), (A) and (5)are satisfied. If

hn −→ 0, nhn −→ +∞,
hn+1

hn
−→ 1,

K is of bounded variation, with K1, K2 bounded

lim
|u|→+∞

K(u) = 0

and
lim

k→+∞
g2,k = g2 (7)

uniformly, where the functions g2,k are those introduced in (5), then

1√
nhn

n∑
i=1

(
K

(
x − Xi

hn

)
−IE K

(
x − Xi

hn

))
converges in distribution to a centered gaussian random variable with covariance σ2(g2(x, x)) =
g2(x, x)

∫
K2(u) du.
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Proof. Write∣∣∣∣IEeiuTn − e−
u2

2
σ2(g2(x,x))

∣∣∣∣ ≤
≤ ∣∣IEeiuTn − IEeiuTmk

∣∣ +

∣∣∣∣∣∣IEeiuTmk −
m∏

j=1

IEe
i u√

m
Ymk,j

∣∣∣∣∣∣ +

+

∣∣∣∣∣∣
m∏

j=1

IEe
i u√

m
Ymk,j − e−

u2

2
σ2(g2,k(x,x))

∣∣∣∣∣∣ +
∣∣∣∣e−u2

2
σ2(g2,k(x,x)) − e−

u2

2
σ2(g2(x,x))

∣∣∣∣ .

For each k fixed, it follows from the preceding lemmas that (note that, as K is bounded and
nhn −→ +∞, condition (6) is satisfied, for n ∈ IN large enough),

lim sup
n→+∞

∣∣∣∣IEeiuTn − e−
u2

2
σ2(g2(x,x))

∣∣∣∣ ≤ Mu2(g2(x, x)− g2,k(x, x)) +
∣∣∣∣e−u2

2
σ2(g2,k(x,x)) − e−

u2

2
σ2(g2(x,x))

∣∣∣∣ ,

where M is defined in Lemma 4.3. Letting now k −→ +∞ this upper bound converges to zero,
according to (7). �

It is not difficult to adapt the previous proof to a multidimensional version. This will not be
done here for sake of brevity, but we will state, nevertheless, the result.

THEOREM 4.6. Suppose all the conditions of the previous theorem are satisfied. Then, given,
x1, . . . , xs ∈ IR,

1√
nhn

n∑
i=1

(
K

(
x1 − Xi

hn

)
−IE K

(
x1 − Xi

hn

)
, . . . , K

(
xs − Xi

hn

)
−IE K

(
xs − Xi

hn

))
converges in distribution toa centered gaussian random vector with diagonal covariance matrix Γ =
diag(σ2(g2(x1, x1)), . . . , σ2(g2(xs, xs))).
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