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INTRODUCTION

The risk of flooding is one of the most fre-
quent and damaging natural disasters. It threatens 

several regions around the world (Tanguy, 2012). 
It is mainly related to several factors as climate 
changes, population growth, and abusive land use. 
Indeed, floods constitute 31% of all the resulting 
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ABSTRACT
The Assaka watershed is one of the largest watersheds in the Guelmim region in southern Morocco. It is frequently 
exposed to the many flooding events that can be responsible for many costly human and material damages. This work 
illustrates a decision-making methodology based on Analytical Hierarchy Process (AHP) and Fuzzy Logic Modelling 
(FLM), in the order to perform a useful flood susceptibility mapping in the study area. Seven decisive factors were 
introduced, namely, flow accumulation, distance to the hydrographic network, elevation, slope, LULC, lithology, and 
rainfall. The susceptibility maps were obtained after normalization and weighting using the AHP, while after Fuzzifi-
cation as well as the application of fuzzy operators (OR, SUM, PRODUCT, AND, GAMMA 0.9) for the fuzzy logic 
methods. Thereafter, the flood susceptibility zones were distributed into five flood intensity classes with very high, 
high, medium, low, and, very low susceptibility. Then validated by field observations, an inventory of flood-prone 
sites identified by the Draa Oued Noun Hydraulic Watershed Agency (DONHBA) with 71 carefully selected flood-
prone sites and GeoEye-1 satellite images. The assessment of the mapping results using the ROC curve shows that 
the best results are derived from applying the fuzzy SUM (AUC = 0.901) and fuzzy OR (AUC = 0.896) operators. On 
the other hand, the AHP method (AUC = 0.893) shows considerable mapping results. Then, a comparison of the two 
methods of SUM fuzzy logic and AHP allowed considering the two techniques as complementary to each other. They 
can accurately model the flood susceptibility of the Assaka watershed. Specifically, this area is characterized by a high 
to very high risk of flooding, which was estimated at 67% and 30% of the total study area coverage using the fuzzy 
logic (SUM operator) and the AHP methods, respectively. Highly susceptible flood areas require immediate action in 
terms of planning, development, and land use management to avoid any dramatic disaster.
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damage from natural disasters, and more than 90 
countries with approximately 196 million persons 
are exposed to catastrophic floods (Zorn, 2018). 
Morocco is among the countries that show a high 
vulnerability to natural hazards, and 70% of these 
events are flooding. In the last decades, this type 
of disaster has affected more regions and become 
a real increasing threat, due to the growing oc-
cupation of vulnerable areas following climate 
change on the other, then generating strong local-
ized storms causing rapid and violent floods. In 
this frame, over the past two decades, 20 major 
events have been recorded in Morocco with an es-
timated average cost of 450 million US$ per year 
(Echogdali et al., 2018; Karmaoui et al., 2014). 
Floods generally occur following a heavy rainfall 
of a long duration or snowmelt and are capable of 
transforming dry wadi beds into violent and de-
structive torrents. On the timescale, the most im-
portant flood events in Morocco were revealed in 
the Ourika valley (1995), the Martil plain (2000), 
Berrechid and Settat regions (2002), the Tan-Tan, 
Nador, Al Hoceima, and Khenifra regions, the 
Tangiers region (2008), the Gharb plain (2003), 
the Taza region (2010) and the Guelmim region 
(2014)(Argaz et al., 2019).

The Wadi Assaka watershed, located in the 
Guelmim-Oued Noun region (southern Moroc-
co), is one of the most flooded regions in Mo-
rocco. However, the most severe floods in this 
watershed were recorded in 1968, 1985, 2010, 
and 2014. Latter these led to catastrophic and ex-
ceptional flooding in the region’s rivers, especial-
ly the Wadi Sayyed and the Wadi Oum Laâchar, 
which are the main tributaries of the Oued As-
saka (Talha et al., 2019). This region experienced 
during the period from 11/20/2014 to 12/01/2014 
exceptional rainfall which reached 260 mm in the 
city of Guelmim, with a very high intensity that 
exceeded 200 mm for 12 hours, which generated 
exceptional floods in the watershed of Assaka (El 
Mahmouhi et al., 2016; Mirari & Benmlih, 2018; 
Theilen-Willige et al., 2015). In the last decades, 
this watershed is currently experiencing a high 
and accentuated demographic evolution, with un-
controlled land use, which makes the population 
and property very vulnerable to violent floods. As 
a result, 47 people lost their lives in the provinces 
of Sidi Ifni and Guelmim regions. In parallel, the 
damage was estimated at more than USD 600 
million. Road cuts, dykes breaches, and power 
cuts have been caused and affected a large part of 
the populated zones (AIDE et al., 2015; Talha et 

al., 2019). This requires a well-defined flood risk 
reduction strategy to propose measures to protect 
people and property at risk.

In this context, vulnerability reduction is es-
sentially based on the assessment and prediction 
of flood risks. This is an essential step for appro-
priate land use planning in flood-prone areas. Sev-
eral approaches (Geographic Information Sys-
tems, remote sensing, and hydraulic models) have 
been used to accurately assess areas of flooding 
high vulnerability (Demir & Kisi, 2016; Farhadi 
& Najafzadeh, 2021; Siahkamari et al., 2018). So 
far, hydrological and hydraulic modeling remains 
the most efficient techniques, allowing a more 
accurate estimation of depth, flow velocity, and 
flood extent for different return periods (Msaddek 
et al., 2020; Nguyen et al., 2016). However, the 
use of these modeling methods requires a high-
resolution terrain elevation model. Thus, very 
high rainfall and hydrographic measurements, 
are not continuously available (Komi et al., 2017; 
Werren et al., 2016). In recent years, researchers 
have developed alternative techniques for the as-
sessment of short-duration, high-intensity, multi-
scale floods, combining the factors conditioning 
the occurrence of these natural hazards (Ha et 
al., 2023; Mudashiru et al., 2021; Ongdas et al., 
2020). In light of geographic information systems 
and space technology, several multi-criteria deci-
sion analysis models and high-performance indi-
ces are widely used. Such as frequency ratio (Sa-
manta et al., 2018), logistic regression (Shafapour 
Tehrany et al., 2019), statistical index model 
(Khosravi et al., 2016), entropy index (Malekine-
zhad et al., 2021), flood risk index (FHI) (Ikirri 
et al., 2022), artificial neural network (Wang et 
al., 2020), analytic hierarchy process (Hammami 
et al., 2019), fuzzy logic models (Sahana & Pa-
tel, 2019). AHP and FLM are widely applied in 
several parts of the world. They have also been 
approved as simple and robust methodologies for 
decision-making in water resources management, 
floods, landslides, and forest fires (Bouamrane et 
al., 2022; Li et al., 2018; Pourghasemi et al., 2016; 
Vakhshoori & Zare, 2016). In particular, when 
the two methods’ performances were compared, 
FLM demonstrates better results (Bouamrane et 
al., 2022; Mohamed & Elmahdy, 2017).

In the Assaka watershed, it is important to note 
that no previous studies have been undertaken for 
flood susceptibility, neither using the AHP nor us-
ing the FLM. However, several other studies in 
several regions of the world have mentioned that 
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both techniques (AHP, fuzzy logic) were able to 
provide more reliable results for flood hazard sus-
ceptibility mapping (Hammami et al., 2019; Mu-
dashiru et al., 2021; Sahana & Patel, 2019). The 
objective of the present research is to introduce 
an integrated approach that will allow the testing 
and analyze several fuzzy logic models and AHP, 
separately in a GIS environment. Furthermore, 
the result of our study will be a practical solution 
for flood susceptibility mapping in the Assaka 
watershed.

MATERIALS AND METHODS

Study area geographical and 
geological setting

The Wadi Assaka watershed, the subject of 
this study, is located in southern Morocco in the 
Guelmim-Oued Noun region. This area is a hy-
draulic sub-watershed of Guelmim, it occupies 
an area of 6866 km2, corresponding to a perim-
eter of 750 km, with a total population of more 
than 18780873 according to the 2014 census (MI-
RARI, 2022). It is constituted by a network of 
Wadis (tributaries) along which there are several 
floodwater spreading areas. The hydrographic 
network is composed of 3 sub-catchments of the 
main Wadis namely, Oued Sayyed, Oued Ouer-
guennoun, and Oued Oum Al Achar (Bannari et 

al., 2018). Geographically, the Assaka watershed 
is located between the two parallels 28.54° and 
29.47° N, and the two meridians 10.42°, and 
9.02° W (Figure 1).

From a geomorphological and geological 
point of view, the Assaka catchment area is lo-
cated between the depressions of the Guelmim-
Bouizakarne plain to the north, the valley of the 
Oued Seyyad-Ouerguennoun in the center and 
the northern flank of the Jbel Guir-Taïssa in the 
south-west. The mountain ranges are in the form 
of a complex syncline surrounded to the north, 
west, and south by three anticlinal buttonholes 
which are Kerdous, Ifni, and Jbel Guir (ATBIR 
et al.; Bannari et al., 2018; Mathieu et al., 2004; 
Soulaimani & Bouabdelli, 2005). Indeed, the 
altitudes vary from 0 m on the coasts and the 
plain to 1483 m at the extreme North-East of the 
watershed, and the average altitude is around 
650 m. Geologically, the previous studies on 
the study area revealed lithological formation’s 
preferential orientation with a NE-SW trend. 
The formations present a synclinal structure 
and demonstrate ages from the Precambrian to 
the Quaternary. All the terrain constituting the 
height altitudes are Precambrian or Cambro-Si-
lurian, and consist of the litho-units of quartzite, 
limestone, and shale which appear in the center 
of the plain at the level of Jbel Tayert; whereas 
the plain is generally constituted by deposits of 
Plio-Quaternary cover overlying the Acadian 

Figure 1. Location map of the Assaka watershed
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shales of the substratum (El Mahmouhi et al., 
2016; Soulaimani & Ouanaimi, 2011).

The climatology of the area is characterized 
by severe aridity due to the presence of the High 
Atlasic belt, which prevents rainy disturbances 
from the north toward the south (El Mahmouhi et 
al., 2016). The average annual rainfall is around 
115 mm in Guelmim, with a very important ran-
dom irregularity, between 90 mm and 160 mm at 
the watershed level. This fluctuation in the rain-
fall regime over the years is the cause of increased 
flooding in the watershed (Amouch et al., 2020; 
Talha et al., 2019). When the average annual tem-
perature is around 21 °C in Guelmim.

Flood mapping methodology

As mentioned earlier, the approach adopted 
in this study is based on the integration of multi-
criteria decision analysis, GIS, and spatial remote 
sensing. The overall methodology is presented in 
the flow chart (Figure 2). This analysis involved 
seven flood susceptibility conditioning factors, 
namely flow accumulation, altitude, slope, land 
use, distance to the river, lithology, and precipi-
tation. These factors were selected based on a 
literature review, expert opinions, and their rel-
evance in several case studies in other Moroccan 
regions (Echogdali et al., 2022; El Morjani et al., 
2016; Ikirri et al., 2022; Talha et al., 2019). The 
different thematic layers related to these factors 
were generated in a GIS environment. Then, all 

the extracted maps were combined according to 
the importance of each factor, using two methods 
in the order to assess their capability in flood sus-
ceptibility mapping within the Assaka watershed: 
(1) the Analytical Hierarchy Process (AHP), 
which requires the standardization of the causal 
factors, the using a pairwise comparison matrix 
between the factors’ evaluations, thus obtaining 
a weight for each criterion. Afterward, to ensure 
the accuracy of the standardization and weight-
ing, the consistency ratio (CR) is calculated to 
examine the results of the determination stage. 
Once the evaluation criteria layers have been 
established, it remains to combine the thematic 
maps, using a mathematical aggregation formu-
lation in a GIS environment, to finally obtain a 
susceptibility map; (2) Fuzzy Logic methods 
that were carried out in two-step steps, namely 
the fuzzy membership and fuzzy gamma over-
lay functions in ArcMap10.5. A LINEAR Fuzzy 
membership function was performed on all the 
conditioning factors. Thus, the data fuzzification 
and conversion were established, where the zero 
and one values reflect the level of certainty of the 
used members. The flood factors were combined 
using various fuzzy operators, including AND, 
OR, SUM, PRODUCT, and GAMMA, allow-
ing the production of several flood susceptibility 
maps. Finally, the set of flood susceptibility maps 
created by each model according to the AHP and 
fuzzy operators will be tested and compared us-
ing the Receiver Operating Characteristic (ROC) 

Figure 2. Flowchart of the methodology adopted to generate the flood susceptibility map
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curve and Area Under the Curve (AUC) in Arc-
GIS 10.5 software.

These methods have several advantages. 
Firstly, they provide realistic estimates without 
the use of empirical models as well as they are 
based only on historical data on flooding distribu-
tion and causal factors (Bouamrane et al., 2022; El 
Morjani et al., 2016). Secondly, these techniques 
take into account both the susceptibility of each 
area to flooding and factors related to flooding 
emergency management. Thirdly, this input also 
results in a considerable gain of time and there-
fore a cost reduction. The data required for the 
application of the methodology were collected 
from various sources (Table 1). The processing of 
these data allowed to elaborate of a useful spatial 
dataset to perform this study, following a multi-
criteria analysis.

Preparation and analysis of causal factors

Elevation 

The probability of occurrence of flood events 
is inversely proportional to altitudes, therefore 
flat areas at low altitudes are most affected by the 
risk of flooding, making it a reliable indicator of 
susceptibility to flood events (Hammami et al., 
2019; Wang et al., 2018). The elevation data used 
in our study is derived from ASTER data (AS-
TER GDEM) available on the website (https://
earthexplorer.usgs.gov). The ASTER GDEM 
has a spatial resolution of 30 m. For our study, 
6 Scenes were downloaded, processed, and geo-
referenced according to Lambert’s conformal 
conical projection system – southern Morocco, 
then we automatically delineated the watershed 
of Assaka and the result was validated by the 

Guelmim, Fask, Sidi Ifni, Bouizakarn, Tarhjijt, 
and Assa1: 100,000 topographic maps. The Assa-
ka watershed has a very varied topography, rang-
ing from 0m on the coast and plain to 1483m in 
the extreme northeast where the mountain ranges 
from a complex syncline (Figure 3a).

Slope

The slope is a factor that affects the runoff and 
the infiltration of surface water. Low slope areas 
are those that contribute to the infiltration of wa-
ter into the soil, therefore leading to a higher flood 
hazard susceptibility and vice versa (Costache et 
al., 2019; Ikirri et al., 2022; Shafapour Tehrany 
et al., 2019). Obviously, in our study area, the 
high-slope areas are the mountainous regions (up-
stream), while the low-slope areas are concentrat-
ed downstream (plain) towards the outlet of the 
Wadi Assaka. The slope map was created from 
the elevation data and has slope ranges varying 
between 0 and >30, using the spatial analyst tool 
integrated in ArcGIS 10.5 software (Figure 3b). 

Flow accumulation

Areas that are close to the flow accumula-
tion path and particularly where a large volume 
has accumulated upstream are more susceptible 
to flooding events (Dash & Sar, 2020; Ikirri et 
al., 2022; Vignesh et al., 2021). The flow accu-
mulation factor is derived from the DEM as a 
cumulative weight of all flowing cells in each 
downslope cell of the output raster. Cells with 
high flow accumulation are areas of concentrated 
flow that can be used to identify flow channels. 
Cells with zero flow accumulation presenting lo-
cal high topographic areas can be used to identify 
topographic ridges or peaks. Then, the resulting 

Table 1. Data used for flood susceptibility mapping
Data type Resolution Year Source

ASTER-DEM Digital 
Elevation Model (DEM) 30 m 2009 https://earthexplorer.usgs.gov

Slope 30 m 2009 Derived from DTM (Aster- DEM)

Flow accumulation 30 m 2009 Derived from DTM (Aster- DEM)

Hydrographic network 30 m 2009 Derived from DTM (Aster- DEM)

Sentinel-2A VNIR 10 m 2020 https://earthexplorer.usgs.gov

Land use 10 m 2020 Derived from Sentinel-2 VNIR bands

Lithology 30 m 1951 Digitized from the geological map ofGuelmim and 
Draa-lower at a scale of 1:200,000

Precipitation 30 m 1990–2020 Multiple climate stations and regression modeling

Flood sites Shapefile (points) 2006–2020 Draa-Oued Noun Hydraulic Watershed Agency 
(DONHBA)
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map is classified into five levels according to the 
volume of accumulated water. The highest value 
corresponds to the lowest areas of our watershed 
(Figure 3c).

Distance from the hydrographic network

River overflows are crucial for triggering a 
flood. This is why the distance from the rivers is 
one of the main factors in flood susceptibility stud-
ies [22, 47]. The effect of the wadi bed decreases 
when the distance increases. This explains why 
the distance from the hydrographic network will 
have to constitute a high weight in our final deci-
sion. The classes of this factor have been defined 
by processing the historical flood records in the 
study area. Globally, a distance between 0 and 200 
m presents a very high flood risk zone, while the 
effect of this parameter becomes weak from 1500 
meters to the drainage network. The map of this 
factor was generated from the DEM, by estimating 
the hydrographic network from the flow accumu-
lation layer, adopting the most adequate accumu-
lation threshold to reproduce the hydrologic net-
works. In our case, after testing many thresholds, a 

value of 8,000 cells (or more) was retained. Next, 
five different buffer zones were generated, apply-
ing the Euclidean distance (Figure 3d).

Land use

Land use directly or/and indirectly controls 
flood susceptibility, by influencing anthropogenic 
practices such as urbanization and agricultural 
use. The latter allows the impermeable areas 
growth. Most of these areas showed a high cor-
relation with the appearance of flooding areas 
(Apollonio et al., 2016; Barkey et al., 2020; El 
Morjani et al., 2016). In the present study, the 
land cover map was generated using the Sentinel-
2Adata, which has a high spatial resolution (10 
m) than other medium spatial resolution images 
(Çavur et al., 2019; Phiri et al., 2020).

Thereafter, the pre-processing and the clas-
sification supervised by the maximum likelihood 
algorithm, we were able to obtain nine classes, 
namely: agriculture, forest, built-up area, light 
bare soil, dark bare soil, light-colored rocky 
terrain, dark colored rocky terrain, alluvium, 
sparse vegetation (Figure 4a). These results 

Figure 3. (a) Elevation map; (b) slope map; (c) flow accumulation map; 
(d) map of distance from the hydrographic network
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were validated using high spatial resolution im-
ages (GeoEye-1) and field missions; thus Cohen’s 
Kappa statistical coefficient (K) judged a value of 
88.3%, which remains satisfactory in our study. 
Then, this map will be classified as follows:
 • The highest values correspond to imperme-

able areas or plains (built-up areas, alluvial ar-
eas) which promote the quick water flow and 
subsequently the occurrence of floods;

 • The lower values represent the infiltration 
zones (vegetation, forest);

 • The other classes were assigned to intermedi-
ate values.

Lithology

The lithology is an important factor in the 
genesis of floods. Generally, surface geology has 
different degrees of permeability, which control 
the water infiltration rate (Costache et al., 2019; 
Morjani, 2011). The lithological distribution map 
of the Assaka watershed was developed using the 
assembly of the two 1: 200,000geological maps 
of Guelmim -Draa-lower and Foum Elhassane-
Assa, in the western Anti-Atlasic belt. The result-
ing lithological map was classified according to 
the rock permeability. The classification distin-
guishes the more permeable areas by the lower 
values and vice versa (Figure 4b).

The analysis of this map showed that the 
study area is mainly made up of shales, lime-
stones, sandstones, and quartzites lithological 
units, that present various geological ages, from 
the Precambrian to the Quaternary (Mathieu et 
al., 2004; Soulaimani & Ouanaimi, 2011).

Precipitation

Precipitation intensity is a very important 
climatic factor that contributes to the suscep-
tibility of an area to be flooded (El Morjani et 
al., 2016; Hammami et al., 2019). The magni-
tude of flooding increases proportionally with 
the amount of rain and snowfall at a given loca-
tion. Estimating and mapping extreme precipita-
tion is an essential step in a flood susceptibility 
study, especially at the scale of a large watershed 
where climatological variables experience spa-
tiotemporal changes (El Morjani, 2002; Maren-
go et al., 2021; Tabari, 2020). In this study, we 
used the annual maximum total precipitation on 
4 consecutive days, to elaborate a maximum pre-
cipitation map for a return period of 10 years, 
which will allow a better evaluation of the flood 

susceptibility (Kouassi et al., 2018; Morjani, 
2011). The realization of this map goes through 
the following steps: 
 • Step 1: Statistical analysis of rainfall data and 

estimation of missing measurements, using 
daily rainfall data for the period 1990-2020 
was extracted from 8 meteorological stations 
located around the Assaka watershed. These 
data were retrieved from the Draa Oued Noun 
Hydraulic Watershed Agency (DONHBA);

 • Step 2: Calculation and statistical analysis of 
the series of maximum daily precipitation over 
four days for a return period of ten years using 
the distribution function of the Gumbel law 
(Andrade et al., 2015; Gumbel, 1957; Onen & 
Bagatur, 2017; Tie et al., 2007);

 • Step 3: Choice of the spatial interpolation 
method to obtain the maximum daily precipi-
tation map corresponding to a 10-year return 
period (Chen & Liu, 2012; Grillakis et al., 
2020). In the order to perform the study area 
precipitation map, we used multiple linear 
regressions, which show very satisfactory re-
sults in terms of rainfall mapping. This meth-
od takes into account the factors influencing 
the spatial distribution of rainfall (elevation, 
longitude, latitude, distance from the ocean, 
exposure, and slope) that are responsible for 
the precipitation spatial variation (El Mor-
jani, 2002; Goovaerts, 2000; Hu et al., 2019; 
Khaddari et al., 2022; Odabas et al., 2014). 
This technique describes the relationship 
between the dependent or explained vari-
able (water levels) and a set of explanatory 
variables (station altitude, longitude, latitude, 
and proximity to the Atlantic Ocean). The se-
lected model confirmed that almost 94.4% 
(R² = 0.9439) of the variation in rainfall is 
explained by the three explanatory variables 
retained in the regression equation. This is 
satisfactory, as the proportion that remains 
unexplained (5.6%). Furthermore, the value 
of the RMSE (2.2489) is low, indicating the 
performance of the model. The Fisher test 
(F) is used, as the probability associated with 
the F, in this case, is less than 0.0005, which 
means that we take a risk of error of less 
than 0.05% in concluding that the explana-
tory variables provide a significant amount of 
information to the model. The result of this 
analysis is a distribution map of the maxi-
mum annual rainfall on 4 consecutive days 
for a 10-year return period (Figure 4c).
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Analytical hierarchy process (AHP)

The objective of this study on flood risk map-
ping cannot be achieved if it depends on a single 
function (a single criterion) because “reality” is 
multidimensional, so it is natural to take into ac-
count several points of view to help in the deci-
sion (El Morjani, 2002). In this sense, the AHP 
is used primarily as a semi-qualitative approach 
to decision-making. It consists in performing a 
weighting based on a pairwise matrix compari-
son of causal factors (Saaty, 1990; Wang et al., 
2018). This approach has been widely applied 
for flood risk mapping. It is considered to be a 
flexible and robust technique, as it allows for the 
adjustment of criterion priorities by improving 
the decision-making process (d’Avignon & Sau-
vageau, 1996; El Morjani, 2002; Jari et al., 2022; 
Roy & Bouyssou, 1993; Saaty, 1990; Wang et 
al., 2018). In the methodology of this research, 
the application of the AHP goes through the fol-
lowing steps: (1) Standardization and weighting 
of assessment criteria; (2) Consistency check; 
(3) Aggregation of criteria.

Standardization and weighting 
of assessment criteria

Once all the flood susceptibility causality cri-
teria (the commonly used are Flow accumulation, 
Distance from the hydrographic network, Eleva-
tion, LULC, precipitation, slope and lithology) 
have been determined hierarchically (El Morjani, 
2002; Hammami et al., 2019; Morjani, 2011; Yur-
dakul, 2004), a pairwise comparison matrix was 
created for each factor to allow a concrete assess-
ment of the relative importance of each param-
eter. This comparison of the relative importance 
between criteria was rated from 1 to 9, indicating 
the less important to the much more important 
criteria, respectively (Table 2).

Our methodology consists of a hierarchical 
pairwise comparison using a 7×7 matrix, where 
the diagonal elements are equal to 1 (Table 3). 
The values of each row are compared to those 
of each column to define the relative impor-
tance and obtain the evaluation score. As an il-
lustration, flow accumulation is a strongly more 
important parameter than land cover, in this 
case, it should be assigned the value of 5. The 

Figure 4. (a) Land use map; (b) lithological map; (c) map of maximum 
4-day total precipitation for a 10-year return period
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line describes the importance of the occupa-
tion. Therefore, the line represents the inverse 
value of the pairwise comparison (e.g., 1/5 for 
flux accumulation). Then, we will calculate the 
normalized index by dividing the total rate by 
the individual rate (Table 3). Based on the indi-
vidual importance, a total weight (W) of 1 was 
assigned, after dividing among the seven param-
eters (Table 4).

Consistency check

The consistency ratio CR is considered a 
mathematical indicator of the judgment of a ran-
dom decision (Saaty, 1977, 1990; Saaty & Vargas, 
2012). A coherent judgment of the comparisons 
is made, the value of CR must be strictly lower 
than 0.1, otherwise, the coefficients of the com-
parison matrix are inconsistent. Then, in the order 
to evaluate the consistency level of our analytic 
hierarchy process matrix, the CR was used fol-
lowing (Eq. 1):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(1)

where: CR – consistency ratio;   
CI – consistency index;   
RI – randomized index.

Table 5 shows the values of the randomized 
index (RI). These values depend on the number of 
factors chosen (Saaty & Vargas, 2012; Yurdakul, 
2004). In our study, the number of factors is equal 
to seven, and therefore the RI = 1.32.

Table 2. Verbal and numerical expression of the 
relative importance of a pair of criteria

Verbal expression of the relative importance 
of one criterion compared to another Numerical

Equally important 1

Weakly important 3

Moderately important 5

Very important 7

Extremely important 9

Less important 1/2

Much less important 1/5

Very Much less important 1/7

Extremely less important 1/9

Table 3. Pairwise comparison matrix of flood causality parameters. F_acc: flow accumulation, D_HN: Distance 
from the hydrographic network, Pdmax_10 yrs: Annual maximum total precipitations for a 10-year return period

Parameter F_acc D_HN Altitude Land use Pdmax_10 yrs Slope Lithology

F_acc 1 2 2 5 5 5 7

D_HN 1/2 1 3 3 3 4 6

Altitude 1/2 1/3 1 3 3 3 6

Land use 1/5 1/3 1/3 1 2 2 3

Pdmax_10 yrs 1/5 1/3 1/3 1/2 1 2 3

Slope 1/5 1/4 1/3 1/2 1/2 1 4

Lithology 1/7 1/6 1/6 1/3 1/3 1/4 1

Table 4. Standardized flood susceptibility parameters for the hierarchical analysis process. Wi – weigh
Parameter F_acc D_HN Altitude Land use Pdmax_10 yrs Slope Lithology Wi

F_acc 0.36 0.45 0.28 0.38 0.34 0.29 0.23 0.33

D_HN 0.18 0.23 0.42 0.23 0.20 0.23 0.20 0.24

Altitude 0.18 0.08 0.14 0.23 0.20 0.17 0.20 0.17

Land use 0.07 0.08 0.05 0.08 0.13 0.12 0.10 0.09

Pdmax_10 yrs 0.07 0.08 0.05 0.04 0.07 0.12 0.10 0.07

Slope 0.07 0.06 0.05 0.04 0.03 0.06 0.13 0.06

Lithology 0.05 0.04 0.02 0.03 0.02 0.01 0.03 0.03

Table 5. Values of the randomized index used to calculate the consistency ratio
Number of criteria (n) 1 2 3 4 5 6 7 8 9 10

Randomized index (RI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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The consistency index can be calculated us-
ing (Eq. 2):

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(2)

where: 𝜆𝑚𝑎𝑥 – maximum proper value;   
n – number of criteria.

In our study, the CI was calculated for 𝜆𝑚𝑎𝑥 = 
7.35, n = 7, and RI = 1.32. Finally, the consistency 

ratio was calculated as CR = 0.04. This value is 
strictly below the threshold (0.1), which means 
an acceptable consistency of the pairwise com-
parison matrix.

Aggregation of criteria

Once the assessment criteria layers have 
been established and assigned to weighting co-
efficients (Table 6), it only remains to combine 

Table 6. Classes and weights of flood susceptibility decision factors using AHP
Causal factors Class Intensity Rating Weight

Flow accumulation 
(pixel)

> 7.106 Very high 10

0.33

5.106–7.106 High 8

1.106–3.106 Medium 6

2,4.105–1.106 Low 4

0–2,4.105 Very low 2

Distance from 
the hydrographic 

network (m)

0- 200 Very high 10

0.24

200–500 High 8

500–1000 Medium 6

1000–1500 Low 4

> 1500 Very low 2

Elevation (m)

0–350 Very high 10

0.17

350–500 High 8

500–800 Medium 6

800–1000 Low 4

> 1000 Very low 2

Land use

Alluvium and built-up area Very high 10

0.1

Agriculture High 8

Bare soil and rocky terrain Medium 6

Sparse vegetation Low 4

Forest Very low 2

Maximum 
precipitation (mm)

> 45 Very high 10

0.07

35–45 High 8

30–35 Medium 6

25–30 Low 4

< 25 Very low 2

Slope (%)

0–3 Very high 10

0.06

3–6 High 8

6–15 Medium 6

15–30 Low 4

> 30 Very low 2

Lithology

Sandstone and massive quartzite Very high 10

0.03

Limestone, siltstone, dolomite, 
shale, and sandstone with clay 

intercalation
High 8

Tuffs, alluvial cone, fractured 
limestones, and shales Medium 6

Terrace, old alluvial cone, scree, 
lacustrine limestone Low 4

Alluvium et recent Reg Very low 2
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these information planes using a mathematical 
formulation of a priori aggregation of criteria into 
a single criterion (Eq. 3). The weighted overlay 
of factors in raster format is performed using the 
raster calculator in ArcGIS 10.5.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(3)

where: A – aggregation of criteria;   
Pi – weight of criterion I;   
Vi – standardized value of the factor i 
criterion;     
n – number of criteria i.

Applying this mathematical formula, we ob-
tain the following result (Eq. 4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(4)

Fuzzy logic modeling (FLM)

FLM in a GIS environment is a successful 
knowledge-based method, highly adopted in 
several research fields (Hajaj et al., 2023; Nwa-
zelibe et al., 2023; Schwarz & Kuleshov, 2022). 
It has also allowed, a multifactor analysis to 
estimate the flood susceptibility in several ar-
eas around the world in a semi-qualitative way 
(Akay, 2021; Sahana & Patel, 2019; Vakhshoori 
& Zare, 2016). Floods are considered to be haz-
ards for which no suitable large-scale quantita-
tive probabilistic model exists. However, the 
fuzzy logic system allows for modeling cause 
and effect relationships, assessing the degree 
of risk exposure, and consistently ranking the 
main conditioning criteria, taking into account 
available data and expert opinions (Tah & Carr, 
2000). This approach also involves standard-
izing factors based on a series of mathematical 
formulae, which allow the modeling of impreci-
sion and uncertainty in complex scientific prob-
lems (Parsian et al., 2021; Zadeh, 1965).

Factors standardization with 
fuzzy membership function

In practice, fuzzy logic consists of stan-
dardizing or reclassifying raw input data into a 
normalized scale, using a transformation func-
tion judged by experts. Member values can 
take any value between 0 and 1, reflecting the 

degree of certainty of those members (Nanda-
lal & Ratnayake, 2011; Sonmez & Bizimana, 
2020). Values closer to 1 are the most suitable 
for the expected purpose (full membership), 
while those closer to 0 are the least suitable (no 
membership). Indeed, fuzzy membership func-
tions are numerous. In studies related to spatial 
flood susceptibility mapping, sets of input val-
ues are converted to fuzzy values using a linear 
fuzzy membership function (Sahana & Patel, 
2019; Siler & Ying, 1989). This function is pre-
sented as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(5)

This function defines a linear relationship 
with the minimum and maximum values. If the 
values are lower than the minimum value, 0 is 
assigned, while if the values are higher than the 
maximum value, 1 is assigned. This function is 
used to establish the fuzzification. For each fac-
tor, a membership function is determined, and 
then, based on the experts’ knowledge, these cri-
teria can be normalized (Table 7).

Fuzzy overlay

The application of fuzzy operators allows the 
generation of flood susceptibility maps. For this 
purpose, the five main operators were used in 
the fuzzy inference network (Sadeghi & Khala-
jmasoumi, 2015; Siler & Ying, 1989; Vakhshoori 
& Zare, 2016).
 • Fuzzy OR (Eq. 6) – this operation allows the 

extraction of a maximum degree of member-
ship and maximum uses. Indeed, between two 
membership functions, this operation chooses 
the maximum value.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(6)

where: μ1, μ2 et, μn – represent the values of the 
membership pixels in a raster;    
n – the number of membership pixels in 
the concerned raster.

 • Fuzzy AND (Eq. 7) – this operation allows in-
tersection which extracts the minimum degree 
of membership. It uses the minimum pixel 
value of all the rasters to generate the suscep-
tibility map.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(7)
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 • Fuzzy RODUCT (Eq. 8) – this operation con-
sists of the multiplication of the membership 
functions. The result in this case will be a 
small value of less than 1. In general, the pixel 
values in the final raster tend to be zero.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(8)

where: μi is the membership value of the pixels 
in factor i.

 • Fuzzy SUM (Eq. 9) – in contrast to the Fuzzy 
PRODUCT function, this operation consists 
of linearly combining the membership func-
tions, so that the final raster contains pixel 
values that tend towards 1. Therefore, the ex-
cellent class contains a very high number of 

Table 7. Fuzzification of factors using fuzzy logic methods
Causal factors Class Fuzzy membership value

Flow accumulation (pixel)

>7.106 1

5.106–7.106 0.8

1.106–3.106 0.5

2,4.105–1.106 0.2

0–2,4.105 0

Distance from the hydrographic network 
(m)

0–200 1

200–500 0.75

500–1000 0.5

1000–1500 0.25

> 1500 0

Elevation (m)

0–350 1

350–500 0.85

500–800 0.64

800–1000 0.3

> 1000 0

Land use

Alluvium and built-up area 1

Agriculture 0.8

Bare soil and rocky terrain 0.48

Sparse vegetation 0.32

Forest 0

Maximum precipitation (mm)

> 45 1

35–45 0.63

30–35 0.42

25–30 0.2

< 25 0

Slope (%)

0–3 1

3–6 0.86

6–15 0.54

15–30 0.17

>30 0

Lithology

Sandstone and massive quartzite 1

Limestone, siltstone, dolomite, shale, 
and sandstone with clay intercalation

0.73

Tuffs, alluvial cone, fractured 
limestones, and shales

0.56

Terrace, old alluvial cone, scree, 
lacustrine limestone

0.27

Alluvium et recent Reg 0
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pixels. Therefore this operation applies a low 
sensitivity to a position.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(9)

 • Fuzzy gamma (Eq. 10) – this operation repre-
sents the multiplication of the “fuzzy SUM” 
by the “fuzzy PRODUCT” to the power of 
gamma. The function becomes closer to the 
“fuzzy SUM” as gamma tends towards 1. On 
the contrary, it is closer to the “fuzzy product” 
when gamma tends to zero.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛 − 1

 

 

𝐴𝐴𝐴𝐴 = �𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

𝐴𝐴𝐴𝐴 = (0.33 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) + (0.24 × 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 
+(0.17 × 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 ) + (0.1 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸) + 
+(0.07 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) +  (0.06 × 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝐸𝐸𝐸𝐸) + 

+(0,03 × 𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

 

µ(𝑥𝑥𝑥𝑥) = 0 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 < 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛, µ(𝑥𝑥𝑥𝑥) 
µ(𝑥𝑥𝑥𝑥) = 1 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 𝑥𝑥𝑥𝑥 > 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, µ(𝑥𝑥𝑥𝑥) 

𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸𝐸𝐸 µ(𝑥𝑥𝑥𝑥) =  
(𝑥𝑥𝑥𝑥 −𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛)

(max− min )
 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥),𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 
µ(𝑥𝑥𝑥𝑥) = 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛{𝜇𝜇𝜇𝜇1(𝑥𝑥𝑥𝑥), 𝜇𝜇𝜇𝜇2(𝑥𝑥𝑥𝑥), … , 𝜇𝜇𝜇𝜇𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥)} 

 

µ(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 

µ(𝑥𝑥𝑥𝑥) = �(1 − 𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖=𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 
µ(𝑥𝑥𝑥𝑥) = (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾𝛾𝛾 × 
× (𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃)𝛾𝛾𝛾𝛾−1 

 

(10)

where: γ – a parameter chosen in the interval 0 and 
1. In this study, the value of the gamma 
operator (λ) is 0.9 (Parsian et al., 2021).

Validation procedures

To validate the flood susceptibility mapping 
models in the Wadi Assaka watershed, we used 
the locations of the historical inventories carried 
out within the study. The inventory of the flood-
prone areas of the Draa and Guelmim watersheds 
was provided by the Hydraulic Watershed Agen-
cy of Draa Oued Noun (DONHBA). In addition 
to flood-prone areas, the visualization of high-
resolution satellite images (0.41m) of the Geo-
Eye-1 sensor as well as the field works was used 
to validate the results of our study. Therefore, this 
step allowed obtaining relevant information on 71 
flooding sites, represented mainly by wadi beds, 
agricultural areas, road infrastructures, plains, 
and urbanized areas. On the other hand, 53 loca-
tions with a low risk of flooding were integrated. 
The ROC curve (Receiver operating character-
istics) allows us to evaluate the performance of 
the models, and it is often used for binary clas-
sification problems (0 or 1). The ROC curve is 
showing the relationship between the true posi-
tive rate (TPR) and the false positive rate (FPR) 
(DeLong et al., 1988; Mas et al., 2013). For this 
study, the TPR describes the proportion of all 
flood locations correctly classified as flood oc-
currences, while the FPR shows the proportion of 
non-flooded points incorrectly classified as flood 
locations (Bouamrane et al., 2022; Falah et al., 
2019; Vafakhah et al., 2020).

The flood susceptibility maps ROC curves 
were calculated using ArcGIS 10.5 software.  

The mapping becomes more accurate as the curve 
approaches the upper left corner of the graph. 
Once the rate curves have been developed, the 
corresponding areas under the curve (AUC) are 
calculated. For an ideal model, AUC=1, and a 
random model, AUC=0.5. A model is usually 
considered to be good when the AUC value is 
greater than 0.7. A well-discriminating model 
should have an AUC between 0.87 and 0.9. A 
model with an AUC above 0.9 is excellent (Carter 
et al., 2016; Vafakhah et al., 2020; Vakhshoori & 
Zare, 2016).

RESULTS AND DISCUSSION

Final flood hazard maps

After preparing all the input factors. We ap-
plied the AHP method using Equation 3. The 
weighted overlay of the factors in raster format 
was performed using ArcGIS 10.5 (Figure 6). 
While, the application of fuzzy operators (OR, 
SUM, PRODUCT, AND, GAMMA 0.9) allows 
the generation of FLM-based flood susceptibil-
ity maps of the study area (Figure 6). Indeed, the 
visual analysis of the results obtained by the ap-
plication of these methods on the selected factors 
showed that the three most relevant factors for the 
determination of flood risk are distance to rivers, 
flow accumulation, and elevation.

Evaluationg the performances and 
accuracies of the fuzzy methods

Flood susceptibility maps were generated 
based on fuzzy operators (OR, SUM, PROD-
UCT, AND, GAMMA 0.9) (Figure 5). Each flood 
susceptibility map was assigned to five intensity 
classes: very low, low, moderate, high, and very 
high; showing the percentages of occupied areas 
of each class for each model (Table 8). Fuzzy 
PRODUCT ranked a significant percentage of 
the study area as a very low susceptibility class 
(90.06%), while the highest susceptibility class 
represents only 0.8%. Next, fuzzy AND classified 
a large area (65.64%) in the very low susceptibil-
ity class, while, only 1.33% is a very high flood 
susceptibility class. Thereafter, fuzzy GAMMA, 
reveals the highest percentage of 38.08% as a very 
low susceptibility class, and the lowest percent-
age of 6.64% as a very high flood susceptibility 
class (Table 8). On the opposite, the highest flood 
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susceptibility classes were ranked as the largest 
area percentages with 64.42% and 39.23%, using 
OR and SUM operators, respectively. The small-
est area percentage (0.7%) with very low flood 
susceptibility was obtained by the OR operator, 
followed by SUM with a percentage of a very low 
flood susceptibility area of 4.23% (Table 8).

Figure 6 shows the ROC curves of the fuzzy 
operators used in this study. Only the fuzzy SUM 
and fuzzy OR operators showed the best results, 
with AUC = 0.901 for the SUM operator and 
AUC = 0.896 for the fuzzy OR. The other opera-
tors showed less relevant results, with an AUC 
value = 0.710 for the fuzzy GAMMA 0.9 op-
erator, and an AUC value = 0.708 for the fuzzy 
PRODUCT operator. Last is the fuzzy AND op-
erator, which has the lowest percentage accuracy 

(AUC = 0.668). In other words, the fuzzy SUM 
and fuzzy OR operators perform better than the 
other fuzzy operators (GAMMA 0.9, PRODUCT, 
and AND). 

For effective flood susceptibility management 
in the study area, the fuzzy SUM and fuzzy OR 
models are the best. While the fuzzy GAMMA 
0.9, fuzzy PRODUCT and fuzzy AND mod-
els are the least efficient. The low performance 
of these models can be due to their capacity for 
generalization and the way of manipulating the 
causal factors of the flood. Concerning the fuzzy 
GAMMA 0.9 and fuzzy PRODUCT models, they 
seem to under-generalize flood susceptibilities 
and only take into account the mean values of 
the conditioning factors. In addition, the Fuzzy 
AND model, gives the worst result, due to the 

Figure 5. Flood susceptibility zonation maps derived from (a) AHP; (b) Fuzzy AND; (c) 
Fuzzy SUM; (d) Fuzzy OR; (e) Fuzzy Product; (f) Fuzzy Gamma 0.9 models



76

Journal of Ecological Engineering 2023, 24(8), 62–83

inappropriate contribution of priorities between 
conditioning factors. For this model, the most 
relevant factors are rainfall and lithology. Never-
theless, it is interesting to note that fuzzy SUM 
and fuzzy OR operators remain the methods that 
are capable of providing useful information for 
monitoring, evaluating, and managing floods in 
the Assaka watershed.

Validation and comparison of the flood 
susceptibility maps using Fuzzy logic and AHP

From the visual interpretation (Figure 7), 
the maps simulated with both models show a 
fairly good agreement for the very sensitive ar-
eas, generally located downstream, towards the 
east of the watershed, and in the south. Com-
pared to the analytical hierarchical process 
(AHP), the fuzzy logic method is more sensi-
tive. Specific differences were distinguished, 
with some areas, such as the far northwest, be-
ing moderately sensitive according to the AHP 

method, whereas they were identified as highly 
sensitive according to the fuzzy logic method 
(SUM). Thus, the floodplain to the west of 
the watershed is completely characterized as 
highly susceptible to flooding according to the 
fuzzy logic model. However, the AHP method 
considers a very high to high susceptibility in 
the vicinity of the Wadis (Figure 7). 

In the Assaka watershed, the flood suscep-
tibility maps created by the AHP and fuzzy 
logic methods were classified into five classes 
(very high, high, moderate, low, and very low) 
by applying natural break statistics (Akay, 
2021). The flood maps created by both models 
were assessed using the GeoEye-1 satellite im-
age (Figure 7). The obtained maps by the two 
methods are compared and validated by field 
observations and satellite images (Figure 7d). 
The number of points where the flood suscep-
tibility was correctly assessed is 64 (90.01%) 
and 66 (92.29%) using the AHP and fuzzy logic 
models respectively. 

Table 8. Percentages of areas in each susceptibility class by using fuzzy logic models
Susceptibility 

classes Fuzzy AND Fuzzy PRODUCT Fuzzy OR Fuzzy SUM Fuzzy Gamma 0.9

Very high 1.33 0.8 64.42 39.23 6.24

High 2.64 0.26 15.14 28.18 12.17

Medium 20.32 3.18 11.05 8.32 19.09

Low 10.07 5.7 8.69 15.04 24.42

Very low 65.64 90.06 0.7 9.23 38.08

Figure 6. ROC curves calculated from the fuzzy logic model
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In this way, we were able to determine the dif-
ferent vulnerable areas. Indeed, the AHP method 
showed that 8.4% (578 km2) of the study area has 
a very high susceptibility, 21.6% has a high risk 
(1483 km2), 30.5% has a moderate risk, 27.2% 
has a low risk and the remaining 12.13% has the 
lowest susceptibility. Nevertheless, Fuzzy Logic 
showed that 39.29% (2700 km2) of the study wa-
tershed is affected by very high flood susceptibil-
ity, 28.18% (1935 km2) has moderate susceptibil-
ity and the remaining 24.27% has low to very low 
susceptibility (Figure 8).

To quantitatively determine which technique 
is more efficient, receiver operating characteristics 
(ROC) curves were used (Figure 8). Compared to 
the AHP model, the ROC curve for fuzzy logic is 
closer to the upper left corner of the graph. The re-
sults obtained showed good accuracy for the AHP 
model (AUC=0.893) and a much slightly higher 
accuracy for the fuzzy logic model (AUC=0.901). 
Indeed, the fuzzy logic model reveals much less ac-
curate results than the AHP method in identifying 

flood-susceptible areas. However, the AHP results 
are more compatible with several previous stud-
ies in the Assaka watershed (Bannari et al., 2018; 
Echogdali et al., 2022; Talha et al., 2019)

Fuzzy logic is a method that allows more flex-
ible combinations of weighted maps without any 
prior classification; thus, its implementation is easy 
by using a GIS environment. However, this tech-
nique also has limitations when the experts’ opin-
ions are not too clear with uncertainty and subjec-
tivity. Moreover, in several studies, the number of 
causal factors strongly influences the performance 
of the fuzzy logic model and in several cases, the 
fuzzy SUM operator is very sensitive, which makes 
this technique overestimate or underestimate the 
susceptibility (Akay, 2021; Bouamrane et al., 2022; 
Mudashiru et al., 2021; Vakhshoori & Zare, 2016).

AHP as well remains a widely used method 
to practice and doesn’t require a large amount of 
information. In flood susceptibility mapping, this 
technique has given satisfactory results in many 
studies around the world (El Morjani et al., 2016; 

Figure 7. Flood susceptibility maps in the Assaka watershed using (a) Fuzzy SAM 
method and (b) AHP method and a zoomed view of the Guelmim urban center (c) Fuzzy 

SUM-derived map, (d) GeoEye-1 satellite image, and (e) AHP derived map



78

Journal of Ecological Engineering 2023, 24(8), 62–83

Kazakis et al., 2015; Wang et al., 2018). Never-
theless, the main weakness of the AHP is the pair-
wise comparison between the factors, which can 
give good scores for some criteria and bad scores 
for others. Hence, the modeling quality using the 
AHP is influenced by the expert’s subjectivity (El 
Morjani, 2002; Mudashiru et al., 2021).

Numerous studies chose GAMMA-fuzzy 
logic in suitability analysis studies. As an exam-
ple, (Parsian et al., 2021) used AHP to extract a 
weight for the fuzzified flood factor layers, then, a 
GAMMA operator in the other to generate a flood 
hazard map in the western part of Iran. While 
the present study demonstrated that a compara-
tive analysis of the fuzzy operators is required to 
choose the optimum one. SUM-fuzzy logic gen-
erates more realistic results than GAMMA-fuzzy 
logic in our study area (Figure 5) as well as with 
a high AUC (90.1%). 

In this context, a more detailed comparison 
focuses on the urbanized center of Guelmim. This 
latter is characterized by the largest population, 
which amounts to 118,318 inhabitants, and un-
controlled land use that makes it very vulnerable 
to flooding. In addition, this area represents a part 
of the floodplain that is affected by catastrophic 
floods caused by Wadi Oum Laachar, Wadi Aman 
Ocehn, Wadi Assif Ouzro, and Wadi Sayed. 
These are fed by several river systems from the 
Anti-Atlas, which generates exceptional floods. 
These Wadis join and constitute the Wadi Assaka. 
Indeed, the fuzzy logic model results rank this 
area as highly susceptible to flood. This technique 
considers principally all the runoff areas (even the 
secondary ones) as areas of high susceptibility to 
a flood (Figure 7c). However, the AHP method 
gives priority to areas closer to the main river sys-
tems, flow, and elevation; this allows preferential 

mapping of areas that are very high to highly ex-
posed to flood risk (Figure 7e). 

In this study, both techniques practically show 
that susceptibility increases with increasing prox-
imity to the main Wadis, which are responsible for 
several catastrophic floods, which killed at least 28 
people during the period of 20-24 November 2014. 
Indeed, during this period, these Wadis (Oum 
Laachar, Aman Ocehn, Assif Ouzro, and Sayed) 
overflowed the two bridges located in the urban 
perimeter of the city of Guelmim, on the National 
Road No. 12 connecting Guelmim to Sidi Ifni and 
on the National Road No. 1 (Figure 7d). These two 
roads were cut off during this period. In addition, 
several irrigated perimeters were also affected, 
such as the Oum Aghanim perimeter, the Rouis-
sate perimeter, the Oum Laachar perimeter, and the 
Khadroua perimeter, which occupy a useful agri-
cultural area of 15,000 hectares. Thus, during this 
period, cuts in water, electricity, and telecommu-
nication networks; undermined roads, and houses 
were invaded and destroyed (Figure 9).

Implications of this study

Our study consists in mapping the flood risks 
in the Assaka watershed, using a multi-factorial 
assessment approach (AHP and FLM), carried 
out in a GIS environment. Seven important fac-
tors conditioning the occurrence of floods were 
introduced in the models, namely: flow accumu-
lation, elevation, slope, land use, distance to the 
river, lithology, and rainfall. Therefore, all prior-
ity areas, which present a very high risk, must be 
considered to better plan the management and 
restoration of Wadis. This will reduce the dam-
age and losses caused by floods in the study area. 
Hereby it can be said that both approaches are 

Figure 8. (a) AUC values of AHP and Fuzzy logic models; (b) percentages of 
flood susceptibility area by class, using fuzzy logic and AHP method
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equally effective in other regions. Indeed, the re-
sults of this paper can be used to: 
 • the improvement of the hierarchy of flood 

highly susceptible regions, and identification 
areas that urgently require hydraulic modeling 
studies, immediate rehabilitation (minor beds 
controlling and improvement of the sewerage 
system), and hydraulic developments (con-
struction of dykes, dams, bridges, and protec-
tive walls...) against flood events;

 • the elaboration of urbanization suitability 
maps, which allows appropriate planning of 
urban and rural living areas, agricultural areas, 
transport infrastructures, and industrial areas;

 • equipping the main Wadis of the catchment 
area (upstream, middle, and downstream) with 
an early warning system of floods, by implant-
ing hydrometeorological stations, capable of 
following flows and water heights in a regular 
way. Thus, the development of a web mapping 
platform with public access, for the updated 
location of flood histories;

 • further research into the relevant reasons for 
variations in performance between the models 
used. In addition, try other more advanced tech-
niques such as artificial intelligence methods 
that can improve the spatial mapping of floods 
in the Assakawatershed or other regions.

CONCLUSIONS

The fundamental objective of our study is to 
present a practical and simple methodology to rec-
ognize the degree of flood susceptibility in the As-
saka watershed. Indeed, the AHP method and the 
fuzzy logic modeling integrated with GIS, have 
proven to be efficient and provide better results 
necessary for the efficient monitoring and manage-
ment of flood risks. The integration of AHP and 
several fuzzy logic models in the present study al-
lowed us to obtain convenient information about 
the effect of several relevant factors for an accurate 
flood susceptibility mapping. Moreover, based on 
the obtained results main conclusions of our study 
can be summarized as follows. The observation of 
close correlations between flood-prone areas and 
spatial distributions of conditioning factors, in-
cluding distance to rivers, flow accumulation, and 
elevation. Only the fuzzy SUM and fuzzy OR op-
erators showed the best results for the fuzzy logic 
method, with AUC = 0.901 for the SUM opera-
tor and AUC = 0.896 for the fuzzy OR. The AHP 
method (AUC = 0.893) and the SUM operator of 
the fuzzy logic method (AUC = 0.901) can be con-
sidered a complementary technique, very power-
ful and capable of providing reliable information 
for the monitoring and management of floods in 

Figure 9. Photographs showing the damage caused by the floods in the Assaka watershed’s urbanized areas; (a) 
Flooded zone at the center of Guelmim City; (b) Collapsing at the Bridge on the RN1; (c) Raising of the water 
level in the wadi Oum Laachar during a flood period; (d) Destruction of roadways in the Wadis neighborhoods
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the Assakawatershed. Initiate further studies to 
further explore the reasons for variations in perfor-
mance between the models used. In addition, we 
plan to test the methods of artificial intelligence 
(Data-driven algorithms), which can improve the 
assessment of flood susceptibility. This work is 
considered as part of the first steps towards the en-
hancement of a geospatial dataset, supplementing 
other thematic maps (hydrogeology, pedology, lin-
eaments, roads, social factors, etc.) to reconstitute 
useful support for any further investigations in our 
study area context.
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