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José Maria Simões[0000−0002−6916−3217], Nuno Lourenço[0000−0002−2154−0642],
and Penousal Machado[0000−0002−6308−6484]

CISUC, Department of Informatics Engineering, University of Coimbra
Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

josecs@student.dei.uc.pt and {naml,machado}@dei.uc.pt

Abstract. Maintaining genetic diversity as a means to avoid premature
convergence is critical in Genetic Programming. Several approaches have
been proposed to achieve this, with some focusing on the mating phase
from coupling dissimilar solutions to some form of self-adaptive selection
mechanism. In nature, genetic diversity can be the consequence of many
different factors, but when considering reproduction Sexual Selection can
have an impact on promoting variety within a species. Specifically, Mate
Choice often results in different selective pressures between sexes, which
in turn may trigger evolutionary differences among them. Although some
mechanisms of Sexual Selection have been applied to Genetic Program-
ming in the past, the literature is scarce when it comes to mate choice.
Recently, a way of modelling mating preferences by ideal mate represen-
tations was proposed, achieving good results when compared to a stan-
dard approach. These mating preferences evolve freely in a self-adaptive
fashion, creating an evolutionary driving force of its own alongside fitness
pressure. The inner mechanisms of this approach operate from personal
choice, as each individual has its own representation of a perfect mate
which affects the mate to be selected.
In this paper, we compare this method against a random mate choice
to assess whether there are advantages in evolving personal preferences.
We conducted experiments using three symbolic regression problems and
different mutation rates. The results show that self-adaptive mating pref-
erences are able to create a more diverse set of solutions when compared
to the traditional approach and a random mate approach (with statis-
tically significant differences) and have a higher success rate in three of
the six instances tested.

Keywords: Diversity · Sexual Selection · Mate Choice · Mating Prefer-
ences

1 Introduction

Natural Selection – or survival of the fittest, as described by Charles Darwin [1]
– operates as the foundation for Genetic Programming (GP) as it does for other
classes of Evolutionary Algorithms (EA). The adaptation of basic evolutionary
principles has made nature-inspired algorithms suitable for several optimization
tasks, as encoded solutions in a population evolve under selective pressure to
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solve specific problems [2,3,4]. By combining solutions into new ones (crossover)
and/or changing existing ones (mutation), we aim at improving results in a given
area (exploitation) while promoting a broad search for new regions (exploration)
[5,6].

One of the main issues regarding EAs is that of premature convergence, where
the population loses general diversity by focusing on one single promising area,
which eventually leads to an inescapable set of similar solutions [5]. As such, the
balance between exploration and exploitation is important in the search for the
global optima, meaning that maintaining diversity throughout the evolutionary
process is paramount [2,5,7,9].

Drawing inspiration from natural phenomena, some authors have studied
the potential benefits of Sexual Selection as a means for diversity maintenance.
Firstly proposed by Darwin as a way to support the idea that Natural Selection
alone could not justify certain traits that seemed to hinder survival, Sexual Selec-
tion has since then evolved to be recognized as an important (and often complex)
evolutionary force [10,11,12,13]. Whether acting on the same sex (e.g., battles
for mates) or on the opposite sex (e.g., expressing preferences for certain at-
tributes), Sexual Selection can promote the development of different and diverse
traits [14].

Despite the seeming potential of Sexual Selection mechanisms in EAs, liter-
ature on this evolutionary force is scarce when it comes to its application in GP.
Although not extensively, studies that incorporate Sexual Selection mechanisms
in Genetic Algorithms are more common, where we can find gender separation
[15,16,17], multiple genders [18] or even dissimilar Mate Choice [19,20], to name
a few. Mate Choice based on dissimilarity has also been studied in GP [21] as
well as self-adapting mate selection functions [22], yet the array of works in the
field appears to become even narrower when we consider mainly individual pref-
erences as a means to avoid early convergence. Recently, Leitão [23] proposed the
PIMP method: Ideal partner representations as a way of modelling mate choice
in GP. In PIMP, each individual has two chromosomes: one that represents the
solution to the problem being tackled, and another that encodes the ideal so-
lution (or partner) against which potential mates are compared. The proposed
framework pointed towards performance improvements in several symbolic re-
gression experiments when compared to a standard approach. Furthermore, the
author presents a thorough study of the resultant dynamics, which also seems to
be promoting exploratory gains. Throughout the reported analysis, some other
interesting factors are worth noting, such as the emergence of different roles (i.e.,
female (or chooser) and male (courter)) merely resulting from distinct selective
pressures.

Given the intricate nature of Sexual Selection itself (especially Mate Choice)
and the potential benefits of transposing such mechanisms to GP, we set out to
expand the existing literature on the topic by shedding light on what we consider
to be a relevant question: Are there benefits in encoding ideal mates as opposed to
a random mate choice? For that, we took advantage of the good results provided
by the PIMP method and tested it against a simpler method in which the courter
is chosen at random. In this work, a Standard Approach is also included for
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reference, and results are measured through performance and diversity metrics.
Our results suggest that Mate Choice via the PIMP method is able to promote
and maintain more diversity without compromising performance. Furthermore,
the experiments suggest that the dynamics behind this mate choice mechanism
behave differently from a simpler random mate choice.

The remaining of the article is organized as follows: We first describe the
PIMP approach as presented by Leitão [23] and proceed to clarify our motivation
behind this experiment. We then describe the methodology (such as the metrics
used to validate the comparisons) and present the results followed by an analysis
and discussion of the findings.

2 The PIMP Approach

Proposed by Leitão [23], PIMP (Mating Preferences as Ideal Mating Partners
in the Phenotype Space) incorporates Mate Choice in GP by encoding a repre-
sentation of an ideal partner. This approach is built upon a phenomenon often
observed in nature regarding the preliminary stages of reproduction: a candidate
(courter) has to get access to the opposite sex (chooser), which can set different
selection pressures on each [14]. Of the mechanisms within Sexual Selection, this
approach models preferences, meaning that mates are chosen based on attractive-
ness regardless of their fitness. When applied to GP, these different pressures act
in parallel and independently, having the potential of driving the evolutionary
process in different directions. These dynamics are intended to avoid early con-
vergence in a self-adaptive fashion, as preferences evolve unpredictably, whereas
fitness pressure is established at the beginning of the simulation.

Essentially, PIMP differs from a Standard Approach at two levels: the indi-
viduals and the selection phase, as described below.

Individuals
Each individual has two chromosomes: the solution and the encoded prefer-

ence (see Figure 1). Preferences are representations of the ideal mates, where the
trees can be structurally identical to solutions, created from the same building

Fig. 1: Illustration of the composition of an individual under the PIMP approach
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blocks. This means that these can be generated from the same set of terminals
and functions used to solve the problem at hand. The preference chromosome
has no direct impact on fitness, being computed only during selection.

Fig. 2: Illustration of the selection scheme in PIMP

Selection
During selection, an individual is chosen via a standard tournament, becom-

ing the chooser. The candidates (i.e., potential partners) are randomly selected
from the population. Each candidate is then compared to the second chromo-
some of the chooser, which is done in the same way as comparing a solution
to the fitness function. In a way, one could say that the encoded preference of
the chooser becomes the fitness function for that set of candidates. After going
through all candidates, the one closest to the preference is chosen. A simple il-
lustration of the selection phase is presented in Figure 2. Finally, it is important
to note that both chromosomes are subject to recombination and mutation.

3 Motivation

In order to establish a comparison between random mate selection and Mate
Choice, we decided to implement the aforementioned PIMP method by Leitão
[23]. This choice was based on two major factors. First, the author provided an
extensive analysis of the method and specifically targeted Mate Choice as the
primary research subject, which is the main focal point of this article. Secondly,
the method needs few implementation adjustments compared to a Standard
Approach as encoded preferences are built upon the same arguments used to
build the solutions.

Furthermore, the work suggests that modelling Mate Choice as in PIMP is
advantageous in GP. The method showed performance gains when compared to
a Standard Approach on 52 symbolic regression instances, reaching statistical
significance on more than half when mutation was introduced. By having mates
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being selected through ideal representations, the potential mates are subject to
a secondary force besides Natural Selection (via fitness function) which led to
a role separation that evolved organically. As explained by the author, the self-
adaptive nature of mating preferences coupled with Natural Selection promotes
a more exploratory search, which in turn seems to be related to the observed
performance gains. Also, it was stated that preferences do not always evolve
in the same direction as the fitness function, meaning that in some test-cases
divergence was observable and evolved independently of fitness pressure.

Hence, we hypothesize that testing this mechanism against a random mate
choice might help us understand even better to what extent this approach is
favourable. Under the PIMP framework, only the first parent is subject to fitness
pressure, while the mate is subject to a direct comparison with the ideal solution
encoded in the chooser (i.e., the first parent). By avoiding assembling couples
merely through fitness metrics we allow more diversity among the population,
which in turn improves performance. As such, we aim at exploring to what extent
can a random mate choice lead to similar outcomes.

Moreover, considering that there is strong evidence that in PIMP preferences
evolve in a self-reinforced fashion rather than arbitrarily – thus having the po-
tential of evolving towards its own goal –, we will also be able to test this against
a mate choice with no sustainable direction and access potential benefits. In the
next section, we address the criteria used for this experiment.

4 Methodology

This study compares two existing approaches to an experimental one: PIMP,
Random Mate Choice (first parent chosen via tournament selection and a mate
chosen at random) and a Standard Approach acting as a reference where both
parents are chosen through tournaments (see Table 1). The setup used for all
these methods is shown in Table 2. Two different mutation probabilities are
considered (of 5% and 10%). Regarding the genetic operators, Subtree mutation
is applied and One Point Crossover is used for recombination. Three symbolic
regression instances were used: Koza-1 (one variable), Nguyen-6 (one variable)
and Pagie-1 (two variables) (a summary of these instances can be found in [24]).
These functions were tested in the original work, thus providing us with some
knowledge beforehand, particularly regarding Mean Best Fitness. While tested
under Koza-1 (with a mutation rate of 1%) PIMP showed no statistically signifi-
cant differences when compared to a Standard Approach, under Nguyen-6 PIMP
performed better with significant differences. We also included Pagie-1 (where
PIMP also performed better with significant results) given that it can be more
difficult to solve than the last two [24].

All testing instances were performed in sets of 30 runs, and each run had
its exclusive seed shared with all three approaches. Although the main setup
is similar to the original work on PIMP, some changes were performed, such
as the number of generations (500 originally) and the mutation rates (1% in
the original work). By increasing the number of generations, we can have a
better understanding of how the population behaves in the long run, while by
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having higher mutation rates we simultaneously promote more genetic diversity
(especially in the Standard Approach).

Table 1: Approaches used

PIMP
Parent 1 (Chooser) Tournament Selection (size = 5)

Parent 2 (Courter) Random Set (size = 5)

Random
Mate

Parent 1 Tournament Selection (size = 5)

Parent 2 Random

Standard Both Parents Tournament Selection (size = 5)

4.1 Measures

We compare the mentioned approaches at two main levels: performance and
diversity. The metrics used for each are described below.

Performance Measures
To assess performance differences we compute the Mean Best Fitness (MBF)

measured through Mean Squared Error for all algorithms under study. Consid-
ering that we are testing them under symbolic regression instances with known
solutions, we defined a success rate regarding the quality of the solutions. There-
fore, we have:

– Mean Best Fitness (Best individual of the final population in each run)
– Success Rate (Number of runs (out of 30) in which at least one solution is

better than 1E-4)

Diversity Measures
While performance metrics are quite straightforward to establish, diversity

metrics require a bit more discussion. When studying diversity, different tech-
niques can be applied to examine its dynamics and effects within the population
[7]. Knowing that in GP different trees can have the same fitness, we decided
not to measure population diversity by fitness variety. Instead, we performed
a comparison at the level of the genotype to identify differences between trees
(e.g., through Tree Edit Distance [8]). Nevertheless, this choice came with a cost
that proved to be too expensive computation-wise. As such, it was decided to
record only the number of unique solutions in the population every one hundred
generations. This metric is not sufficient to tell us how different solutions are,
but it can nonetheless be useful at a higher level: if an algorithm is not able to
maintain unique solutions, then convergence is more likely to occur.

Another measure used to assess diversity is strictly linked to the original work
on PIMP. In the experiments, the author opted for operation restrictions at the
root node – which was never chosen as a crossover point or for mutation. This
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Table 2: General Set up

Population Size 100

General Parameters Generations 1500

Elitism None

Individual Builder Ramped half-and-half random(2,6)

Crossover Prob. 0.9

Breeding Mutation Prob. [0.05, 0.1]

Max Depth 17

means that if these particular alleles managed to avoid extinction, they were
forced to remain the same throughout the evolutionary process. Furthermore,
under these conditions, if a particular root node is lost it is then lost forever.
Thus, it was decided to keep this particular feature in implementation as we
saw it as a way of studying which approach was better at maintaining diversity
at the root node. To achieve this, we kept track of each individual’s root node
throughout evolution. This was a straightforward process as all functions used
for testing share the same function set (see Table 3). A run where there the root
node is the same in every individual on the last generation was considered a
convergence instance. With this, we can list the two metrics used for diversity
analysis:

– Number of unique solutions among the population
– Runs where root node convergence was avoided

Table 3: Function Set (same for all instances)

Functions Constants

+,−,×,%, sin, cos, en, ln(|n|) None

4.2 Statistical Tests

After running the experiments and gathering the required data for analysis, a
set of statistical tests was performed to better understand the significance of the
observed differences. We highlight that in this experiment we are dealing with
dependent samples, given that each run had a specific initial population.
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For tests consisting of quantitative data (Mean Best Fitness (MBF) and
Number of Unique Solutions (NUS)), a Shapiro-Wilk test was performed to
assess the likelihood of having normally distributed data, while Bartlett’s test
was performed to test the variance of the data. For an alpha value of 5%, MBF
data failed the normality assumption, and while NUS data only failed to meet
the normality assumption under the function Pagie-1, the Bartlett’s test showed
no signs of equal variance between groups (also for an alpha of 5%). As such, a
Friedman test was performed to test the differences between groups. Whenever
differences were found, a Wilcoxon signed rank was performed as a post hoc with
the correspondent Bonferroni correction [25].

For qualitative data (Success Rate and Root Node convergence), a Cochran’s
Q test was used to find significant differences between approaches, proceeding
with a McNemar’s Test whenever that was the case. Again, an alpha value of
5% was used when comparing the three approaches, and a Bonferroni correction
was applied for paired comparisons [25].

5 Results

In this section we present the results for each symbolic regression instance and
mutation variation. For the sake of readability, Mean Best Fitness results are
presented in two different tables (one for each mutation variant) as the sample
standard deviation is also included. Although the raw data regarding the suc-
cess rates is nominal, results are presented in the percentage form merely on
a stylistic choice. Whenever there is statistical significance between PIMP and
Random Mate approach these will be highlighted (bold). Furthermore, an aster-
isk sign (*) next to a result indicates that that particular approach is statistically
different from the Standard Approach.

Mean Best Fitness

Table 4 and Table 5 depict the results regarding the MBF for different mu-
tation rates as well as the sample standard deviation. From a general overview,
PIMP does not always outperform the Random Mate approach, which in turn
shows slightly better results in some instances. Similarly, whenever PIMP shows
better results, the differences between these two approaches do not seem to be
critical. Furthermore, including the Standard Approach as a benchmark, PIMP
seems to do better also with a seemingly small margin. Using a Random Mate
approach seems to provide competitive results to a Standard one, which might
suggest that under these specific conditions having both parents under fitness
pressure is not necessarily advantageous. This might be reinforced by the fact
that no statistically significant differences were found. However, it must be men-
tioned that on the particular instance of the function Pagie-1 with a mutation
rate of 10%, we obtained a p-value of ≈ 0.048. Although this meant that dif-
ferences were significant under the defined criteria, this p-value was considered
to be too close to the chosen alpha value. This was later confirmed when per-
forming a Wilcoxon signed rank, where no differences were found. As such, we
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have decided to follow a conservative approach and conclude that no relevant
differences were found.

Table 4: Results for the MBF and StDev with a mutation rate of 5% over 30
runs

PIMP Random Mate Standard

MBF 3.44E-4 1.75E-3 9.68E-4
Koza-1

StDev 4.86E-4 6.29E-3 2.20E-3

MBF 6.54E-3 1.00E-2 5.82E-3
Nguyen-6

StDev 1.72E-2 2.33E-2 1.52E-2

MBF 9.11E-3 1.29E-2 1.57E-2
Pagie-1

StDev 1.06E-2 1.23E-2 1.46E-2

Table 5: Results for the MBF and StDev with a mutation rate of 10% over 30
runs

PIMP Random Mate Standard

MBF 5.56E-4 1.28E-3 3.9E-4
Koza-1

StDev 1.01E-3 4.75E-3 8.59E-4

MBF 5.63E-3 2.74E-3 6.23E-3
Nguyen-6

StDev 1.5E-2 8.57E-3 1.76E-2

MBF 9.62E-3 1.08E-2 1.50E-2
Pagie-1

StDev 1.08E-2 1.21E-2 1.44E-2

Success Rate
Just as observed in the MBF results, the data presented in Table 6 also does

not seem to provide any consistent advantage for any approach when it comes
to success rate. The main differences can be found on Nguyen-6 with a mutation
rate of 5%, where PIMP and Random Mate promote a gain of 26.7% and 23.3%,
respectively, over the Standard Approach. Conversely, by increasing the mutation
rate to 10% in the same function the Standard Approach performs better, with
a success rate 26.7% better than PIMP and only 3.4% over a Random Mate
choice. On both Pagie-1 instances (which is considered to be more difficult to
tackle [24]), a Random Mate approach fails to find any good solution under the
defined terms, while PIMP manages to do so in 2 runs out of 30. Performing a
Cochran’s Q test on the data results in no significance for any instance.
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Table 6: Success Rate (average of 30 runs)

Mutation % PIMP Random Mate Standard

5% 56.6% 56.6% 60%
Koza-1

10% 60% 53.3% 43.3%

5% 60% 56.6% 33.3%
Nguyen-6

10% 43.3% 66.6% 70%

5% 6.6% 0% 3.3%
Pagie-1

10% 0% 0% 3.3%

Diversity Analysis

While there seems to be no performance gains in using any of the studied
approaches over the others, the same can not be said regarding diversity mainte-
nance. Table 7 depicts the results on the average percentage of unique trees after
1500 generations, where there is a consistent pattern throughout all instances. It
can be observed that under the Standard Approach the final population tended
to contain roughly 35% of repeated solutions on average, which might be the
consequence of submitting both parents to fitness pressure. In terms of genetic
diversity, Random Mate provides an improvement over this, which is further
improved when using PIMP, where on average it produced 15% of repeated so-
lutions. Statistic results from Friedman tests show significant differences in all
instances, which was later confirmed through a paired Wilcoxon Signed Rank
holding two exceptions: in Pagie-1 with mutation rates of 5% and 10%, PIMP
and Random Mate have no significant differences between them. Figures 3a and
3b illustrate the percentage of unique solutions throughout the evolutionary
process each 100 generations for Koza-1 (mutation rate of 5%) and for Pagie-1
(mutation rate of 5%)

Table 7: Unique Solutions After 1500 Generations (Average of 30 runs)

Mutation % PIMP Random Mate Standard

5% 84.8%* 77.2%* 64.26%
Koza-1

10% 86.4%* 77.4%* 66.6%

5% 84.2%* 79%* 63.2%
Nguyen-6

10% 86.8%* 78.3%* 62.2%

5% 86%* 83.8%* 61.5%
Pagie-1

10% 88.4%* 84.6%* 67.6%



All You Need Is Sex for Diversity 11

(a) Koza-1 Mutation rate 5%

(b) Pagie-1 Mutation rate 5%

Fig. 3: Percentage of unique solutions each 100 generations (average).

Avoiding Root Node Convergence

Finally, Table 8 provides an overview of the ability of each approach to pre-
vent convergence to a single function at the root node. Similarly, there is a
gradual improvement from the Standard Approach to Random Mate, followed
by PIMP. These results are also an interesting aspect of this study consider-
ing that, as discussed earlier, preserving root node diversity under the current
conditions is a difficult task. Although there seems to be an advantage in us-
ing PIMP to achieve this (mainly in Koza-1 and Nguyen-6), the only instances
where statistical significance was reached was in Koza-1 with a mutation rate
of 5%, where PIMP was statistically different from Random Mate and Standard
Approach (p-values ≈ 0.004 and ≈ 0.0009 respectively) and in Pagie-1 with a
mutation rate of 10% – both PIMP and Random Mate held no differences (p-
value ≈ 0.54) but both were statistically different from the Standard Approach
(p-values of ≈ 0.0009 and ≈ 0.002).
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6 Discussion and additional remarks

Within the limits of the current study, the results presented throughout the last
section allow us to draw some conclusions that should be discussed in more detail.
Although the central point of this work is not to establish a direct comparison
between a Mate Choice mechanism (PIMP or Random Mate) and a Standard
Approach, it is nonetheless relevant to make some notes on performance and
diversity. It seems that in the long run (i.e., after 1500 generations), reducing
fitness selective pressure does not affect significantly the performance, whether
it is achieved by choosing a partner via preferences or at random. Comparing
our results to that of the original work on PIMP, it seems that elongating the
running time improves performance by a quite small margin in some symbolic
regression instances. Arguably, mutation might also have something to do with
this. As the original work provides a wider range of testing instances, it might
be useful to extend the current experiment in the future.

Comparing PIMP directly against a random mate choice, the former seems to
provide slightly better results regarding MBF, but we found these differences to
be insufficient to reach statistical significance. Again, testing a more diverse set
of symbolic regression instances could be beneficial in this regard. As such, under
the conditions applied in this experiment, it seems that PIMP and Random Mate
are similar performance-wise.

On the other hand, in general, results regarding diversity favour PIMP. We
believe this to be a particularly interesting – and arguably counterintuitive –
finding: the dynamic evolution of preferences in PIMP seems to have a higher
potential for promoting unique solutions rather than a simple random mate
choice. This is also a topic to be addressed with more detail in the future, that
is, a more focused analysis on how the evolvable preferences tend to promote
more diversity than a random approach. Arguably, this might be a result of
the directional Sexual Selection force that emerges throughout the evolutionary
process, which in turn might be doing a better job at racing against fitness
pressure than a non-directional random selection.

Table 8: Instances where root node convergence was avoided after 1500 Gener-
ations (Out of 30 runs)

Mutation % PIMP Random Mate Standard

5% 11/30* 3/30 0/30
Koza-1

10% 12/30 7/30 5/30

5% 7/30 3/30 2/30
Nguyen-6

10% 10/30 4/30 3/30

5% 5/30 4/30 2/30
Pagie-1

10% 11/30* 9/30* 0/30
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Although this analysis requires an in-depth review, an answer to this differ-
ence may be laying precisely in how Sexual Selection via preferences shapes the
search space of the ideal mates. In the original work of PIMP, a clear role sepa-
ration throughout the evolutionary process was observed: the population tended
to evolve into three main types (choosers, courters and both). To understand
whether the same effect could be achieved via a Random Mate selection, we
kept track of the selected individuals to establish a direct comparison. As such,
we used the same terminology: Choosers (individuals that were only selected via
tournament), Courters (individuals that were exclusively selected by a Chooser)
and Both (individuals that in the same generation acted as a Chooser and a
Courter). The evolutionary lineages of these can be seen in Figure 4a for PIMP
and in Figure 4b for Random Mate selection. Note that only one instance is
shown (Koza-1 with a mutation rate of 5%), but the behaviour was similar in
all symbolic regression instances. The small shifts observed in the first genera-
tions using the PIMP approach suggest an adaptation rather than a predefined
rule (as seen in Random Mate, where on average all roles emerge in the same
range in which they terminate). It is interesting to note that although a Random
Mate choice does not provide a specific direction regarding choice, it manages to
produce role segregation anyway. Another difference between these two figures
is that Random Mate seems to be producing more individuals that act as Both
roles, while in PIMP there’s a larger percentage of Choosers.

(a) PIMP (b) Random Mate

Fig. 4: Role Seggregation - Koza-1 Mutation rate 5%.

We set out to analyse whether this stronger segregation had any impact on
the MBF of each role (Figures 5a and 5b).

As expected, in both approaches the Choosers follow a better fitness path
as they are subject to fitness pressure. Yet interestingly, a Random Mate choice
seems more prone to preserve individuals with good fitness values while in PIMP
these seem to be performing some sort of exploration. Furthermore, the MBF of
individuals assuming both roles also seems to be evolving differently: In Random
Mate, it looks like these behave as Choosers fitness-wise, while in PIMP this type
of role assumes a more unpredictable behaviour, and these differences might be
contributing to a more diverse population overall. By choosing a mate randomly,
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(a) PIMP

(b) Random Mate

Fig. 5: MBF evolution for different roles - Koza-1 Mutation rate 5%.

it means that the individuals that made it through the tournament have the same
chance of being selected as a partner, while PIMP might be forcing a particular
portion of the population to adapt to the existing range of chooser’s preferences.
Considering that even the chromosomes that encode the ideal partner are subject
to mutations and crossover, this might also be contributing to the diversity of
the whole population. As such, a detailed study on how PIMP shapes these
separated roles might be valuable to understand the inner mechanisms of mating
preferences in GP.

7 Conclusion

Diversity maintenance is known to be an important factor in EAs. Sexual Se-
lection, particularly Mate Choice, has shown promising results when transposed
to algorithmic practice, yet its dynamics and potential benefits are poorly un-
derstood, especially when it comes to GP. In this article, we took advantage
of PIMP – mate choice based on ideal mates – to address whether there were
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tangible differences between guiding the evolutionary process via a random mate
choice and by having a set of individual mating preferences.

After 1500 generations (in sets of 30 runs), PIMP revealed competitive results
regarding MBF and had a better success rate in half of the testing instances. Al-
though there were no statistically significant differences regarding performance,
these were achieved when considering diversity gains (particularly in the average
number of unique solutions), where PIMP has shown a better capacity of doing
so at least in the long run. As such, we can conclude that within our experiments
PIMP promoted more diversity within populations without compromising per-
formance. These results, coupled with other indicative factors such as root node
diversity (although in this regard fewer differences were statistically significant),
seem to suggest that there are in fact differences between PIMP and a Random
Mate choice. Moreover, the recorded differences are interesting: a mate choice
based on ideal mate preferences seems to be promoting more diversity within
the population (even fitness-wise) than a random mate search. We believe these
to be meaningful results in the field of Sexual Selection applied to GP, which de-
serves an in-depth study on how preferences evolve, mainly on the evolutionary
dynamics of choosers and courters. By doing so, we may not only understand
in more detail how this force is promoting more diversity than a random mate
choice but also if (and how) this approach can be shaped to improve algorithmic
performance.

Finally, it must be noted that for such an intricate task, it would be bene-
ficial in the future to have a more broad study on the comparison of these two
approaches, mainly with a broader set of symbolic regression instances.
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