
Received 17 May 2023, accepted 13 June 2023, date of publication 10 July 2023, date of current version 17 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3293643

Detecting Anomalies Through Sequential
Performance Analysis in Virtualized
Environments
CHARLES F. GONÇALVES 1,4, DANIEL SADOC MENASCHÉ 2, (Member, IEEE),
ALBERTO AVRITZER 3, (Member, IEEE), NUNO ANTUNES 1, (Member, IEEE),
AND MARCO VIEIRA 1, (Member, IEEE)
1Centre for Informatics and Systems of the University of Coimbra (CISUC), Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra,
Portugal
2Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
3EsulabSolutions Inc., Princeton, NJ 08536, USA
4Federal Center for Technological Education of Minas Gerais (CEFET-MG), Board of Information Technology, Belo Horizonte 30421-169, Brazil

Corresponding author: Charles F. Gonçalves (charles@dei.uc.pt)

This work is funded by Project ‘‘Agenda Mobilizadora Sines Nexus’’. ref. No. 7113), supported by the Recovery and Resilience Plan
(PRR) and by the European Funds Next Generation EU, following Notice No. 02/C05-i01/2022, Component 5-Capitalization and Business
Innovation-Mobilizing Agendas for Business Innovation, by national funds through the FCT-Foundation for Science and Technology, I.P.,
within the scope of the project CISUC-UID/CEC/00326/2020, grant SFRH/BD/144839/2019, by European Social Fund, through the
Regional Operational Program Centro 2020, and by CEFET-MG and partially by CAPES, CNPq, and FAPERJ under grants
315110/2020-1, E-26/211.144/2019 and E-26/201.376/2021.

ABSTRACT Virtualization enables cloud computing, allowing for server consolidation with cost reduction.
It also introduces new challenges in terms of security and isolation, which are deterrents for the adoption of
virtualization in critical systems. Virtualized systems tend to be very complex, andmulti-tenancy is the norm,
as the hypervisor manages the resources shared among virtual machines. This paper proposes a methodology
that uses performancemodeling for the detection of anomalies in virtualized environments that can be caused,
for instance, by cyberattacks. Experiments are conducted to profile the system operation under normal con-
ditions for its business transactions. The results are used to calibrate a performance model and to understand
the impact of its parameters on the false positive probability. During operation, the system is monitored, and
deviations are detected by applying a sequential analysis algorithm (the bucket algorithm). The methodology
is evaluated using a representative cloud workload (TPCx-V), which was profiled during a set of controlled
executions. We consider resource exhaustion anomalies to emulate the effects of attacks affecting the
performance of the system. Our results show that the proposed approach is able to successfully detect
anomalies, with a low number of false positives, and spot possible residual effects of anomalies on the system.

INDEX TERMS Anomaly detection, modeling, performance, security, virtualization.

I. INTRODUCTION
Virtualization environments enable the multiplexing of phys-
ical resources among many Virtual Machines (VMs) [1]. In a
virtualized environment, cloud providers that use an Infras-
tructure as a Service (IaaS) model to share their infrastructure
with multiple tenants rely on a virtual machine manager,
also known as hypervisor [2], to allocate physical resources

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

to each virtual machine. Efficient, fair, and secure resource
allocation are critical aspects of the IaaS model.

The ubiquity of cloud solutions [3] is a potentially fertile
ground for security and privacy breaches [4], [5], [6], [7].
In a multi-tenant environment, a legally acquired virtual
host may initiate security attacks, where a malicious user
exploits hypervisor security vulnerabilities to attack a tenant
that shares the same physical resources. Detecting and miti-
gating such attacks is an important step to counter the threat
posed to the existing IaaS systems and, more broadly, to the
virtualization culture [8].

70716
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-2870-8962
https://orcid.org/0000-0002-8953-4003
https://orcid.org/0000-0002-9401-9663
https://orcid.org/0000-0002-6044-4012
https://orcid.org/0000-0001-5103-8541
https://orcid.org/0000-0002-5169-9232

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

Some systems only use virtualization capabilities to sim-
plify the management of standalone applications, benefiting
from some functionalities that come with cloud computing.
But there are other systems that spread across multiple
servers, splitting their services into different components.
These orchestrated components, potentially located in dis-
tinct physical servers providing multiple different types of
services (e.g., transactional systems, interface handling, long
batching jobs, etc), compose a complex system and work
together to support the businessmodels and operations. In this
work, we refer to such configurations as complex virtual
systems.

The design of intrusion detection systems (IDSs) for
detecting anomalies, such as zero-day attacks and advanced
persistent threats (APTs) [9], [10] in virtualized environ-
ments, raises several domain-specific challenges [11], [12].
In particular, (i) it is challenging to comprehensively define
normal behavior in a diverse cloud environment, (ii) mali-
cious attackers may adapt their behavior to fit the domain
definition of ‘‘normal behavior’’, and (iii) data on anomalies
at cloud environments, whichwould be instrumental for train-
ing purposes, are hard to obtain. To tackle those challenges,
we focus on anomaly detection approaches based on system
performance signatures. In particular, performance signatures
have the ability to address any attack that impacts the over-
all system performance, including the potential of detecting
zero-day attacks [11], [12], as those approaches are based on
detecting performance deviations and do not require detailed
knowledge of attack history [12].

In this context, we pose the following research question:

RQ: Is it feasible to efficiently tune mechanisms
for anomaly detection in complex virtualized sys-
tems trading off between contending factors such
as the time to detect anomalies and the rate
of false-positives under a principled model-based
framework?

This paper proposes a methodology for anomaly detec-
tion in complex virtualized systems based on performance
deviations. Initially, the methodology profiles the system
operation under normal conditions by computing the mean
and standard deviation throughput of every transaction in
the target system, establishing its baseline profile. Then,
during system operation, performance is monitored to cap-
ture deviations from the baseline profile, using the bucket
algorithm [13] to signal the anomalies following the tuning
strategy. The proposed tuning of the anomaly detection
mechanism leverages a calibrated analytical model that
is used to control the rate of false-positives in a principled
manner [11].

Themethodologywas validated by running the TPCx-V[14]
workload, which was designed to model large virtualized
infrastructures that support transactional systems. Security
attacks that impact system performance are emulated by
using fault injection (related work on dependability assess-
ment based on fault injection can be found in [15] and [16]).

The experiments show the applicability and effectiveness
of the proposed anomaly detection methodology. In fact,
in our experiments, it was possible to detect most of the
performance deviations, with a low number of false-positives
(precision of 90% and 98% for the worst and best configura-
tions). The methodology is also instrumental in identifying
the residual effects of failures: we observed more promi-
nent transient residual effects after anomalies that caused
more significant performance degradation during their active
period. Indeed, severe failures imply extended recovery peri-
ods [17], [18].

Our proposal has the advantage of being less intrusive
than alternatives that rely on deep packet inspection for
monitoring and anomaly detection [6], [19]. In fact, it is
only necessary to monitor the throughput of the business
transactions, making it less dependent on the supporting
technology stack and, therefore, more portable. Another
advantage is the anomaly detection algorithm simplicity,
which is easier to train, understand, and tweak than algo-
rithms that need complex learning processes. These factors
make the overall methodology easier to use and more appli-
cable in practice.

In summary, our contributions are the following:
(i) A novel anomaly detectionmethodology that monitors

business transactions throughput using the bucket algorithm
(Section III).

(ii) An analytical model that can be used to parame-
terize and control the anomaly detection mechanism. The
model can be used to manage the tradeoff between the time
to detect an attack and the rate of false alarms (Section IV).
(iii) An experimental assessment of the methodol-

ogy in practice using a representative system and attacks.
We established the feasibility of detecting attacks based on
non-intrusive user-level performance metrics that are avail-
able in production environments (Sections V and VI).

(iv) A model-driven principled mechanism design that
supports what-if assessment of the anomaly detection algo-
rithms parameterization (Section V-C).
This paper is an extended version of [20], where the

anomaly detection approach with its analytical performance
modeling was presented and validated. Among the novelties
in the extension, we present 1) an attack detection method-
ology encompassing exploratory, profiling, and operation
phases (Section III), 2) a unified framework for sequen-
tial analysis, having the bucket algorithm as a special case
(Section IV-F), 3) an additional case study (Section VI), and,
4) derivation of formal results in Appendices A to C.

The remainder of the paper is organized as indicated in the
summary of contributions above. Section II covers related
work, followed by our contributions in Sections III-VI and
Section VIII concludes and discusses future work.

II. RELATED WORK
This section reviews prior art and compares it with the
research presented in this paper. There is a vast literature on
machine learning techniques for anomaly detection, applying

VOLUME 11, 2023 70717

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

Convolutional Neural Networks [21], Long Short Term-
Memory [22] and Sequential Deep Learning [23]. There are
also works using classical techniques such as CUSUM [24],
[25], [26]. Those techniques are usually applied over the
underlying system performance metrics (CPU, memory, etc.)
to detect operational anomalies. In ourwork, we are interested
in assessing the use of sequential testing techniques over
the service throughput metric to evaluate the capability of
detecting malicious anomalies under a virtualized system.

A. SECURITY ISSUES RELATED TO CLOUD
MULTI-TENANCY
Multi-tenancy with isolation among tenants is the most
widely used model in cloud-computing environments. How-
ever, regardless of the hardware isolation mechanisms used,
there have been many recently reported security intrusions
across this isolation barriers [27]. In [28] and [29], the
authors discuss security issues related to running the hyper-
visor in cloud environments. For example, a malicious
virtual machine running over the hypervisor could attempt
to break the hardware isolation barrier, violate privacy rules,
or attempt to compromise the hypervisor, e.g., through a sys-
tem resource exhaustion causing a Denial-of-Service (DoS)
attack. Those works also discuss architecture features that
are required to mitigate security vulnerabilities. In this paper,
we focus on detecting anomalies in operational systems under
the assumption that the aforementioned vulnerabilities cannot
be fully prevented.

The tracking of system calls can be used to implement IDSs
for virtualized environments, as shown in [30]. The idea con-
sists of watching for, during execution, the anomalous system
call sequences in the user programs. The assessment in [30]
used a Linux KVM virtual machine to collect the system
calls from user programs. Results show a tradeoff between
detection and time efficiency when considering different sys-
tem call sequence lengths. Nonetheless, benchmarking the
performance of IDS tools is a challenging problem [31],
motivating simpler and interpretable detection methods. Our
work is complementary to [30], as we indicate that IDSs
can benefit from anomaly detection approaches that are less
intrusive than those reported in [30], relying on [30] only on
specific scenarios.

B. ANOMALY DETECTION FOR CYBERSECURITY
An approach for anomaly detection consists in running
sequential hypothesis tests [32], [33], [34]. In [34], sequential
hypothesis tests are used for the detection of malicious port
scanners. The authors have developed a link between the
detection of malicious port scans and the theory of sequential
hypothesis testing. They have also shown that port scanning
can be modeled as a random walk. The detection algorithm
matches the random walk to one of two stochastic processes,
which correspond to malicious remote hosts or authorized
remote hosts. The approach considered in our paper is similar
in spirit to that considered in [33] and [34], as our analytical

results are derived from a birth-death Markov chain. This
Markov chain can be interpreted as a random walk, where the
system of buckets will fill as the system degrades and empty
as the system recovers (see Section IV-C).

Previous works have considered anomaly detection
approaches using performance signatures [35], [36], [37],
[38]. The work in [36] introduces a framework that detects
anomalous application behavior using regression-based mod-
els and application performance signatures. This method
uses the concept of profiling system resources, such as CPU
demand. Then, [37] builds on top of [36] and proposes an
anomaly detection approach based on performance signa-
tures from CPU, I/O, memory, and network usage for the
detection of security intrusions. The approach introduced
in this paper outperforms IDSs based on security intrusion
history [12] because the latter cannot detect zero-day attacks.
The approach on [38] uses Principal Component Analysis
(PCA) over the system metrics to reduce the number of
evaluated metrics and uses a reliability model to dynamically
monitor the system for anomalies increasing the timeliness of
the anomaly detection.

Another technique to detect anomalous behavior is chaos
engineering [39], [40]. The main idea is to hypothesize a
steady-state by a measurable output, and create ‘‘chaos’’ into
the system, i.e., inject some faults to cause errors. Afterward,
evaluate whether the hypothesis that the system will behave
properly holds. Despite not being explicitly designed for
security, previous work [41] has applied chaos engineering
to evaluate the security of public clouds. The methodology
of our work can be applied under the framework of chaos
engineering to identify anomalies, especially in virtualized
systems.

C. BUCKET ALGORITHM AND SEQUENTIAL DECISION
MAKING
The performance of signature-based intrusion detection sys-
tems relies on intrusion detection algorithms that account
for workload variability to avoid a high rate of false-positive
alerts. The Bucket Algorithm (BA), introduced in [42], is an
example of a workload-sensitive algorithm. Anomaly detec-
tion using the BA inspects the last sample of the metric
of interest and compares it against the calibrated mean and
standard deviation of the same metric. Then, it relies on the
central limit theorem [13] to assess if the last samples of the
metric comply with normal behavior or represent an anomaly.
In Section IV we revisit the BA mechanism and present an
analytical model that is instrumental to parameterizing theBA
from experimental data.

Sequential probability ratio test [33], [34] and the BA
mechanism have been previously proposed to detect attacks
in networks. Their analysis involves a random walk birth-
death process. According to the bucket algorithm, for
instance, in the initial state, all buckets are empty, and in the
final state, all buckets are full. Then, a birth-death process
captures the random walk corresponding to balls being added

70718 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 1. Overview of the methodology application life cycle.

and removed from the buckets. Understanding the mean time
to reach the final state, one can tune the number of buck-
ets and the depth of each bucket in a principled way (see
Section IV).

D. COVERT ATTACKS
Our approach cannot detect attacks that are purposely
designed to be covert. For instance, it is known that there
are theoretical limits for the detectability of volume-based
attacks, including certain sorts of DDoS attacks [32], [43].
Despite the fact that those attacks are theoretically guaranteed
to be covert when the number of bytes transmitted through the
network is the sole measure available for the defender, the
joint measurement of memory and CPU usage may allow the
detection. The joint analysis of multiple metrics for detecting
attacks that are purposely designed to be covert is beyond our
scope and is left as a subject for future work.

III. ATTACK DETECTION METHODOLOGY
The attack detection methodology introduced in this paper
supports the anomaly detection approach by coping with
changes in the operational profile, as the monitored systems
commonly have different loads and demands over time.

Figure 1 depicts the high-level application of themethodol-
ogy. As we can observe, it consists of three main phases: (A)
exploratory analysis, which allows determining the most
effective way to monitor the system based on its charac-
teristics; (B) profiling, which evaluates the system on its
expected regular operational profile(s) [44] to extract infor-
mation about the habitual behavior and its performance; and
(C) operation, in which the system executes for its intended
purposes, and we use all data and knowledge from the previ-
ous phases to report deviations, identifying them as anomalies
or attacks.

The utilization of cloud computing environments may
result in a variation in the accessibility of provided resources
such as CPU, RAM, and disk I/O [45]. In extreme cases, a VM
or a group of VMs that share the same physical hardware
consume an excessive amount of resources (such as CPU,
memory, or disk I/O), affecting the performance of other
VMs sharing the same host. Such ‘‘noisy neighbors’’ [45],
[46] cause anomalous effects in the environment. To avoid
such excessively noisy events, numerous approaches could be
employed, such as obtaining reserved capacity and procuring
service tiers with stronger isolation guarantees, which are
typically available in most cloud providers. In this study,
we assume that the system under test might be vulnerable to

noisy neighbors, and as a result, it is critical for the system
maintainers to be aware of such occurrences.

It is known that the throughput of a single workload can
vary over time [47], and the methodology handles transient
variations in throughput. Still, if the workload changes over
a coarser time scale (e.g., holiday/promotion seasons), the
operational profile will change, and an iteration to accom-
modate that new profile is needed, noting that some profiles
are expected to repeat from time to time (e.g., during holi-
day seasons). Also, any changes in the system may require
an evaluation of relevant aspects to add to the monitoring
surface. The optimal integration of a change detection mech-
anism into the overall monitoring system is out of the scope
of this paper and is left as a subject for future work.

When considering security issues related to virtualiza-
tion [48] and associated attacks [49], [50], our approach can
be applied to various types of anomalies and attacks that
arise in complex systems. Our approach can detect attacks
that cause a system component to halt and disrupt the overall
throughput. Examples of such attacks that compromise the
running state of the hypervisor and its VMs include Hyper-
visor/VM Crash and Resource Starvation [49]. Additionally,
our approach can also be applied to other categories of
attacks that impact the hypervisor and its VMs, degrading the
overall throughput at varying intensities, such as classical net-
work attacks, VM sprawl, and resource exhaustion. As these
attacks alter the throughput distribution, our approach is a
candidate to detect such anomalies. In Section V, we illustrate
the applicability of our approach using a resource exhaustion
attack.

The attack classification presented by [48] establishes a
hierarchical structure with multiple attack classes, where
Compromise-Based Attacks are at one of the top levels. Such
attacks have the potential to compromise any component
of a complex system, leading to situations that disrupt the
overall system throughput. In the event of such situations, our
approach can be used to detect anomalies and assist system
maintainers in addressing those anomalies.

The phases of the proposed methodology are detailed in
Figure 2, and explained in the ensuing sections.

A. EXPLORATORY ANALYSIS PHASE
This phase has the objective of determining the surface used
to monitor the system performance. To achieve that goal, the
user needs to follow three main steps:
A.1) Analysis: evaluate the internal aspects of the sys-

tem, such as the architecture, components, operations, and
resources that are available for monitoring to define how to
characterize the system performance.
A.2) Exploration: the tacit knowledge of the system is

essential, and a set of executions (E on Figure 2) is pre-
scribed for exploratory analysis. During those executions,
all monitored data should be collected and analyzed to
understand the metrics that effectively translate into useful
measurements.

VOLUME 11, 2023 70719

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 2. Diagrams showing the three distinct sets of runs present on our methodological approach: Exploratory, Profiling, and
Operation.

A.3) Definition: use the outputs of previous steps to
determine the monitoring surface, i.e., combine the tacit
knowledge and the internal aspects to define which compo-
nents and metrics to use in the following phases.

B. PROFILING PHASE
This phase has the objective of evaluating the environment
during the execution of its expected regular operational pro-
files [44] to establish the statistical parameters that represent
those profiles. Note that by conducting profiling within a
cloud provider, our approach intrinsically captures a number
of effects in the regular operational profiles, such as the
tolerated performance interference across VMs that is often
observed in cloud environments, as noted in [46]. The follow-
ing procedures are needed:
B.1) Golden runs definition: collect data under normal

operating conditions using the monitoring surface. These
golden runs are the primary reference for system behavior
without faults or attacks. We split these runs into two inde-
pendent sets: a first one, Profile, used to compute the baseline
metrics, and a second one, used to Validate the performance
parameterization.
B.2) Baseline metrics extraction over the monitoring

surface: compute the baseline metric for each subsystem,
operation, resource, and profile. Extract statistical data from
the metrics defined over the monitoring surface.
B.3) Performance model calibration: apply the empiri-

cal data to determine the optimal values that minimize the
number of false-positives (FP) alerts. We are assessing exper-
imental runs under no attack conditions. The performance
model determines which parameters are best suitable for the
tests. Then, we account for the number of alerts that a given
setting will cause. Therefore, we can define the algorithm
tolerance for the number of FPs according to user preferences.
The performance model will assist in minimizing the FP rate.
B.4) Baseline validation: check the validity of the deter-

mined parameters by applying the detection algorithm using

the Golden Runs from the V group and check if the number
of alerts (FP) is in the defined criteria.
B.5) Parameterization adjustment: during the baseline val-

idation, calibrate the model until the alert rate meets the
defined objective.

C. OPERATION PHASE
At this point, the anomaly detection algorithm is fully config-
ured to monitor the system in production and detect security
attacks that cause performance degradation. Thus, in this
phase, we take advantage of all the data and knowledge from
the previous ones to search for anomalies or attacks during
the system’s operation. We need to:
C .1) Define a criterion: that concisely determines an

alert condition. As false-positives can be expected in some
transactions, we need to determine if an alarm in a specific
transaction will trigger an alert or not. For instance, only
alarms in critical subsystems, or multiple alarms in certain
transaction subsets, will trigger an alert.
C .2) Monitor the operation: integrate the detection

algorithm into the daily activity by continually watching the
monitoring surface using the detection algorithm with the
optimal parameters.

Finally, the system’s administrators must take into con-
sideration the need to monitor the change in the operational
profile, which will trigger a new iteration of the methodology

IV. ANOMALY DETECTION MECHANISM AND MODEL
In this section, we describe the anomaly detectionmechanism
used in the proposed methodology and also the principled
analytical model proposed.

A. ANOMALY DETECTION MECHANISM
The anomaly detection algorithm based on performance
degradation works by continuously measuring the through-
put, x̂, and maintaining B buckets of depth D, whose state
depends on the history of the most recent throughput values,
as shown in Figure 3.

70720 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 3. Bucket Algorithm dynamics: System of buckets diagram
representing the dynamics of the detection algorithm showing B buckets
of depth D each. d is the number of tokens in the current bucket, b. D and
B must be properly parameterized according to the system under test.
Note that a buffer underflow indicates recovery from transient
performance degradation, while an overflow of bucket B triggers a
security alarm.

The scalar value b is a pointer to the current bucket, b =
1, . . . ,B, and d is the number of recent throughput samples
that deviated from a given target, d = 0, 1, . . . ,D. We refer
to d as the number of tokens in the current bucket. The total
number of tokens in all buckets, in turn, is a proxy for the
system degradation level.

Let µ be the baseline average throughput, and σ be the
baseline standard deviation. Both µ and σ can be derived
from the execution of controlled experiments (golden runs).
The pointer b to the current bucket is used to determine the
current target throughput, which is given by

x̃ = µ− (b− 1)σ. (1)

After each throughput sample is collected, if its value is
smaller than x̃ the number of tokens in the current bucket is
incremented by one.

Note that according to Eq. (1) the target throughput could
be negative. To avoid scenarios wherein the target throughput
is negative or negligible, i.e., wherein the number of tokens
cannot be incremented, we introduce a constant ϵ, that serves
as a lower bound on the target throughput value, x̃ = max(µ−
(b − 1)σ, ϵ). Throughout this paper, in all the scenarios of
interest, the right-hand side of (1) is strictly positive and non-
negligible. Therefore, we let ϵ = 0.

The rationale behind the target throughput goes as follows.
At the initial bucket, the target throughput is µ: any deviation
of the throughput to values smaller than µ causes an increase
in the number of tokens in the bucket. Then, each additional
bucket corresponds to a smaller target throughput. In partic-
ular, once the current bucket overflows (or underflows), the
target throughput x̃ is shifted downward (or upward) by one
standard deviation.

By decreasing the target throughput as a function of b,
as in Eq. (1), the goal is to prevent false alarms. Indeed,
adding tokens to buckets becomes more challenging as b
grows, i.e., as we move from left to right in Figure 3. Ulti-
mately, when all buckets overflow, a performance degrada-
tion event is detected, and an alarm is triggered. Alternatively,
when all buckets underflow, the system has recovered from a
transient performance degradation event.

The proposed performance degradation detection algorithm,
hereinafter referred to as the Bucket Algorithm (BA), is given
by Algorithm 1.

The performance degradation detection algorithm can be
tuned by varying the bucket depth, D, and the number of
buckets, B. The larger the product D × B the longer it takes

Algorithm 1 The Bucket Algorithm
1: b← 1; d ← 0 { buckets are empty}
2: for each new throughput sample x̂ do
3: if (x̂ < µ− (b− 1)σ) then
4: d ← d + 1 { add a token to the current bucket}
5: else
6: d ← d − 1 { remove a token from current bucket}
7: end if
8: if (d > D) then
9: d ← 0; b← b+ 1 { bucket overflow}
10: end if
11: if (d < 0 and b > 1) then
12: d ← D; b← b− 1 { bucket underflow}
13: end if
14: if (d < 0 and b = 1) then
15: d ← 0 { recovered from transient degradation }
16: end if
17: if (b > B) then
18: alarm()
19: end if
20: end for

for the algorithm to detect the performance degradation. The
statistical analysis of the behavior of this family of BAs has
been described on [13].

B. HYPOTHESIS TESTING
The system administrator continuously considers two alter-
native hypotheses: (i) null hypothesis H0 corresponding to
a situation where there is no attack taking place, and (ii)
alternative hypothesis H1 meaning that the system is under
attack. Then, the key quantities of interest can be defined as a
function of H0 and H1. To simplify the presentation, in what
follows, time is measured in the number of collected samples.
Definition 1: The mean time until a false alarm under

H0 is denoted by AB(D).
As discussed in the following section, AB(D) is given by

the mean time to reach the absorbing state of a Markov chain
characterizing the bucket algorithm.WhenB = 2, we provide
closed-form expressions for AB(D).
Definition 2: A lower bound on the number of samples

until a true-positive under H1 is denoted by L. Assuming all
buckets are initially empty, we let L = BD.
Definition 3: The probability of a false alarm under H0 is

the probability that an alarm is triggered outside an attack,
fB(D) = P(R < T), where R is a random variable with mean
AB(D) characterizing the time until an alarm is triggered, and
T is a random variable withmean 1/α characterizing the time
until an attack occurs.

In this paper, except otherwise noted, we assume that fB(D)
depends on R and T only through their means.
Definition 4: The expected cost of a given system param-

eterization is a weighted sum of the probability of false-
positives, computed under H0, and a lower bound on the
number of samples to detect an attack, computed under H1,

C(p,w,D,B, α) = BD+ wfB(D) (2)

VOLUME 11, 2023 70721

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 1. Table of notation.

Table 1 summarizes the notation introduced in this section.
Additional details on how to estimate AB(D) and fB(D) are
provided in Sections IV-C and IV-D, respectively. The cost
function (2) (Definition 4) will be instrumental to parameter-
ize the bucket algorithm in Section IV-E.

C. ANALYTICAL MODEL
Simple algorithms to detect attacks, such as the BA, can be
tuned using first principles.

The larger the depth of the bucket, the lower the false-
positive probability, but the longer it takes for a true-positive
to be identified. To simplify the analysis, we work under
the assumption that anomalies, e.g., caused by attacks,
will change the throughput distribution, and will always be
detected. However, the number of samples to detect the attack
may vary depending on the depth of the bucket. Our second
key simplifying assumption is that the number of samples to
detect an anomaly is much smaller than the number of sam-
ples collected before getting a false-positive (which should
be always the case in practice: the time until a false-positive
should be much longer on average than the time until a true-
positive). These are acceptable assumptions as the target of
the methodology are issues that affect the system perfor-
mance and also considering that false-positives will only be
caused by unexpected changes in the operation profile, which
are not frequent.

We aim at answering the following question: what is the
smallest bucket depth to produce a false-positive probability
bounded by a given threshold?
In the following, we introduce a discrete-time birth-death

Markov chain (DTMC) to characterize the behavior of the
BA. State (b, d) of the Markov chain corresponds to the setup
wherein there are d balls in bucket b, and D balls in buckets
b− 1, . . . , 1.

Each transition of the DTMC corresponds to the collec-
tion of a new sample. Such a sample causes the system to

FIGURE 4. Discrete time Markov chain characterizing the behavior of the
BA. Each transition corresponds to the collection of a new sample.

transition from state (b, d) to one of its two neighboring
states. Let pi be the probability that the number of balls at
bucket i increases after a new sample is collected. Then,
pi = P(x̂ < µ − (i − 1)σ |b = i), for 1 ≤ i ≤ B. We denote
the vector of such probabilities by p, where the i-th element
of vector p equals pi. The entries of the transition probability
matrix are readily obtained from Figure 4.

Once the terminal absorbing state is reached an alarm is
triggered. The DTMC is illustrated in Figure 4. The number
of samples collected until absorption accounts for a tradeoff
between the mean time until (a) a false alarm, in the absence
of attacks, and (b) a detection, in the presence of an attack.
Larger values of bucket depth D favor the reduction of the
former but increase the latter.

Let ÃB(D; p) be the time until absorption, measured in the
number of collected samples, accounting for B buckets of
depthD each. We denote its mean by AB, E(ÃB) = AB. Under
the hypothesis of no attack, ÃB is the time for a false alarm.
We derived a closed-form expression for AB (Appendix B-
A), which is instrumental to handle tradeoffs in the choice of
the bucket depth D as illustrated in the upcoming sections.
In particular, for B = 2, the resulting expression is given by

A2(D; p1, p2) = A(1)2 (D; p1)+ A
(2)
2 (D; p1, p2) (3)

where A(1)2 and A(2)2 represent the average time required to add
balls to the first and second buckets, respectively, before an
overflow. Specifically,
• A(1)2 represents the average time taken to add D+1 balls
to the first bucket, starting from an empty system.

• A(2)2 represents the average time taken to add D balls to
the second bucket, starting from a system where the first
bucket is full, and the second bucket initially contains a
single ball.

Note that once D + 1 balls are added to the first bucket,
it will overflow, resulting in the second bucket containing a
single ball. Furthermore, if additionalD balls are added to the
second bucket, it will also overflow, triggering an alarm.

Then,

A(1)2 = 11

(
δ
(D+1)
1 − (D+ 1)

)
(4)

A(2)2 = 12

(
δ
(D)
2 − D

)
+11

(
1− ρD+11

ρD+11

)
δ
(D)
2 (5)

and

ρi=
1
pi
− 1, 1i =

1+ ρi

1− ρi
=

1
2pi − 1

, δ
(D)
i =

1− ρ−Di

ρi − 1
.

(6)

Note that if ρ1 = ρ2 = ρ and p1 = p2 = p then the algorithm
behavior is equivalent to that with a single bucket,B = 1, with

70722 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

depth 2D,

A1(2D; p) = A2(D; p, p) = 11

(
δ
(2D+1)
1 − (2D+ 1)

)
. (7)

Our experimental results indicate that B = 2 suffices in the
considered scenarios (see Section V). For this reason, in the
remainder of this paper, all numerical results derived from the
proposed analytical model are reported letting B = 2, making
use of equations (3)-(6).

D. MODELING THE PROBABILITY OF FALSE ALARMS
We leverage the proposed model to estimate the probability
of false alarms. To that aim, we assume that attacks arrive
according to a Poisson process with rate α. Recall that fB(D)
denotes the probability of a false alarm (Definition 3). In what
follows, we derive expressions for fB(D) under different
assumptions on the distribution of ÃB(D).
Assuming that ÃB(D) can be roughly approximated by a

constant and that the time between attacks is exponentially
distributed with mean 1/α, then

fB(D) = e−AB(D)α. (8)

Alternatively, if we approximate ÃB(D) by an exponential
distribution,

fB(D) =
1/AB(D)

1/AB(D)+ α
=

1
1+ AB(D)α

. (9)

In the expressions above, we made the dependence of fB and
AB on the bucket depth D explicit as one of our goals is to
study the relationship between D, fB, and AB. The closed-
form equations (8) and (9) are instrumental to get insights
about the interplay between the different model parameters.
In particular, as D increases AB increases and fB decreases
(Definition 1), but the time to detect a real attack increases
(Definition 2). As indicated in the sequel, the equations above
allow us to find the minimum D such that fB(D) is below a
given threshold. In Section V we experimentally validate that
the values ofD obtained through the proposed model produce
the desired probability of false-positives in realistic settings.

E. PARAMETERIZATION OF THE ANOMALY DETECTION
MECHANISM: A MODEL-DRIVEN OPTIMIZATION
APPROACH
Next, we show how to use the proposed model and the
obtained expressions of the probability of false-positive for
the purposes of running statistical hypothesis tests to deter-
mine whether there is an ongoing attack in the system.

Given a target false-positive probability, denoted by F ,
the system administrator’s goal is to determine the optimal
number of buckets and bucket depth so as to minimize the
lower bound on the number of samples to detect and attack,
L, while still meeting the target false-positive probability.

Problem with Hard Constraints:

min L = BD (10)

subject to fB(D) ≤ F (11)

In what follows, we assume that B is fixed and given. Then,
as fB(D) is strictly decreasing with respect toD, the constraint
above will be always active and the problem translates into
finding the minimum value of D satisfying the constraint.
The problem above is similar in spirit to a Neyman-Pearson
hypothesis test, for which similar considerations apply, i.e.,
the optimal parameterization of the test is the one that satisfies
a constraint on the false-positive probability.

Alternatively, the problem above can be formulated
through the corresponding Lagrangian,

Problem with Soft Constraints:

minL(D) = BD+ w(fB(D)− F) (12)

where w is the Lagrange multiplier. The Lagrangian naturally
leads to an alternative formulation of the problem, wherein
the hard constraint in (11) is replaced by a soft constraint
corresponding to the penalty term fB(D)−F present in the cost
Lagrangian. The Lagrangian is a cost function, motivating
Definition 4. Note that as wF is a constant, minimizing (12)
is equivalent to minimizing (2).

F. A UNIFIED FRAMEWORK FOR SEQUENTIAL ANALYSIS
Next, we present a general framework for sequential perfor-
mance analysis. The framework encompasses the proposed
BA as a special case, allowing the comparison of the con-
sidered BA against alternative sequential analysis techniques,
such as CUSUM, CUSUM-Sign, and SPRT.

In this section, we assume that the collected samples cor-
respond to a metric whose value is such that the lower, the
better. Whereas in the remainder of this paper, we consider
samples from throughput, in this section we consider, for
concreteness and without loss of generality, samples from
delay, or inverse throughput. This is in agreement with most
of the literature on CUSUM, wherein it is assumed that the
metric of interest is such that larger values are worse.

For all the sequential analysis algorithms considered in this
paper, we have

Sn+1 = max(S(l), Sn + g(Xn)) (13)

where Sn is the state of the system after the n-th sample is
collected, and Xn is the n-th sample. S(l) is a lower bound
on the system state, also known as the process absorbing
barrier. Under CUSUM, for instance, S(l) = 0. Function
g(·) intuitively determines ‘‘how much of an outlier Xn is.’’
Whenever Sn reaches a target value, an alarm is triggered.
From the above equation, all considered sequential analy-

sis techniques can be considered as random walks, differing
on 1) the absorbing barrier S(l), 2) how sample Xn impacts the
current state, and 3) the definition of the current state.

Under CUSUM, CUSUM-Sign, and SPRT, the current
state is a single scalar value, Sn ∈ R. Under the bucket
algorithm, in contrast, the current state is a discrete vector,
characterizing the current bucket and its depth, Sn ∈ N × N.
In the case of a single bucket, we have Sn ∈ N.
With respect to the absorbing barrier, CUSUM and

CUSUM-Sign have S(l) = 0, whereas SPRT admits a

VOLUME 11, 2023 70723

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 2. Sequential analysis algorithms.

lower absorbing barrier. This implies that for CUSUM and
CUSUM-Sign we have Sn ≥ 0 whereas for SPRT we have
Sn ∈ (−∞,+∞).
CUSUM and SPRT may differ on how samples impact the

current state, but it is typically assumed that

g(Xn) = Xn − ℓ(Xn;H0) (14)

and

g(Xn) = log ℓ(Xn;H1)− log ℓ(Xn;H0) = log
ℓ(Xn;H1)
ℓ(Xn;H0)

,

(15)

for CUSUM and SPRT, respectively. Here, ℓ(Xn;H0) and
ℓ(Xn;H1) denote the likelihood ofXn given hypothesisH0 and
H1, respectively. Intuitively, Sn increases if Xn is more likely
under the hypothesis of an anomaly as opposed to the null
hypothesis, i.e., if ℓ(Xn;H1)− ℓ(Xn;H0) ≥ 0.
CUSUM-Sign differs from CUSUM by using an indicator

variable I (Xn−µ > 0) to determine whether the current state
should be increased, where I (c) equals 1 if condition c holds,
and 0 otherwise. Under CUSUM-Sign we have

g(Xn) = I (Xn − µ > 0)− κ̃ (16)

where κ̃ = p0− κ̂ , p0 is a baseline estimate of the probability
thatXn−µ > 0, e.g., due to random noise, and κ̂ is a constant.
CUSUM-Sign resembles the BA as both have a discrete

component to determine whether the current state must be
incremented or not. However, they differ in a number of
aspects, including the fact that CUSUM-Sign parameters are
homogeneous over time, whereas the BA admits a change in
its parameters as a function of the current bucket, providing
additional flexibility in the search for anomalies.
Under the BA, let S(b)n and S(d)n be the bucket index and

bucket depth at the n-th iteration of the algorithm. Then, state
Sn is given by an ordered pair,

Sn = (S(b)n , S(d)n). (17)

Correspondingly, the dynamics of Sn are governed by two
functions, gb(Xn) and gd (Xn), which impact the first and
second coordinates of the ordered pair. In particular,

gd (Xn) = Sign(Xn − µ′)+ κ ′(Xn) (18)

where

Sign(x) =

+1 if x > 0
−1 if x < 0
0 otherwise.

(19)

Note that µ′ and κ ′(Xn) play, in the BA, the roles of µ and
−κ̃ in the CUSUM-Sign algorithm, respectively. Indeed, µ′

is related to µ as follows,

µ′ = µ+ (S(b)n − 1)σ (20)

and

κ ′(Xn) =
−(D+ 1), if S(d)n + Sign(Xn − µ′) = D+ 1
D+ 1, if S(d)n + Sign(Xn − µ′) = −1
0, otherwise.

(21)

In addition,

gb(Xn) =

+1, if S(d)n + Sign(Xn − µ′) = D+ 1
−1, if S(d)n + Sign(Xn − µ′) = −1
0, otherwise.

(22)

The two functions above together comprise g(Xn) for the BA,

g(Xn) = (gb(Xn), gd (Xn)) (23)

and

S0 = S(l) = (0, 0). (24)

Comparing the CUSUM-Sign dynamics against the BA,
we note that both rely on the sign of Xn minus a constant.
However, as observed in (16), CUSUM-Sign produces a real
scalar as its state, whereas the BA produces a discrete vec-
tor (23) leveraging the sign ofXn−(µ+(b−1)σ) to determine
whether depth should be incremented or decremented.

Recall that under the BA we refer to AB(D; p1, p2) as the
mean time until a false alarm, accounting for B buckets of
depth D each. In the CUSUM terminology, AB is referred
to as the average run length (ARL). According to [51], ‘‘it
captures the average number of articles sampled before action
is taken.’’ Under the hypothesis that the system is initially not
facing anomalies, the larger the value of ARL, the longer it
takes for the system to produce a false alarm.

V. EXPERIMENTAL VALIDATION
To illustrate and validate the methodology described in Sec-
tions III and IV, we ran an experimental campaign using the
TPC Express Benchmark V [55] (TPCx-V). We emulated the
effects of security intrusions that affect performance through
a fault injection approach, as described in Section V-A. Then,
in Section V-B we report on the exploratory analysis, pro-
filing, and operational phases of the considered framework.

70724 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 5. TPCx-V components and transactions flow (from [55]). In this
work, each group is treated as a distinct subsystem.

Finally, Section V-C assesses the proposed model-based cal-
ibration of the anomaly detection system, considering the
system under test, and comparing it against CUSUM.

A. SYSTEM UNDER TEST
Next, we introduce the system under test. We start by present-
ing the TPCx-V workload (Section V-A1). Then, we describe
our experimental setup (Section V-A2) leveraging a fault
model (Section V-A3) on top of TPCx-V.

1) TPCx-V WORKLOAD
TPCx-V is a publicly available, end-to-end benchmark for
data-centric workloads on virtual servers. The benchmark
kit provides the specification, implementation, and tools to
audit and run the benchmark. Details can be found in [55].
It models many features commonly present in cloud comput-
ing environments, such as multiple VMs running at different
load demand levels and significant fluctuations in their load
level [14].

We use the workload and software provided by the TPCx-
V to emulate the context of a real-world scenario of brokerage
firms that must manage customer accounts, execute customer
trade orders, and be responsible for the interactions of cus-
tomers with financial markets [56].

Figure 5 shows the transaction flow. The virtual client
emulator (vce), interacts with the different brokerage firms
(distinct groups), which in turn communicates with the virtual
market emulator (vme). TPCx-V uses virtualization technol-
ogy to co-locate database tiers and application-management
tiers on logically distinct VMs within a single computer
system.

The goal of TPCx-V is to measure how a virtualized server
runs database workloads, using them to measure the perfor-
mance of virtualized platforms. The minimal deployment of
the TPCx-V has four groups, each with three VMs, repre-
senting different subsystems. A typical run has 10 distinct
load phases of 12 minutes each. The different components

of TPCx-V are architecturally distributed as depicted in
Figure 5.
The TPCx-V workload is made up of 12 types of trans-

actions with different characteristics used to simulate the
stock trade process. They are submitted for processing at
multiple databases (market, customer, and broker) following
a specified mix of transactions for different phases. The
main performance metric for the benchmark is the business
throughput (tpsV). It represents the number of completed
Trade-Result per second.
The TPCx-V workload provides an adequate testbed envi-

ronment for our anomaly detection approach, since it captures
the scalable nature of complex virtualized environments by
providing different groups of virtual machines with different
sizes and configurations while serving an elastic workload in
different phases of the execution.

2) EXPERIMENTAL SETUP
Our setup is a deployment of the TPCx-V over two phys-
ical servers. The first server is a Dell PowerEdge R710
with 24 Cores, 96GB RAM, and 12TB disk, and is man-
aged by a Xen hypervisor (4.4.1). It has a privileged domain
(dom0), and 17 virtual machines with different configura-
tions, a set dedicated to the TPCx-V, and another set that
will represent our compromised tenants. The second server
is configured with 2 Cores, 8GB RAM, and 1 TB disk,
with the same Xen hypervisor (4.4.1). It runs the VM driver
component into a different host as prescribed on the TPCx-V
specification. The details of each VM are described in Table 3
together with the resource specifications for each group. gn
refers to the VM for group n. Each group was defined accord-
ing to the benchmark recommendations [55]. As a group is a
set of three VMs, our malicious user will have access to the
same amount of VMs. Note that we are overcommitting the
number of vCPUs (see Table 3) issuing 45 vCPU, which is
greater than the physically available number of cores. This is
a common strategy in cloud computing to optimize resource
usage [8] since not all vCPU is fully used at the same time.

We also developed a management tool responsible for trig-
gering all tests while monitoring the physical environment.
This management tool captures events, reports any problem
during the test, and handles all interactions between the
environment, benchmark, and tests. Each single experiment
lasts roughly 4 hours that correspond to the 2h demanded
as a minimum by the benchmark specification, and another
2h to restore the full environment to its initial state. Initial
state restoration is achieved by rebooting the servers and
recovering the system and databases (restoring all virtual
disks).

The vanilla configuration of the TPCx-V is designed to
stress the system and evaluate the maximum load the virtual-
ized can handle. However, this workload is not representative
of common operational services. To handle this limitation,
we changed the default configuration so that carried load is
just a fraction of the system capacity. Otherwise, any other
activity on the system could jeopardize the validity of our

VOLUME 11, 2023 70725

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 3. VMs name, memory, and the number of virtual CPUs. The
tpc-driver is supported on a different physical host.

experiments since we are not accounting for transient spikes
on the carried load.

3) FAULT MODEL
The proposed fault model abstracts from a common cloud
computing attack pattern: the resource exhaustion pat-
tern [29], where a virtual guest can obtain more resources
than allowed. This pattern can be categorized as follows [57]:
i) excessive use, where there is no abnormal use, but the con-
sumption of resources is significantly higher for one tenant,
and ii) malicious use, where the malicious excessive use of
resources can cause a failure.

Note that the resource exhaustion pattern is one of many
possible workloads that can be assessed using our tech-
nique. In particular, any attack that affects the overall system
performance could be evaluated using our approach. Still,
we adopted the resource exhaustion pattern since we could
fine-tune its intensity and frequency to enrich the evaluation,
which may not be easily possible with other workloads.
Nevertheless, our approach does not cover attacks with no
performance impact, having little or no effect on detecting
them.

TPCx-V is a database-centric benchmark, and thus an
attack that explores database resources can impact perfor-
mance. However, we are not aware of a documented exploit
focused explicitly on the hypervisor that attempts to exhaust
the resources used by database services. This gap motivated
us to use Stress-NG [58] to simulate resource exhaustion
behavior. Stress-NG exercises computer subsystems and
operating system kernel interfaces. Hackers produce mal-
ware [59] using the same kernel interfaces as Stress-NG.

We have defined three configurations to emulate the
resource exhaustion attack:
(H): A High-Intensity workload: starts eight processes to

exercise the system IO and runs for 300 seconds;
(L): A Low-Intensity workload: perform ten intervals of

15secs of IO-exercise and 15s with no workload. The work-
load uses two IO stressors processes and runs for 300s;
(Ls): Shorter Low-Intensity workload: the same as the (L)

configuration but with only three intervals.
We defined the configuration attack length based on the

proportional time of the TPCx-V run, about 4% and 1%. The
configuration length is also less than the benchmark phase
(12 minutes, as explained in Section V-A).

Since the TPCx-V has different phases with diverse load
demands (see Section V-B3), we focused the attack on two
distinct phases, on the 4th, which is when the group with
more physical resources has a more significant contribu-
tion to the overall load and the 6th, when the reference
metric achieves the highest rate.

Combining those two definitions, we have a total of 6
fault models, which we will refer to using the phase plus the
configuration reference: 4H, 4L, 4Ls, 6H, 6L, and 6Ls.

B. EXPLORATORY, PROFILING AND OPERATIONAL
PHASES
In the following three sections, we revisit the exploratory,
profiling, and operational phases. Those three phases were
previously introduced in Sections III-A, III-B and III-C,
respectively, and are now analyzed in light of the system
under study.

1) EXPLORATORY PHASE
In this step, we performed a transaction characterization using
exploratory runs, leveraging BA and TPCx-V run data. The
analysis revealed that not all of the TPCx-V transactions
are impacted by the system load, i.e., the throughput of
some transactions does not vary as the system degrades.
To conclude the exploratory phase, we defined our monitor-
ing surface as the throughput information of 9 (of the 12)
transactions from TPCx-V. That data was evaluated distinctly
for every subsystem (the 4 TPCx-V groups), resulting in 36
(9 × 4) BA instances running in parallel. For each of the
BA instances, we associate 10 pairs of throughput mean and
standard deviation, 1 for each distinct operation profile (10
TPCx-V phases). Each pair of parameters corresponds to
12 minutes of continuous operation of the benchmark (see
Section V-A).

2) PROFILING PHASE
To profile the system, we executed golden runs to generate
data for the characterization of the baseline behavior of the
system (37 golden runs, comprising the profiling set, or P set)
and for validation (22 golden runs, comprising the validation
set, or V set). For every transaction from the monitoring
surface, we computed and stored the average throughput for
each subsystem in every operational profile. These values
are the baseline metrics. To calibrate our performance model
(Section V-C), we need to account for the following metrics:

1) The probability of a false-positive alarm as a function
of bucket depth;

2) The probability for each transition in the DTMC
(Figure 4);

3) The mean time to first alarm during an attack.

To compute those probabilities, we applied the BA with dif-
ferent configurations over the validation runs. These results
are presented in Section VI.

During the validation process, we implemented the BA
for each golden run, taking into account the number of

70726 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 4. False-positive alerts: total counts over validation runs.

TABLE 5. False-positive alerts segmented by TPCx-V’s transactions over
validation runs.

false-positive alerts. The main objective of this step was to
assess whether utilizing the model-recommended parameters
would lead to an acceptable level of false-positive alerts.

Initially, we conducted the assessment using the same runs
employed to generate the baseline metrics (referred to as
the B set). This phase did not involve validation; rather,
it aimed to generate values for later comparison with the
validation results. Additionally, this step allowed us to ensure
consistency and identify potential computational errors by
analyzing any unusual patterns in the number of alerts.

Subsequently, we performed the same process using the
validation runs (referred to as the V set). Upon comparing
the results from both sets, we found no significant differ-
ences.1 Consequently, in Table 4 we solely present the values
obtained from the validation runs.

The results described in Table 4 show that using two buck-
ets is effective, as it produces a fair number of false-positive
alerts. Employing a single bucket leads to excessive alerts,
while utilizing three buckets is unnecessary, as employing
two buckets already results in a sufficiently low number of
alerts.

Table 5 shows that different transaction types exhibit
varying levels of sensitivity to the same BA parameteriza-
tion. These distinct sensitivities indicate that D maybe need
to be adjusted as a function of the transaction type being
considered.

In Section V-C we report results on the calibration of
D and B using the proposed Markov model as well as the
collected measurements described above. Based on the cal-
ibrated performance model, it is recommended to configure
the bucket depthDwithin the range of (12, 15] as the number
of false-positive alerts within this range remains at an accept-
able level, in agreement with the above findings.

3) OPERATIONAL PHASE
As prescribed in Section III-C, we have to define our alert
reporting criteria. We adopted distinct approaches to detect

1In addition, when running the BA in both golden runs sets, we also obtain
similar results. This similarity indicates that the profile derived from the
baseline metrics can be generalized for different runs.

FIGURE 6. Distinct phases and alerts issued during a test run.

TABLE 6. Runs in experimental campaign.

true-positives (TPs) and false-positives (FPs). A TP occurs
when we detect at least one alert on the attack phase.
We only need one alert, in any group, for any transaction type.
Complementary, a false-negative (FN) occurs when no alert
is raised on the considered attack phase. We consider an FP
every bucket overflow that occurs in the no-attack phase.
In this scenario, if two buckets overflow, whether in separate
transactions or within the same transaction but in different
groups, they will be treated as two distinct false positives.
This approach is justified as alarm systems aim to minimize
the occurrence of false positives.2

During the testing campaign process, each of our test
runs is composed of three phases, as depicted in Figure 6.
In those defined periods, we count the number of FP, TP, and
FN as described above. Each alert on the post-attack phase
will count as a residual effect. When executing the TPCx-V
workload, we will run just one attack, as defined in Section V-
A3. As shown in Table 6, we performed 21 runs for each
fault injection type, while applying the BA throughout the
monitoring surface.

Following the execution of the tests, we utilized the col-
lected data to assess the performance of BA with different
parameterizations and examine its effectiveness. Table 7
shows the fraction of true positives over the total number of
alerts, which align with the findings presented in Table 4,
suggesting that the optimal number of buckets for the given
scenario is two (B = 2). Section VI delves into a comprehen-
sive discussion of theBA results, highlighting its effectiveness
across all considered configurations.

C. MODEL ASSISTED CALIBRATION OF ANOMALY
DETECTION
In this section we illustrate how to calibrate the bucket
algorithm in the realm of the system under test (Section V-
C1), and then compare it against CUSUM (Section V-C2).

1) BUCKET ALGORITHM CALIBRATION
This section provides insights into experimental results using
the proposed model parametrized with the system’s data.

First, we parameterize the proposed model from the exper-
imental data. To exemplify the general process, we focus
on the TRADE_LOOKUP transaction. Recall that p1 =

2An alert on the post-attack phase can be an FP or a residual effect caused
by the faulty load. This question will be discussed in Section VI-A.

VOLUME 11, 2023 70727

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 7. Fraction of alerts occurring during active attacks (TP), over all
alerts, varying B and D. Note that while Table 4 was generated using
validation runs, here we use test runs. In addition, in Table 4 we count
residual effects as FP, while here we filter residual effects using the
δ-threshold strategy described in Section VI-A.

FIGURE 7. Probability of false alarm from model tuned based on
experiments.

P(x̂ < µ|b = 1) and p2 = P(x̂ < µ − σ |b = 2).
Then, we identify that for TRADE_LOOKUPwe have p1 and
p2 equal 0.466 and 0.714, respectively. Interestingly, p2 >

p1, i.e., conditional on the fact that the second bucket has
been reached, the probability that the sampled throughput
is smaller than µ − σ is larger than the probability that
the sampled throughput is smaller than µ while in the first
bucket. Indeed, once the second bucket is reached the rate at
which tokens are added to the bucket increases, suggesting the
need for mechanisms to avoid false alarms. Such observation
further motivates a decrease in the target throughput value as
a function of b, as discussed in Section IV-A.

We assess the expected number of samples until a false
alarm, obtained from (3), with B = 2, p1 = 0.466, p2 =
0.714, and letting D vary between 1 and 30. For D = 15,
we observed that the number of samples until a false alarm
surpasses 107.
Figure 7 accounts for an attack model, wherein the mean

time between attacks is 1/α = 5×105 samples, i.e., the attack
rate is α = 2× 10−6 attacks per sample. As the bucket depth
increases, the probability of false alarms decreases. For D ≥
12, the probability of a false alarm is close to 0.

As discussed above, there is a tradeoff between the prob-
ability of false alarms and the time to detect attacks once
they occur. To cope with such a tradeoff, we consider both
approaches introduced in Section IV-E, namely the hard and
soft constraint problems. Under the hard constraint problem,
a target probability of a false alarm is determined, and the
minimum value of D that satisfies such a target is sought. For
instance, if we set F = 0.03 in (11) then the minimum value
of D satisfying the constraint is D = 13 and D = 15 under
the deterministic and exponential attack models, respectively.

We also assess how the cost C(p,w,D,B, α) introduced
in Definition 4 varies as a function of D, letting B = 2,
p1 = 0.466, p2 = 0.714 and α = 2 × 10−6. Letting
w = 20.646 which corresponds to the Lagrange multiplier
of the constrained problem under the deterministic model

(see also (12)), the optimal bucket depth equals D = 13,
which is in agreement with the result presented in the previous
paragraph.3 Alternatively, under the exponential model we let
w = 75.239 to obtain an optimal bucket depth of D = 15,
again in agreement with the previous paragraph.
Take away message and engineering implications: the

analysis presented in this section is instrumental in per-
forming what-if counterfactual analysis and executing
utility-driven model parameterization. If the system adminis-
trator implements global countermeasures against attacks, for
instance, it is expected that the rate of attacks will decrease.
In that case, the bucket depth can be adjusted accordingly,
e.g., using the proposed utility-driven approach presented in
this section.

2) CUSUM COMPARISON
We opted to evaluate the CUSUM [51], [52] method to
contrast our approach with traditional sequential analysis
algorithms. To that aim, the first step consists in transforming
our throughput measurements into a metric for which large
deviations above the mean correspond to anomalies (recall
from Section IV-F that CUSUM detects large deviations
above the mean). Given a throughput x, we experimented
with different transformations to produce our target metric
x ′, including e−x , 1/x, 1/ log(x + 1) and 1/

√
x. All transfor-

mations produced similar results. In what follows, we report
results for x ′ = e−x .
We consider a vanilla parameterization of the CUSUM

method, to allow for a fair comparison against BA. In particu-
lar, we adapted the ‘detecta’ [60] Python package to evaluate
the TPCx-V architecture using 36 sequential tests (4 groups
of 9 transactions) and its baseline metrics (see Section III-
B). We let S(l) = 0, and allow ‘detecta’ to set the additional
parameters.

We observed that CUSUM raised a large number of false
positives, even for the golden runs (not shown in the paper).
This limited the ability to compare CUSUM against BA.
Figure 8 shows an example of CUSUM evaluated over the
TPCx-V data. The top chart shows the transformed through-
put samples as well as the triggered alerts in red (a sequence
of red dots corresponds to a contiguous interval wherein
alerts were raised). The bottom chart shows the time series of
the cumulative sum of changes (both positive and negative).
Each TPCx-V phase is also represented with its respective
threshold, proportional to its baseline profile. Specifically, the
horizontal lines correspond to T ′σ , where the T ′ is a threshold
factor (an input parameter, set at its default value), and σ

(which is computed from the baseline profile).
In Figure 8 we observe that the attack did not trigger

an alert (similar behavior was observed across our dataset).
Then, the miss-detection is followed by a large number of

3Note that 1) the Lagrangian is minimized at D = 12.39 and we take its
ceil as the optimal bucket depth and 2) the Lagrangian also admits other local
minima. If we let w = 909, in contrast, the optimization problem (12) admits
a unique solution, at D ≈ 13.3, and in this case, we need to take its floor to
satisfy fB(D) ≤ F .

70728 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 8. An instance of the CUSUM evaluation for the transactions
(TRADE_LOOKUP) of the Group 0 of the TPCx-V in a run with an attack in
the fourth phase.

false alarms, leading us to conclude that the direct appli-
cation of the CUSUM algorithm to assess anomalies in a
complex environment such as TPCx-V is not adequate. Next,
we further detail some of the reasons for the low accuracy.

1) input transformation: we transformed throughput data
into a target metric whose large deviations above the
mean should be avoided. Although we tried four trans-
formations leading to similar conclusions, additional
experiments are necessary to determine if there are
alternative transformations more suitable to our needs;

2) threshold and absorbing barrier: the parameterization
of CUSUM threshold and absorbing barrier are also
subject to transformations and may require additional
refinements;

3) abrupt changes in input: the frequent and abrupt
changes of throughput under TPCx-V negatively
impact anomaly detection. In particular, note that the
plot in Figure 8(a) corresponds to a line, and we see
a whole area filled in blue due to the erratic behavior
of the throughput under short time scales. We envision
that such abrupt changes can be attenuated by an addi-
tional mechanism, such as a moving average.

For the above reasons, the application of the CUSUM
methodology in the considered systems requires further
research, which we leave as a subject for future work. In par-
ticular, we were unable to find a unified parameterization
for the CUSUM algorithm that works under all considered
workloads and phases, whereas for the BA we were able to
find a combination of bucket width and depth that reached
our goals, as further detailed next.

VI. RESULTS
In this section, we report our experimental results. Our goals
are to 1) investigate the role of residual effects after attacks
(Section VI-A) and 2) understand the impact of parameters
on false positive rate (Sections VI-B to VI-D).

We begin by presenting the residual effects observed after
the attack phase. Understanding those residuals allowed us to

FIGURE 9. Post-attack alerts distribution for bucket configuration with
B = 2 and D = [12, 15]. For readability, the x scale is cropped between
15 and 300.

establish a threshold to avoid false positives, trading between
those false positives and the mean time to the first alarm.
We then performed three case studies to evaluate how dif-
ferent parameters, such as bucket depth, affect the method’s
performance.We observed, for instance, that the bucket depth
has a significant impact on the false positives, with better
results obtained for D = 12. Finally, we assessed the robust-
ness of our results through variability tests, which indicated a
low variability in performance with a margin of error below
1%.

Overall, our experiments demonstrate the effectiveness
and potential of our proposed method in detecting anoma-
lies in cloud transactions, highlighting the importance of
appropriate parameter selection and transaction-specific con-
figurations for achieving optimal performance.

Our results are discussed using three metrics widely
adopted in classification assessment [61], namely, precision,
recall, and F-measure, which are defined as a function of true-
positives (TP), false-positives (FP) and false-negatives (FN)
as follows,

Pr =
TP

TP+ FP
Re =

TP
TP+ FN

F1 =
2× Pr× Re
Pr+ Re

.

(25)

Precision (Pr) measures the impact of FP on the method’s
positive prediction. Recall (Re) reflects the sensitiveness of
the algorithm, capturing the fraction of corrected predictions.
F-measure (F1) is the harmonic mean of precision and recall,
balancing them in a single metric.

A. RESIDUAL EFFECTS
Throughout our experimentation, we noted a substantial
increase in the number of alerts immediately following the
attack phase compared to non-attack periods. To investigate
this phenomenon, we conducted an analysis considering the
count of alerts and the time interval, measured in seconds,
from the conclusion of the attack injection phase to each
individual alert. The objective was to comprehend the under-
lying reasons andmechanisms behind the occurrence of alerts
during the post-attack phase.

Figure 9 shows that most of the bucket overflows occur
a few seconds after the attack, which suggests that those
alerts can be residual effects that should be distinguished from
false-positives.

VOLUME 11, 2023 70729

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 8. Mean time to first alarm during the attack injection (in
seconds).

FIGURE 10. Distribution of the residual effects by failure mode and
bucket depth.

What is a reasonable threshold that would discriminate
between false-positives and residual effects of the attack?
Regression techniques, and outliers detection techniques,
among others, can be used to estimate that threshold. In this
work, the meantime to the occurrence of the first alarm during
the attack phase is used as the discrimination threshold.

Let δ be the mean time for BA to trigger an alarm following
the initiation of an attack. Note that δ is a function of multiple
parameters, including B and D. After an attack ends, we
assume that any alert occurring within a time frame t < δ

corresponds to residual effects from the preceding attack
(such as emptying queues and recovering from error states).

Table 8 shows the mean time to raise an alarm, i.e.,
to detect an attack, after the attack is issued, for two trans-
actions, TRADE_LOOKUP and MARKET_WATCH, and
D ∈ {6, 9, 12, 15}. It indicates that δ grows as a function of
D. Such growth in δ, in turn, is correlated with a decrease
in the number of residual effects, as shown in Figure 10.
Figure 10 shows the number of residual effects as a function
ofD. It indicates that the number of residual effects decreases
as a function of D. Indeed, the larger the value of D, the
higher the tolerance for transient faults, and the lower is the
number of residual effects. Together, Table 8 and Figure 10
provide evidence that δ can be used as a proxy for the time
during which alerts after an attack are residual effects from
the preceding attack.

Figure 10 also shows that the failure mode with higher
intensity (H) triggers the larger number of residual effect
alerts. In addition, the number of alerts triggered in the sixth
phase (blue dashed line) is greater than the number of alerts
triggered in the fourth phase (red dotted line).
What is the reaction time of the proposed approach? We

evaluate how fast the proposed approach responds to attacks.
Figure 11 shows the frequency of alerts and the cumulative
distribution function (CDF) of reaction time. In the horizontal
axis, we have the time in seconds since the beginning of
the attack. While we previously introduced δ as the average
reaction time in seconds, we now present the complete CDF
of reaction times, indicating the duration from the beginning
of an attack to the triggering of the initial alert by the BA.

FIGURE 11. The overall distribution of the time to first alert in the
presence of an attack. The figure accounts for samples from all fault
models and configurations.

Recall that in our experiments samples are collected at a
rate of one sample per second. Therefore, assuming that all
buckets are empty in the beginning of the attack, the reaction
time is lower bounded by BD seconds, as it takes at least
BD samples to overflow all buckets (see also Definition 2 in
Section IV-B). In our experiments, more than 50% of the
anomalies were detected in less than half a minute, and more
than 75%were detected in less than a minute. These detection
times are quite promising when considering the following
factors: 1) our sampling resolution is in seconds; 2) we are
evaluating a complex system; and 3) the algorithm is designed
to handle temporary faults.

B. CASE STUDY 1
In our initial case study, we examine how the BA performs in
terms of detection effectiveness across various fault models
and analyze the impact of parameterization on its perfor-
mance. For this particular case study, we employ a consistent
set of parameters for all operations. Through calibration of
our model, we determine that the optimal value for D falls
within the range of 12 to 15. Table 9 reports the metrics
obtained from our tests, segmented by the six different failure
modes, as well as a combined analysis of all failure modes
(line denoted as All).

TABLE 9. Result of Case Study 1 showing the Residual effects counts
(RE), Precision, Recall and F-measure (F1) metrics. (Maximal value for TP
in ALL is 126, others classes is 21).

The first noteworthy observation pertains to the relatively
low number of alerts generated by the method outside an
attack. Considering that we account for 4×9 instances of the
BA running simultaneously (as explained in Section V-B1),
the potential count for this category could be significantly
higher. Table 9 shows that the usefulness of the BA varies
depending on the intensity of the attack and the configuration
of the algorithm. In most cases and configurations assessed,
the F-measure exceeds 0.78. Notably, for the 6H fault model

70730 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 12. Campaign results for all fault models using two buckets. The
data are shown with the pre and pos phases split into two sets.

with D = 15, the F-measure reached 1. However, we dis-
covered that for short attacks with low intensity, static values
of D proved to be less effective. A prime example is the 4Ls
fault model with D = 15, where we observed an F-measure
of 0.09. This can be attributed to the fact that larger values of
D are unable to effectively detect shorter bursts.
The impact of the bucket depth D on the target metrics

(Equation (25)) is further illustrated in Figure 12. A notable
observation derived from the Precision and Recall curves is
that these metrics exhibit contrasting trends with respect to
the bucket depth. Precision increases as D grows, due to a
decrease in false-positives (FPs) as D increases. This can be
attributed to the higher tolerance for performance variability
under normal conditions that comes with a larger D. Con-
versely, Recall shows a decrease with increasing D due to a
rise in false-negatives (FNs). As D becomes larger, it takes
longer to detect attacks, leading to an increase in FNs. Thus,
the F-measure, that combines Precision and Recall through
their weighted harmonic mean, effectively captures some of
the inherent tradeoffs involved in the efficiency of the BA.

For the scenario encompassing all failure modes (curve
labeled as ‘All’), D = 12 yields the highest F-measure,
in close agreement to D = 13 found in Section V-C1.
However, the optimal value of D is sensitive to the failure
mode and transaction type, and conditional parametrization
may yield improvements, as further discussed next.

C. CASE STUDY 2
Next, we aim to further investigate how different transaction
types impact optimal parametrization. Recall from Table 5
that the optimal bucket depth varies as a function of the con-
sidered transaction. As a result, we anticipate that employing
different parameterizations for different transactions could
yield more favorable performance outcomes. To verify this

hypothesis, we have devised a parameterization based on
a mixture (referred to as ‘Mix 6/9/12/15’), wherein the
bucket depth for each transaction was set as the minimum D
between 6, 9, 12 and 15, for which the number of false pos-
itives equals zero during the validation runs (see Table 5 for
the results obtained during the validation runs). The results
depicted in Table 10 indicate that using such a strategy we
obtain a higher number of false positives (FP) compared to
Table 9, causing a detrimental impact on the overall per-
formance. This is due to the fact that transactions tracked
with a lower bucket depth result in a greater number of false
positives.

TABLE 10. Result of Case Study 2, showing the residual effects counts
(RE), Precision, Recall, and F-measure (F1) metrics (Maximal value for TP
in ALL is 126, others classes are 21).

Inspired by the analytical model, the bottom half of
Table 10 shows the results obtained using an alternative
mixture of bucket depths. In this new setup, depths 6 and 9,
initially included in the mixture discussed in the preced-
ing paragraph, were removed, resulting in a mixture with
depths 12 and 15. Table 10 indicates that after making this
adjustment, the count of false positives notably decreases,
particularly for the L scenarios. In essence, this findings
highlight the potential use of dynamic tuning methods [13] to
achieve a balance in algorithm parameters, leading to perfor-
mance enhancements, and further strengthening the rationale
behind the proposed methodology.

D. CASE STUDY 3
For case study 3, we rely on a different type of workload in
comparison to case studies 1 and 2. Specifically, we focus on
MediaMicroservices, that involves the deployment of numer-
ous virtual machines within a cloud environment. To assess
the performance, we leverage the Media Microservices
benchmark provided by the DeathStarBench suite [62].4

In the previous case studies, we reported on anomaly detec-
tion triggered by security attacks, leveraging the throughput
as the metric of interest, while in this case study we report on
anomaly detection triggered by a memory leak, leveraging
average response time as the metric of interest. Specifically,
we evaluate the response time by quantifying its deviation

4https://github.com/delimitrou/DeathStarBench/tree/master/mediaMicro
services

VOLUME 11, 2023 70731

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

with respect to the predefined response time requirement. The
considered measure is referred to as the normalized distance
and is defined in [63] as follows:

D(m; r) = 2
m

m+ r
(26)

where D(m; r) is the normalized distance, m is the measured
response time, and, r is the baseline time requirement. Based
on the given definition, when the measured response time
matches the requirement, the normalized distance is equal
to 1. In systems that meet the performance requirement, the
normalized distance will be below 1, and the normalized
distance serves as a metric for assessing the average perfor-
mance evolution. However, in order to account for transient
performance changes, we introduce a new metric denoted as
the σ -normalized distance that generalizes the normalized
distance. This metric incorporates the standard deviation of
the measurement and is defined as:

D(m, σ ; r) = 2
m+ σ

m+ σ + r
. (27)

The σ -normalized distance is the normalized distance
accounting for a standard deviation: m is the measured
response time, σ is the measured standard deviation, and r
is the baseline response time requirement.

Inspired by the methodology introduced in this paper for
anomaly detection based on deviations of throughput or
expected response time, we consider the problem of anomaly
detection in the current case study. Here, anomalies are
defined as any deviations that exceed 3 standard deviations
in relation to the expected response time, corresponding to
3 buckets. Consequently, in the subsequent analysis, the base-
line response time requirement r is established as

r = µℓ + 3 · σℓ (28)

where µℓ is the average response time under low load, and σℓ

is the standard deviation of the response time under low load.
The Media Microservices benchmark supports a load bal-

ancer and several database instances to store movies and their
reviews. In particular, it characterizes client requests that use
Ngnix for load balancing. In this work, we focus on the part
of the workload related to the movie review functionality.

1) MEMORY LEAK AND SYSTEM SETUP
This case study involves a memory leak that is an inherent
component of the Media Microservices benchmark. As men-
tioned above, the objective of this case study is to demonstrate
the effectiveness of a response time tracking methodology in
facilitating anomaly detection. To this aim, we ran the bench-
mark on a heterogeneous network of virtual machines, with
4Gbytes (large) and 8Gbytes (extra-large) of main memory.
The network was composed of a total of 30 virtual machines,
with 15 large and 15 extra-large machines.

2) RESULTS
Table 11(a) shows the response time, normalized dis-
tance, and σ -normalized distance, for large machines, while

Table 11(b) shows the same information for the extra-large
machines. Large machines were observed during one week,
and extra large machines were observed after several weeks
of aging. Anomalies are identified when normalized distance
values exceed 1.0. In the case of σ -normalized distance,
anomalies are characterized by values surpassing 1.2. For
large machines, σ -normalized distance is able to capture
some anomalies that were not captured through normalized
distance. For extra-large machines, both metrics work equiv-
alently under the considered thresholds.

The presented data showcases the ability of a method-
ology based on response time tracking to support anomaly
detection. In particular, it indicates that we are able to detect
anomalies from multiple vantage points relying on the devi-
ation of response time with respect to its reference value.
We leave a detailed analysis of the bucket algorithm in addi-
tional scenarios such as the one considered in this section as
a subject for future work.

VII. DISCUSSION
Next, we discuss some of the assumptions considered in this
paper and their implications.
Applicability domain: Our technique mainly applies to

anomalies induced by attacks that cause performance devia-
tion. The approach can generalize to any resource degradation
that impacts the mean performance, not necessarily implying
exhaustion. The rationale behind this is that our approach
evaluates the behavior of a system when subjected to anoma-
lous load compared against a baseline. The considered
anomalies can be caused by different types of faults, including
attacks that exploit vulnerabilities (which may be unknown)
affecting performance. Moreover, our approach specifically
aims to assess complex systems with long-lived workloads.
For isolated, short-lived tasks, one may need to resort to more
computationally intensive anomaly detection mechanisms.
Practical significance: One could argue that our approach

requires a consistently stable operational load, which can
be challenging to find in a real-world system over extended
periods. However, our observations indicate that despite the
generally non-stationary nature of the TPCx-V workload, the
load generated by various transactions and the correspond-
ing workload remain relatively steady during the periods of
interest. Consequently, our numerical investigation suggests
that anomalies in the workload, focusing on a given time win-
dow, can be effectively detected using the bucket algorithm.
In [64], it has been shown how to extend CUSUM to accom-
modate non-stationary workloads. Similarly, the adaptation
of the bucket algorithm to handle non-stationary baselines,
inspired by [64], is left as subject for future research.
Short-lived malicious jobs: As we showed in our results,

the intensity and duration of the malicious activities can limit
the applicability of our technique. For shorter bursts of attack,
if the effect of the malicious activity does not interfere with
the system’s performance signature, the effectiveness of the
approach is limited and a more computationally intensive
mechanism may be required.

70732 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 11. Illustrating the feasibility of detecting anomalies through deviations of expected response time with respect to reference values. Large
machines were observed during one week, and extra large machines were observed after several weeks of aging. Anomalies are identified when
normalized distance values exceed 1.0. In the case of σ -normalized distance, anomalies are characterized by values surpassing 1.2. For large machines,
σ -normalized distance is able to capture some anomalies that were not captured through normalized distance. For extra-large machines, both metrics
work equivalently under the considered thresholds.

Fault model representativeness: The faults injected into the
system are generated by stressing the underlying OS. In real
systems, different attacks may affect multiple layers of the
system stack. Nonetheless, as far as the subsumed OS states
resulting from those attacks correspond to states generated by
our fault injection, the considered failures are representative
of those that occur in systems under operation [65].
Profile obsolescence: If user profiles are not stable, the

number of false alerts can increase significantly, making the
detection system useless until the next iteration. One possible
approach is to segment time into windows and apply and tune
the bucket algorithm at every time window. To determine the
optimal window size, one may rely on techniques for learning
in non-stationary environments [66].
Covert degradation: Single metrics may not suffice to

detect anomalies. For instance, a detector using response
time as its metric may miss-detect attacks that impair system
availability if the few transactions that succeed in completing
have their response time within the expected range. A similar
effect occurs when measuring throughput in certain elastic
systems. This limitation can bemitigated usingmultiple com-
plementary metrics for anomaly detection.

VIII. CONCLUSION
In this work, we presented a methodology for anomaly detec-
tion based on performance degradation caused by security
attacks for complex virtualized systems. The approach lever-
ages an analytical model to optimize the detection technique
in a principled way. Our experimental assessment indicates
the method’s effectiveness by injecting resource exhaustion
attacks in a complex virtualized system. Results show that it
is possible to detect anomalous behavior using the throughput
of the business transactions with an average precision of
90% and recall of 86%. Our experimental results also bring
awareness about the residual effects of high-intensity fault
loads, which may persist for a significant time after the active
attack has been interrupted. Such residual effects give rise to
false positives, further motivating the use of analytical models
to tune the false-positive rate in a principled fashion.

In future work, we intend to enhance the experimen-
tal evaluation by conducting a comprehensive campaign
that addresses the challenges associated with adapting the
CUSUM algorithm to complex environments like TPCx-V.
Additionally, we plan to include the SPRT algorithm [52],
[53] in our investigation to compare the advantages and dis-

VOLUME 11, 2023 70733

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 13. Bucket diagram for B = 2.

advantages of each approach. Furthermore, our objective is to
expand the default configuration of TPCx-V by incorporating
a larger system with more physical servers and diverse work-
load types, in order to assess the effectiveness of the proposed
approach. We will focus on evaluating the microservice test
application TeaStore [67], followed by exploring other dis-
tributed frameworks such as Apache Spark and Memcached.

APPENDIX A
BIRTH-DEATH PROCESS SUBSUMED BY THE BUCKET
ALGORITHM
The models considered in our work are discrete time mod-
els, wherein transitions occur after a sample is collected.
Nonetheless, for analytical purposes it is instrumental to also
consider the corresponding continuous time models, wherein
samples arrive according to a Poisson process, i.e., the mean
time between samples is exponentially distributed. All the
results derived in this appendix that are used throughout the
rest of the paper hold for general distributions, as they ulti-
mately rely on transition probabilities (transition rates, when
used, appear to simplify presentation when leveraging results
from M/M/1 and M/M/1/K queues, but the final results are
a function of transition probabilities as opposed to transition
rates).s

The bucket algorithm with a single bucket corresponds to
an M/M/1 queue in discrete time. Let λ and µ be the birth
and death rates, ρ = λ/µ, and let p = µ/(λ + µ) be the
probability that a death (removal of ball from bucket) occurs
before a birth (addition of ball into bucket). As mentioned in
the above paragraph, all our results depend on λ and µ only
through p, noting that5

ρ =
1
p
− 1.

Time is measured in number of collected samples, i.e.,
we consider a discrete time system where each time slot
corresponds to the duration between two sample collections.
The mean time to reach state N starting from state 0 is given
by first passage time arguments (see Section 2.5.3 in [68]).

Let VN be the mean time to reach state N from state 0, and
let Un−1 be the mean time to reach state n from state n − 1.
Then,

VN =
N∑
n=1

Un−1 (29)

where

U0 =
1+ ρ

ρ
=

1
1− p

(30)

5When considering a single bucket, we let ρ = ρ1 and p = p1.

Un = 1+ p(Un−1 + Un) =
1+ pUn−1

1− p
(31)

Solving the recursion above, we obtain an expression for Un
that we then use to express VN in closed form.

A. DERIVATION OF Un

1) DIRECT DERIVATION
Let q = 1/(1− p) and r = p/(1− p). Then,

U0 =
1

1− p
(32)

Un = q
1− rn

1− r
+ rnU0 = q

rn − 1
r − 1

+ rnU0 (33)

Note that 1− r = (1− 2p)/(1− p). Then,

Un =
1− rn

1− 2p
+ rnU0 (34)

Note also that

r =
µ

λ
= ρ−1 =

p
1− p

(35)

Un =
1− ρ−n

1− 2p
+ ρ−n(1+ ρ−1) (36)

=
1+ ρ

ρ

1− ρ−n

1− ρ−1
+ ρ−n(1+ ρ−1) (37)

2) ALTERNATIVE DERIVATION
Next, we provide an alternative derivation for Un, leveraging
results about the M/M/1/K queue. As pointed out in the
beginning of this appendix, the M/M/1/K model assumes
that samples arrive according to a Poisson process, but this
assumption is removed after uniformization, as detailed next.

The steady state probability of stateK+1 at anM/M/1/K+1
system is given by

π̃K+1 = ρK+1
1− ρ

1− ρK+2
(38)

Note also that
1

π̃K+1
=

1
ρK+1

1
1− ρ

− ρ
1

1− ρ
(39)

The mean time to go from state K to state K + 1 in an
M/M/1/K+1 system is

ŨK =
1
µ

(
1

π̃K+1
− 1

)
(40)

Now, note that the M/M/1/K+1 system is a continuous time
system, whereas the system under consideration here is dis-
crete time. We use uniformization to convert one into the
other,

P =
Q

λ+ µ
+ I (41)

where P is the transition probability matrix of the discrete
time system. Indeed, we let the uniformization rate equal λ+
µ, meaning that the uniformized systemwill make transitions
on average every 1/(λ+µ) time units, where time ismeasured

70734 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

TABLE 12. Table of notation: a transition occurs after every sample.
At state 0, we may have self-transitions.

according to the original continuous time system (for addi-
tional background on uniformization, see [69]). Therefore,
the mean number of transitions to reach state K + 1 from
state K is given by (40) divided by 1/(λ+ µ),

UK =
λ+ µ

µ

(
1

π̃K+1
− 1

)
= (ρ + 1)

ρ−K−1 − 1
1− ρ

. (42)

Finally, (42) is equivalent to (37) replacing n by K .

B. DERIVATION OF VN
Next, we derive an expression for VN ,

VN = (ρ + 1)
N−1∑
n=0

ρ−n−1 − 1
1− ρ

(43)

=
ρ + 1

(1− ρ)ρN

(
1− ρN

1− ρ
− ρNN

)
(44)

In particular, if N = 1 the above expression reduces to

V1 = c =
ρ + 1
1− ρ

(
ρ−1 − 1
1− ρ

− 1
)
=

1+ ρ

ρ
(45)

as expected.

APPENDIX B
PROBABILITY OF FALSE POSITIVE BEFORE DETECTING
AN ATTACK
Assuming that VN can be roughly approximated by a
constant, and that the mean time between attacks is expo-
nentially distributed with mean α, the probability that we
will get a false positive before we detect an attack is
given by

f = e−VN /α (46)

Alternatively, if we approximate VN by an exponential distri-
bution,

f =
1/VN

1/VN + 1/α
=

(
1+

VN
α

)−1
(47)

C. GENERAL CASE: VARYING NUMBER OF BUCKETS AND
BUCKET DEPTH
Next, extend the above analysis for the case of multiple
buckets. We focus on expectations (distributions are dis-
cussed in [70]). Recall that AB(D; (p1, p2, . . . , pB)) is the
mean time until absorption, measured in number of collected
samples, accounting for B buckets of depth D each. Note that
AB(D; (p1, p2, . . . , pB)) is the mean time until a false alarm,
starting from the initial state 0, and can be expressed either
through (p1, p2, . . . , pB) or (ρ1, ρ2, . . . , ρB),

AB(D; (ρ1, ρ2, . . . , ρB)) = VD+1,1,0 +
B∑
i=2

VD,i,1 (48)

where VD,i,j is the mean number of samples to increment the
number of balls in bucket i by D units, starting from the state
wherein the system has j balls at bucket i. The expression of
VD+1,1,0 was previously computed, and is given by (44),

VD+1,1,0 = VD+1 (49)

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+11

1− ρ1
− ρD+11 (D+ 1)

)
(50)

To derive an expression for VD,i,1, we let Uj,i be the mean
time to increment the number of balls at bucket i by 1 unit,
starting from j+ 1 balls.6 Then,

VD,i,1 =

D−1∑
j=0

Uj,i (51)

and

Uj,i =

Uj+1, i = 1, j < D
1+ pi(UD−1,i−1 + U0,i) =
= (1+ piUD−1,i−1)/(1− pi), i ≥ 2, j = 0
ρ
−j
i

(
1i + U0,i

)
−1i, i ≥ 2, j > 0

(52)

It follows that for i ≥ 2,

VD,i,1 =

(
1+ ρi

1− ρi
+ U0,i

)(
1− ρ−Di

1− ρ−1i

)
−D

1+ ρi

1− ρi
. (53)

and, for i = 1,

VD,1,1 =

D−1∑
j=0

Uj+1 = VD+1 − V1 (54)

where VD is given by (44).

APPENDIX C
DERIVATION OF METRICS OF INTEREST
D. SPECIAL CASE: B = 2
In the particular where we have two buckets (Fig. 13),

A2(D; ρ1, ρ2)

= VD+1 + VD,2,1

6Note that the dependence of Uj,i on j occurs through the distinction
bewteen cases j = 0 and j > 0.

VOLUME 11, 2023 70735

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 14. As the bucket depth increases, the probability of false alarm decreases but the time to detect attacks increases.

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+11

1− ρ1
− ρD+11 (D+ 1)

)

+

(
1+ ρ2

1− ρ2
+ U0,2

)(
1− ρ−D2

1− ρ−12

)
−D

1+ ρ2

1− ρ2
(55)

where

U0,2 =
1+ p2UD−1,1

1− p2
=

1+ p2UD
1− p2

(56)

p1 =
1

ρ1 + 1
, p2 =

1
ρ2 + 1

(57)

UD = (ρ1 + 1)
ρ−D−11 − 1

1− ρ1
(58)

Then, the expression of A2 can be further simplified to

A2(D; ρ1, ρ2)

=
ρ1 + 1

(1− ρ1)ρ
D+1
1

(
1− ρD+11

1− ρ1
− ρD+11 (D+ 1)

)

+

(
1+ ρ2

1− ρ2

)(
1+

1− ρ2
2 + (1− ρ2)UD
ρ2(ρ2 + 1)

)(
1− ρ−D2

1− ρ−12

)
− D

1+ ρ2

1− ρ2
. (59)

Similarly,A2 can be expressed as a function of p1, p2 andD, as
indicated in (3). It can be readily verified that (3) is equivalent
to (59).

E. SPECIAL CASE: B = 2 AND D = 1
Let states 0, 1, 2 and F correspond to the initial state, 1 ball
at bucket 1, 1 ball at bucket 2, and the final absorbing state,
respectively. Next, we compute the mean number of samples
to reach state F from state 0. It follows from (59) that

A2(1; ρ1, ρ2) =
1

πF
− 1 (60)

where

1
πF
=

1+ 1−p1
1−(1−p1)p2

+
(1−p1)2

1−(1−p1)p2
+

(1−p1)2(1−p2)
1−(1−p1)p2

(1−p1)2(1−p2)
1−(1−p1)p2

. (61)

F. NUMERICAL EXAMPLES
Next, we illustrate the trade-off in the choice of the bucket
depth. Figure 14(a) illustrates the behavior of (59). The red,
yellow and blue lines correspond to three scenarios, respec-
tively: 1) p1 = 0.7, p2 = 0.52; 2) p1 = 0.52, p2 = 0.7; 3)
p1 = 0.6, p2 = 0.6. Recall that 1 − pi is the probability of
getting a ‘‘bad’’ sample at bucket i, that leads to an increase
in the number of balls. As 1 − pi increases, the mean time
to alarm decreases. Figure 14(b) shows the probability of
false alarm under the assumption of exponential time between
attacks with rate α = 0.001, and plots equation (8). Finally,
Figure 14(c) shows that there is an optimal value of bucket
depth that minimizes the cost, where cost is given by the
difference between false alarm probability and normalized
time to detect attacks, assumed to be proportional to the
bucket depth.

G. ALARM DELAY EVALUATION
Next, we evaluate the alarm delay when the system is under
attack and how it is impacted by: 1) parametrization of the
detection algorithm and 2) the fault model. When the system
is under attack, a lower bound on the number of samples until
a true positive is given by L (Definition 2 on Section IV-B).
Assuming all buckets are initially empty, we have L = BD.
Additionally, since the resolution of our dataset is in seconds,
there is a direct relationship between time to detection and the
number of evaluated samples.

Next, wewill conduct a detailed analysis of all the true pos-
itive alerts to gain insight into the behavior of the algorithm
when faced with an attack. Our focus will be on assessing
the timeliness of the detection, specifically by examining the
data regarding the duration between the start of the attack
and the initial alert generated by the bucket algorithm.

1) PARAMETRIZATION
Figure 15(a) shows the delay distribution for depth D =
12 and Figure 15(b) for D = 15. Those figures show data
from all attack runs aggregatedwith all fault models, differing
only by the bucket depth.

Figures 15(a) and 15(b) are quite similar. Nonetheless, for
D = 12, we have more alerts (1007) than for D = 15
(825), noting that in this section we are accounting only for
the first true positive alert. Additionally, recall that in our

70736 VOLUME 11, 2023

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 15. Time to detect attack, for D = 12 and D = 15.

methodology (Section III-C) an alarm is not necessarily gen-
erated for all alerts. In the extreme case where all transaction
are impacted by an anomaly, in every subsystem, at similar
times, we would get 4536 alerts for the scenario shown in Fig-
ures 15(a) and 15(b), corresponding to 2 attack phases, 3 fault
models (Section V-A3), 21 runs (Section V-B3), 4 groups and
9 transactions (Section V-B1), i.e., 2×3×21×4×9 = 4536.
Can a smaller bucket size in such an environment result

in a higher number of alerts after the attack has begun? In
addition, can the residual effects of the attack lead to an
increased proportion of alerts towards transactions with D =
12 compared to the ones configured withD = 15? To address
this question, we examined the fraction of alerts issued after
the attack as a function of time for both D = 12 and D =
15. Figure 15(c) illustrates the fraction of alerts issued after
the start of the attack, showing that there is no significant
difference in the decay of alert proportions between D =
12 andD = 15. The figure suggests that the excess number of
alerts generated when using a smaller bucket size (D = 12)
follows a distribution similar to that of alerts produced with
D = 15. In summary, our analysis suggests that the behavior
of the algorithm after the attack begins is not very sensitive
to D, leaving the time to detect an attack and the number of
FPs as the key metrics to parametrize D.

2) FAULT MODEL
Next, we assess the impact of the various fault models on
the transient behavior of the considered anomaly detection
algorithm. During the assessment of various fault models,
our focus is on examining the positive relationship between
the intensity of the attack (including its frequency) and the
number of alerts generated by the anomaly detection system.

Recall from Section V-A3 that our fault model stresses the
system with a High intensity load (H) (for 300 seconds), with
a Low intensity load (L) (10 periods of 15 seconds of stress,
halting for 15 seconds) and Low intensity short load (Ls)
(3 periods of 15 seconds of stress, halting for 15 seconds).

For the H fault mode (Figure 16(a)), the majority (75%)
of the alerts were issued during the first minute after the

FIGURE 16. Time to detect attack by fault mode. Total of alerts = 1485.

attack occurred. For the L fault mode, we see a similar detec-
tion time in every attack performed in the complete interval
(300s). The CDF of the number of alerts for the L fault model
can be roughly approximated as a linear function of time,
i.e, the number of alerts increases linearly over time. Finally,
the Ls fault model (Figure 16(c)) comprises an observation
interval of 90 seconds, and a significant number of alerts was
raised in the last burst of attack. The last burst, in turn, shows
the same behavior as the first 90 seconds of theL fault model.

To summarize, the findings presented in this appendix
indicate that the number of alerts generated over time exhibits
two key characteristics: 1) it aligns with the intensity of the
attack, and 2) it tracks the progression of the attack. When
comparing the results for bucket sizes D = 12 and D = 15,
it is observed that the former produces a greater number of
alerts than the latter, while still adhering to trends 1) and
2). Furthermore, when comparing different fault models, it is
evident that the number of alerts consistently increases during
the active phase of the attack and tends to stabilize once this
period concludes.

H. SENSITIVITY ANALYSIS
Next, we consider the sensitivity of the cost with respect to the
parameter of interest, D. To that aim, we take the derivative
of the cost with respect to D. Under the deterministic model
introduced in Section IV-D,

∂C
∂D
= B+ w

∂fB(D)
∂D

= B−w
(
e−AB(D)α

∂AB(D)
∂D

α

)
(62)

Note that as D grows, the term multiplying w in the above
expression vanishes. Indeed, the derivative of the cost tends
to B as D grows to infinity, as for large enough D there will
be virtually no false positives and the cost will be due to the
time to detect anomalies when they in fact occur, i.e., time to
detect true positives.

Figure 17 shows how the cost varies as a function of D,
for B = 2 and w = 20.646 (see Section V-C). We let p1 and
p2 equal 0.466 and 0.714, respectively. Note that the cost is
robust against changes in D, i.e., it varies in a small range

VOLUME 11, 2023 70737

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

FIGURE 17. Sensitivity analysis when w = 20.646.

FIGURE 18. Sensitivity analysis when w = 909.

(Figure 17(a)). Similar observation holds for the example in
Figure 14. The derivative of the cost also varies in a small

range (Figure 17(b)). The cost has a local minimum around
D = 13 and a global minimum at D = 1.
Next, we let w = 909 (Figure 18). Under this config-

uration, the cost function exhibits a single local minimum,
once again centered around D = 13. However, now the cost
is significantly more sensitive to variations in D. Based on
these observations, we infer that if the objective of the soft
constraint problem is to reliably capture the local minimum
of the hard constraint problem, it is sufficient to consider
smaller values for w. However, if it is desired for the Problem
with Soft Constraints to possess a unique local minimum
corresponding to the solution of the Problem with Hard Con-
straints, larger values of wmay be necessary, albeit at the cost
of reduced robustness to changes in D.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, ‘‘Xen and the art of virtualization,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

[2] A. S. Tanenbaum, Modern Operating Systems, 3rd Ed. Upper
Saddle River, NJ, USA: Prentice-Hall, 2009. [Online]. Available:
https://www.worldcat.org/oclc/254320777

[3] (2020). 83% Of Enterprise Workloads Will Be In The Cloud By
2020. [Online]. Available: https://www.forbes.com/sites/louiscolumbus/
2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020

[4] Intel. (2019).Unexpected Page Fault in Virtualized Environment Advisory.
[Online]. Available: https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00317.html

[5] DigitalOcean. (2019). DigitalOcean Reply to Intel Security Advisory.
[Online]. Available: https://hup.hu/index.php/node/166970

[6] M. Wallschläger, A. Gulenko, F. Schmidt, O. Kao, and F. Liu, ‘‘Automated
anomaly detection in virtualized services using deep packet inspection,’’
Proc. Comput. Sci., vol. 110, pp. 510–515, Jan. 2017.

[7] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu, ‘‘Evaluating
machine learning algorithms for anomaly detection in clouds,’’ in Proc.
IEEE Int. Conf. Big Data, Dec. 2016, pp. 2716–2721.

[8] I. Bojanova, J. Zhang, and J. Voas, ‘‘Cloud computing,’’ IT Prof., vol. 15,
no. 2, pp. 12–14, Mar. 2013.

[9] M. Grottke, A. Avritzer, D. S. Menasché, L. P. de Aguiar, and
E. Altman, ‘‘On the efficiency of sampling and countermeasures to critical-
infrastructure-targetedmalware campaigns,’’ACMSIGMETRICSPerform.
Eval. Rev., vol. 43, no. 4, pp. 33–42, Feb. 2016.

[10] T. Zoppi, A. Ceccarelli, and A. Bondavalli, ‘‘Unsupervised algorithms to
detect zero-day attacks: Strategy and application,’’ IEEE Access, vol. 9,
pp. 90603–90615, 2021.

[11] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A sur-
vey,’’ ACM Reference Format, vol. 41, no. 15, pp. 1–58, 2009, doi:
10.1145/1541880.1541882.

[12] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
‘‘Evaluating computer intrusion detection systems: A survey of common
practices,’’ ACM Comput. Surv. (CSUR), vol. 48, no. 1, p. 12, 2015.

[13] A. Avritzer, A. Bondi, M. Grottke, K. S. Trivedi, and E. J. Weyuker,
‘‘Performance assurance via software rejuvenation: Monitoring, statistics
and algorithms,’’ in Proc. Int. Conf. Dependable Syst. Netw. (DSN), 2006,
pp. 435–444.

[14] A. Bond, D. Johnson, G. Kopczynski, and H. R. Taheri, ‘‘Architecture
and performance characteristics of a PostgreSQL implementation of the
TPC-E and TPC-V workloads,’’ in Proc. Technol. Conf. Perform. Eval.
Benchmarking, 2013, pp. 77–92.

[15] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, ‘‘Fault injection for dependability validation:
A methodology and some applications,’’ IEEE Trans. Softw. Eng., vol. 16,
no. 2, pp. 166–182, Feb. 1990.

[16] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H. Leber,
‘‘Comparison of physical and software-implemented fault injection tech-
niques,’’ IEEE Trans. Comput., vol. 52, no. 9, pp. 1115–1133, Sep. 2003.

70738 VOLUME 11, 2023

http://dx.doi.org/10.1145/1541880.1541882

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

[17] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, ‘‘Model-based evaluation:
From dependability to security,’’ IEEE Trans. Dependable Secure Comput.,
vol. 1, no. 1, pp. 48–65, Jan. 2004.

[18] K. S. Trivedi, D. S. Kim, A. Roy, and D. Medhi, ‘‘Dependability and
security models,’’ in Proc. 7th Int. Workshop Design Reliable Commun.
Netw., Oct. 2009, pp. 11–20.

[19] S. Kumar, J. Turner, and J. Williams, ‘‘Advanced algorithms for fast and
scalable deep packet inspection,’’ in Proc. ACM/IEEE Symp. Archit. Netw.
Commun. Syst., Dec. 2006, pp. 81–92.

[20] C. F. Gonçalves, D. S. Menasché, A. Avritzer, N. Antunes, and M. Vieira,
‘‘A model-based approach to anomaly detection trading detection time
and false alarm rate,’’ in Proc. Medit. Commun. Comput. Netw. Conf.
(MedComNet), Jun. 2020, pp. 1–8.

[21] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan,
‘‘A hybrid deep learning-based model for anomaly detection in cloud
datacenter networks,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 3,
pp. 924–935, Sep. 2019, doi: 10.1109/TNSM.2019.2927886.

[22] A. Diamanti, J. M. S. Vilchez, and S. Secci, ‘‘LSTM-based radiography
for anomaly detection in softwarized infrastructures,’’ in Proc. 32nd Int.
Teletraffic Congr., Y. Jiang, H. Shimonishi, and K. Leibnitz, Eds. Osaka,
Japan, Sep. 2020, pp. 28–36, doi: 10.1109/ITC3249928.2020.00012.

[23] C. Lee, J. Hong, D. Heo, and H. Choi, ‘‘Sequential deep learn-
ing architectures for anomaly detection in virtual network func-
tion chains,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg.
(ICTC), Jeju Island, (South) Korea, Oct. 2021, pp. 1163–1168, doi:
10.1109/ICTC52510.2021.9621043.

[24] M. Rogers, P. Weigand, J. Happa, and K. Rasmussen, ‘‘Detecting CAN
attacks on J1939 and NMEA 2000 networks,’’ IEEE Trans. Dependable
Secure Comput., vol. 20, no. 3, pp. 2406–2420, May/Jun. 2023.

[25] K. Doshi, Y. Yilmaz, and S. Uludag, ‘‘Timely detection and mitigation of
stealthy DDoS attacks via IoT networks,’’ IEEE Trans. Dependable Secure
Comput., vol. 18, no. 5, pp. 2164–2176, Sep. 2021.

[26] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman, ‘‘PID-piper:
Recovering robotic vehicles from physical attacks,’’ in Proc. 51st Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2021, pp. 26–38.

[27] T. Hunt, Z. Jia, V. Miller, C. J. Rossbach, and E. Witchel, ‘‘Isolation and
beyond: Challenges for system security,’’ in Proc. Workshop Hot Topics
Operating Syst., May 2019, pp. 96–104.

[28] S. Krishna and B. Rani, ‘‘Virtualization security issues and mitigations in
cloud computing,’’ in Proc. 1st Int. Conf. Comput. Intell. Inform. Cham,
Switzerland: Springer, 2017, pp. 117–128.

[29] N. Gruschka and M. Jensen, ‘‘Attack surfaces: A taxonomy for attacks on
cloud services,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput., Jul. 2010,
pp. 276–279.

[30] S. S. Alarifi and S. D. Wolthusen, ‘‘Detecting anomalies in IaaS environ-
ments through virtual machine host system call analysis,’’ in Proc. Int.
Conf. Internet Technol. Secured Trans., Dec. 2012, pp. 211–218.

[31] N. Antunes andM. Vieira, ‘‘On the metrics for benchmarking vulnerability
detection tools,’’ in Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Rio de Janeiro, Brazil, Jun. 2015, pp. 505–516.

[32] A. R. Ramtin, P. Nain, D. S. Menasche, D. Towsley, and E. D. S. E. Silva,
‘‘Fundamental scaling laws of covert DDoS attacks,’’ Perform. Eval.,
vol. 151, Nov. 2021, Art. no. 102236.

[33] J. Ho, M. Wright, and S. K. Das, ‘‘Fast detection of mobile replica node
attacks in wireless sensor networks using sequential hypothesis testing,’’
IEEE Trans. Mobile Comput., vol. 10, no. 6, pp. 767–782, Jun. 2011.

[34] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, ‘‘Fast portscan
detection using sequential hypothesis testing,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2004, pp. 211–225.

[35] J. Díaz-Verdejo, J. Muñoz-Calle, A. E. Alonso, R. E. Alonso, and
G. Madinabeitia, ‘‘On the detection capabilities of signature-based intru-
sion detection systems in the context of web attacks,’’ Appl. Sci., vol. 12,
no. 2, p. 852, Jan. 2022.

[36] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, ‘‘Automated
anomaly detection and performance modeling of enterprise applications,’’
ACM Trans. Comput. Syst., vol. 27, no. 3, pp. 1–32, Nov. 2009.

[37] A. Avritzer, R. Tanikella, K. James, R. G. Cole, and E. Weyuker, ‘‘Mon-
itoring for security intrusion using performance signatures,’’ in Proc. 1st
Joint WOSP/SIPEW Int. Conf. Perform. Eng., Jan. 2010, pp. 93–104.

[38] T. Wang, J. Xu, W. Zhang, Z. Gu, and H. Zhong, ‘‘Self-adaptive cloud
monitoring with online anomaly detection,’’ Future Gener. Comput. Syst.,
vol. 80, pp. 89–101, Mar. 2018, doi: 10.1016/j.future.2017.09.067.

[39] C. Rosenthal, Principles of Chaos Engineering. San Francisco, CA, USA:
USENIX Association, Mar. 2017.

[40] C. Rosenthal and N. Jones, Chaos Engineering: System Resiliency in
Practice. Springfield, MO, USA: O’Reilly, 2020.

[41] K. A. Torkura, M. I. H. Sukmana, F. Cheng, and C. Meinel, ‘‘CloudStrike:
Chaos engineering for security and resiliency in cloud infrastructure,’’
IEEE Access, vol. 8, pp. 123044–123060, 2020.

[42] A. Avritzer, A. Bondi, and E. J. Weyuker, ‘‘Ensuring stable performance
for systems that degrade,’’ in Proc. 5th Int. Workshop Softw. Perform.,
Jul. 2005, pp. 43–51.

[43] Z. Wu, Z. Xu, and H. Wang, ‘‘Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud,’’
IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 603–615, Apr. 2015.

[44] J. D. Musa, ‘‘Operational profiles in software-reliability engineering,’’
IEEE Softw., vol. 10, no. 2, pp. 14–32, Mar. 1993.

[45] J. Ericson, M. Mohammadian, and F. Santana, ‘‘Analysis of performance
variability in public cloud computing,’’ in Proc. IEEE Int. Conf. Inf. Reuse
Integr. (IRI), Aug. 2017, pp. 308–314.

[46] W. Lin, C. Xiong, W. Wu, F. Shi, K. Li, and M. Xu, ‘‘Performance
interference of virtual machines: A survey,’’ ACM Comput. Surv., vol. 55,
no. 12, pp. 1–37, Mar. 2023, doi: 10.1145/3573009.

[47] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, ‘‘Inside
the social network’s (datacenter) network,’’ in Proc. ACM Conf. Spe-
cial Interest Group Data Commun., Aug. 2015, pp. 123–137, doi:
10.1145/2785956.2787472.

[48] M. Compastié, R. Badonnel, O. Festor, and R. He, ‘‘From virtualization
security issues to cloud protection opportunities: An in-depth analysis
of system virtualization models,’’ Comput. Secur., vol. 97, Oct. 2020,
Art. no. 101905.

[49] R. Patil and C. Modi, ‘‘An exhaustive survey on security concerns and
solutions at different components of virtualization,’’ ACM Comput. Surv.,
vol. 52, no. 1, pp. 1–38, Jan. 2020.

[50] D. Sgandurra and E. Lupu, ‘‘Evolution of attacks, threat models, and
solutions for virtualized systems,’’ ACM Comput. Surveys, vol. 48, no. 3,
pp. 1–38, Feb. 2016.

[51] E. S. Page, ‘‘Continuous inspection schemes,’’ Biometrika, vol. 41,
nos. 1–2, pp. 100–115, 1954.

[52] O. A. Grigg, V. T. Farewell, and D. J. Spiegelhalter, ‘‘Use of risk-adjusted
CUSUM and RSPRTcharts for monitoring in medical contexts,’’ Stat.
Methods Med. Res., vol. 12, no. 2, pp. 147–170, Apr. 2003.

[53] A. Wald, ‘‘Sequential tests of statistical hypotheses,’’ Ann. Math. Statist.,
vol. 16, no. 2, pp. 117–186, Jun. 1945.

[54] S.-F. Yang and S. W. Cheng, ‘‘A new non-parametric CUSUM
mean chart,’’ Qual. Rel. Eng. Int., vol. 27, no. 7, pp. 867–875,
Nov. 2011.

[55] TPC EXPRESS BENCHMARK V (TPCx-V) Specification, Transaction
Processing Performance Council (TPC), TPC, Apr. 2019.

[56] A. Bond, D. Johnson, G. Kopczynski, and H. R. Taheri, ‘‘Profiling the
performance of virtualized databases with the TPCx-V benchmark,’’ in
Proc. Technol. Conf. Perform. Eval. Benchmarking, 2015, pp. 156–172.

[57] B. Groza and M. Minea, ‘‘Formal modelling and automatic detection
of resource exhaustion attacks,’’ in Proc. 6th ACM Symp. Inf., Comput.
Commun. Secur., Mar. 2011, pp. 326–333.

[58] Ubuntu. (2019). Stress NG. [Online]. Available: https://kernel.
ubuntu.com/ cking/stress-ng/

[59] S. Ji, K. Ye, andC.-Z. Xu, ‘‘CMonitor: Amonitoring and alarming platform
for container-based clouds,’’ in Proc. Int. Conf. Cloud Comput. Cham,
Switzerland: Springer, 2019, pp. 324–339.

[60] M. Duarte, ‘‘detecta: A Python module to detect events in data,’’
Tech. Rep., 2020, doi: 10.5281/zenodo.4598962.

[61] M. J. Zaki and J. W. Meira, Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[62] Y. Gan, Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, and B. Jackson, ‘‘An open-source benchmark
suite for microservices and their hardware–software implications for cloud
& edge systems,’’ in Proc. 24th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Apr. 2019, pp. 3–18.

[63] A. Avritzer, R. Britto, C. Trubiani, M. Camilli, A. Janes, B. Russo,
A. van Hoorn, R. Heinrich, M. Rapp, J. Henß, and R. K. Chalawadi,
‘‘Scalability testing automation using multivariate characterization and
detection of software performance antipatterns,’’ J. Syst. Softw., vol. 193,
Nov. 2022, Art. no. 111446, doi: 10.1016/j.jss.2022.111446.

VOLUME 11, 2023 70739

http://dx.doi.org/10.1109/TNSM.2019.2927886
http://dx.doi.org/10.1109/ITC3249928.2020.00012
http://dx.doi.org/10.1109/ICTC52510.2021.9621043
http://dx.doi.org/10.1016/j.future.2017.09.067
http://dx.doi.org/10.1145/3573009
http://dx.doi.org/10.1145/2785956.2787472
http://dx.doi.org/10.5281/zenodo.4598962
http://dx.doi.org/10.1016/j.jss.2022.111446

C. F. Gonçalves et al.: Detecting Anomalies Through Sequential Performance Analysis

[64] V. M. De Oca, D. R. Jeske, Q. Zhang, C. Rendon, and M. Marvasti,
‘‘A cusum change-point detection algorithm for non-stationary sequences
with application to data network surveillance,’’ J. Syst. Softw., vol. 83, no. 7,
pp. 1288–1297, Jul. 2010.

[65] J. Arlat, J.-C. Fabre, and M. Rodriguez, ‘‘Dependability of COTS
microkernel-based systems,’’ IEEE Trans. Comput., vol. 51, no. 2,
pp. 138–163, 2002.

[66] M. Sayed-Mouchaweh and E. Lughofer, Learning in Non-Stationary Envi-
ronments: Methods and Applications. Berlin, Germany: Springer, 2012.

[67] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, ‘‘TeaStore: A micro-service reference application for bench-
marking, modeling and resource management research,’’ in Proc. IEEE
26th Int. Symp. Model., Anal., Simul. Comput. Telecommun. Syst. (MAS-
COTS), Sep. 2018, pp. 223–236.

[68] M. Zukerman, ‘‘Introduction to queueing theory and stochastic teletraffic
models,’’ 2013, arXiv:1307.2968.

[69] D. P. Heyman and M. J. Sobel, Stochastic Models in operations Research.
1. Stochastic Processes and Operating Characteristics. New York, NY,
USA: McGraw-Hill, 1982.

[70] J. A. Fill, ‘‘The passage time distribution for a birth-and-death chain:
Strong stationary duality gives a first stochastic proof,’’ J. Theor. Probab.,
vol. 22, no. 3, pp. 543–557, Sep. 2009.

CHARLES F. GONÇALVES received the B.Sc. and
M.Sc. degrees in computer science from the Fed-
eral University of Minas Gerais (UFMG), Brazil.
He is currently pursuing the Ph.D. degree in infor-
matics engineering with the University of Coimbra
(UC). He is a member of the Software and System
Engineering (SSE) Group, Centre for Informat-
ics and Systems of the University of Coimbra
(CISUC), and the SPEC Research Security Bench-
marking Working Group. His research interests

include virtualization security, security benchmarking, data processing, and
software development.

DANIEL SADOC MENASCHÉ (Member, IEEE)
received the Ph.D. degree in computer science
from the University of Massachusetts Amherst,
in 2011. He is currently an Associate Professor
with the Department of Computer Science, Federal
University of Rio de Janeiro, Brazil. His research
interests include modeling, analysis, security, and
the performance evaluation of computer systems.
He was a recipient of the best paper awards from
GLOBECOM 2007, CoNEXT 2009, INFOCOM

2013, and ICGSE 2015. He is an Alumni Affiliated Member of the Brazilian
Academy of Sciences.

ALBERTO AVRITZER (Member, IEEE) received
the B.Sc. degree in computer engineering from
the Technion—Israel Institute of Technology, the
M.Sc. degree in computer science from the Federal
University of Minas Gerais, Brazil, and the Ph.D.
degree in computer science from the University
of California, Los Angeles. He is currently the
Founder and the CEO of EsulabSolutions Inc., the
preferred source for methods for scalability assess-
ment of mission-critical systems in the telecom

and banking domains. He led the automated performance testing and analysis
of NewYork subway public announcement and customer information system
(PA/CIS), where he was responsible for the certification of system scalability
to support 550 stations. He was a Lead Performance Engineer with Sonatype,
Fulton, MD, USA, and a Senior Member of the Technical Staff with the
Department of Software Engineering, Siemens Corporate Research Inc.,
Princeton, NJ, USA. Before moving to Siemens Corporate Research Inc.,
he spent 13 years with AT&T Bell Laboratories, where he developed tools
and techniques for performance testing and analysis. He spent the Sum-
mer of 1987 with IBM Research, Yorktown Heights. His research interests
include software engineering, particularly software testing, monitoring, and
rejuvenation of smoothly degrading systems, and metrics to assess software
architecture. He has published more than 70 papers in journals and refereed
conference proceedings in those areas. He is a Senior Member of ACM.
He has presented several tutorials at international conferences, such as
LADC, IEEE ISSRE, and ACM ICPE.

NUNO ANTUNES (Member, IEEE) received
the Ph.D. degree from the University of Coim-
bra (UC), in 2014. Since 2008, he has been a
Researcher in software security and dependability
with the Centre for Informatics and Systems of the
University of Coimbra (CISUC). He is currently an
Assistant Professor with the Department of Infor-
matics and Engineering, UC. His research interests
include testing, fault injection, vulnerability injec-
tion, and benchmarking, which are applied to the

assessment of the dependability and security of intelligent systems, virtu-
alized environments, intrusion detection systems, web services, web and
mobile applications, and data management systems.

MARCO VIEIRA (Member, IEEE) is currently a
Full Professor with the University of Coimbra,
Portugal. His research interests include depend-
ability and security assessment and benchmarking,
fault injection, software processes, and software
quality assurance, subjects in which he has
authored or coauthored more than 200 papers in
refereed conferences and journals. He has partic-
ipated and coordinated several research projects,
both at the national and European level. He is the

Vice Chair of the IFIP Working Group 10.4 on Dependable Computing
and Fault Tolerance and an Associate Editor of the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING journal. He has served as the program
chair. He is on the program committees of the major conferences of the
dependability area.

70740 VOLUME 11, 2023

