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1 On functors preserving projective resolutions

Ana Paula Santana∗ and Ivan Yudin†

Abstract

It is important for applications of Homological Algebra in Rep-
resentation Theory to have control over the behaviour of (minimal)
projective resolutions under various functors. In this article we de-
scribe three broad families of functors that preserve such resolutions.
We will use these results in our work on Representation Theory of
Schur algebras.

Key words: projective resolution, stratifying ideal, graded module,
graded algebra, relative homological algebra.
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Introduction

It is well known that finite dimensional modules over finite dimensional alge-
bras admit minimal projective resolutions. The explicit knowledge of a min-
imal projective resolution for a given module permits to reduce computation
of Ext-groups involving this module to an, albeit sometimes complicated,
linear algebra problem.

The present article was conceived in the sequence of our research of Ext-
groups between Weyl modules for the general linear group GLn or, equiv-
alently, of Ext-groups between Weyl modules for Schur algebras. The de-
termination of ExtiGLn

(M,N), where M , N are Weyl modules, is an open
problem in the representation theory of GLn and of other algebraic groups,
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see [8], [9] for the cases of SL2 and GL2. We hope that the construction of
suitable projective resolutions of Weyl modules over Schur algebras can shed
some light on this problem.

In our work to explicitly build these projective resolutions, we found that
it is important to be able to pass between different abelian categories with
suitably chosen functors. These functors should preserve minimal projective
resolutions, not necessarily for all objects, but at least for the objects we are
interested in.

In this article we present our results concerning three of these functors.
Let Γ be a monoid. The first two functors are defined on the category of
Γ-graded modules over a Γ-graded algebra. The first functor is the forgetful
functor that erases the grading information. The second functor is defined
as a twisted product −⋉ΓN for a B-module N , where B is a Γ-algebra (the
explicit definitions are given in Section 3). In Sections 2 and 3 we determine
sufficient conditions for which these functors preserve minimal projective
resolutions for all objects.

In the last section we study the functor A/I ⊗A−, where A is an algebra
and I is an ideal. This functor usually does not preserve (minimal) projec-
tive resolutions for all objects, but in favorable circumstances it preserves
(minimal) projective resolutions of A/I-modules considered as A-modules.
In this case we say that I is a stratifying ideal. The equivalent condition for
I to be stratifying is that TorAk (A/I, A/I) = 0 for k ≥ 1.

If R is a subring of A which does not necessarily lie inside the center of
A, one can define relative torsion groups Tor

(A,R)
k (A/I, A/I) (see [7]). In [11]

we found a combinatorial criterion for Tor
(A,R)
k (A/I, A/I) = 0, k ≥ 1. In

the last section of the article we establish a sufficient condition on the triple
(A,R, I) under which Tor

(A,R)
k (A/I, A/I) = 0 for k ≥ 1 implies the same

for TorAk (A/I, A/I). Thanks to this, one can use the combinatorial criterion
from [11] to prove that I is a stratifying ideal in A.

For the convenience of the reader, in the first section of the article,
we prove some results concerning minimal projective resolutions in general
abelian categories. Despite the fact that these results are sometimes accepted
as true in this general context, we were not able to find explicit proofs for
them in the literature. So we chose to provide full details in their treatment.
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1 Superfluous subobjects and minimal pro-

jective covers in abelian categories

In this section we work in a very abstract setting, collecting definitions and
proving results in general abelian categories. These results and concepts will
be then applied to concrete categories in the following sections of the article.

Let C be an abelian category. We follow MacLane [6], and define a subob-
ject of Y ∈ C as an equivalence class of monomorphisms ψ : X → Y , where
ψ ∼ ψ′ : X ′ → Y if there is an isomorphism ρ : X → X ′ such that ψ′ ◦ ρ = ψ.
We use upper case letters to denote objects and italic uppercase letters to
denote subobjects. To indicate that X is a subobject of Y we write X ⊂ Y .
If X and Z are subobjects of Y represented by monomorphisms ψX : X → Y
and ψZ : Z → Y we say that Z is contained in X and write Z ≤ X if there
is φ : Z → X such that ψX ◦ φ = ψZ . Given an object Y we denote by Y the
maximal subobject of Y , i.e. the subobject given by the equivalence class of
idY .

Dually a quotient of Y is an equivalence class of epimorphisms τ : Y → Z,
where τ ∼ τ ′ : Y → Z ′ if and only if there is an isomorphism ρ : Z → Z ′ such
that ρ ◦ τ = τ ′.

We adopt the convention that for an arrow φ : X → Y the kernel ker φ
and the image Imφ of φ are subobjects of X and Y , respectively. Similarly
the cokernel Coker φ of φ is a quotient of Y . This is a legitimate point of
view as explained in [6, VIII.1].

As usual we use ik to denote the canonical embeddings associated with
direct sums. For an object A we denote by ∇A the codiagonal map, which
is determined by the universal property of the direct sum

0 //

��

A

i1
��

idA

��

A
i2
//

idA 00

A⊕ A
∃!∇A

##

A.

Given two subobjects X1 and X2 of Y ∈ C, we define the sum X1 + X2 as
the image of ∇Y ◦ (ψ1 ⊕ ψ2) in Y , where, for i = 1, 2, the map ψi is a
representative of Xi.
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For a morphism φ : X → Y and a subobject N of X represented by a
monomorphism ψN : N → X , we define the subobject φ(N ) to be Im(φ◦ψN ).

Now, ifM is a subobject of Y represented by a monomorphism ψM : M →
Y , we define φ−1(M) ⊂ X as the image of the left vertical arrow in the pull-
back diagram

M̃ //

��

M

ψM

��

X
φ

// Y.

(1)

Suppose X ⊂ Y . We say that X is a superfluous subobject of Y if for any
subobject T of Y the equality X + T = Y implies T = Y . We will write
X ⋐ Y in this case.

We will define minimal projective covers using superfluous subobjects.
As in this article we study preservability of projective covers under various
functors, it is convenient to have at hand various elementary properties of
superfluous subobjects, which will be given in Proposition 1.3. These proper-
ties are well-known and easy to prove in the case C is the category of modules
over a ring. To lift these properties to arbitrary abelian categories, we will
use the Freyd-Mitchell embedding:

Theorem 1.1. Let B be a small abelian category. Then there exists a ring
R such that there is a full and faithful exact functor F : B → R-Mod.

Notice that the above result refers only to small abelian categories. As we
work with arbitrary abelian categories, we will use the following fact proved
on page 85 of [3].

Theorem 1.2. Let C be an abelian category and X a set of objects in C.
Then there is a full subcategory B(X) of C such that

i) X ⊂ ObB(X);

ii) B(X) is a small abelian category;

iii) B(X) is stable under finite limits and colimits.

We say that a functor F between abelian categories is exact if one of the
two equivalent conditions holds:

i) F preserves exact sequences;
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ii) F preserves finite limits and finite colimits.

Below we list standard properties of fully faithful exact functors, which
we will use without further reference. If F : B → C is a full and faithful exact
functor between abelian categories, then

• F (0) ∼= 0;

• F preserves and reflects monomorphisms and epimorphisms;

• F preserves and reflects kernels, cokernels, and, thus, also images.

Given X ⊂ Y in B, we define F (X ) ⊂ F (Y ) as the equivalence class of
F (ψX), where ψX : X → Y is a representative of X . Then there hold

• If X1, X2 ⊂ Y , then F (X1 + X2) = F (X1) + F (X2);

• If X1 and X2 are two different subobjects in Y then F (X1) 6= F (X2);

• F preserves images and pre-images of subobjects.

We can now state and prove the properties of superfluous subobjects that we
mentioned before.

Proposition 1.3. Let C be an abelian category. Then the following state-
ments hold:

(i) Suppose that N ⋐M and φ : M → M ′ is an arrow in C. Then φ(N ) ⋐
M ′.

(ii) Let Nk ⋐M in C, for k in some finite index set I. Then
∑

k∈I Nk ⋐M .

(iii) Let Nk ⊂ Mk, k ∈ I, be a finite family of subobject-object pairs in C.
Then the following two assertions are equivalent:

(a) Nk ⋐Mk, for all k ∈ I;

(b)
∑

k∈I ik(Nk) ⋐
⊕

k∈IMk.

Proof. (i) Let T ⊂M ′ be such that φ(N )+T = M′. Our first aim is to show
thatN+φ−1(T ) = M. Let ψT : T → M ′ and ψN : N → M be representatives
of T and N , respectively. Denote by B the category B(T,N,M,M ′), whose
existence is asserted by Theorem 1.2. Since B is stable under finite limits
and colimits, it is enough to show that N + φ−1(T ) = M in B.
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Let R be a ring, such that there is a full and faithful exact functor F : B →
R-Mod. Applying F to φ(N )+T = M′ we get (Fφ)(FN )+F (T ) = F (M ′).
Now, for every m ∈ F (M) there are n ∈ F (N ) and t ∈ F (T ) such that
(Fφ)(m) = (Fφ)(n) + t. In particular, (Fφ)(m − n) = t belongs to F (T ).
Therefore, m − n ∈ (Fφ)−1(FT ). This shows that m = n + (m − n) is
an element of F (N ) + (Fφ)−1(FT ). Since m was an arbitrary element of
FM , we get that F (N ) + (Fφ)−1(FT ) = F (M). Since F is exact this
implies N + φ−1(T ) = M. As N ⋐ M , we get φ−1(T ) = M. In particular,
N ≤ φ−1(T ). Hence φ(N ) ≤ φφ−1(T ) ≤ T . Therefore T = φ(N )+T = M′.

(ii) It is enough to prove the statement in case the cardinality of I is 2. Let
T ⊂M be such that N1+N2+T = M. Since N1 ⋐M , we get N2+T = M.
Now N2 ⋐M , implies T = M.

(iii) Suppose Nk ⋐Mk, for all k ∈ I. Then, by (i) we get ik(Nk) ⋐
⊕

j∈IMj .
Therefore

∑
k∈I ik(Nk) ⋐

⊕
k∈IMk, by statement (ii) of the proposition.

Conversely, suppose
∑

k∈I ik(Nk) ⋐
⊕

k∈IMk. Fix ℓ ∈ I. We will show
that Nℓ ⋐Mℓ. Suppose T ⊂ Mℓ is such that Nℓ + T = Mℓ.

Define S = iℓ(T )+
∑

k 6=ℓ ik(Mk). Then
∑

k∈I ik(Nk)+S =
∑

k∈I ik(Mk)
is the top subobject of

⊕
k∈IMk. Since

∑
k∈I ik(Nk) is a superfluous subob-

ject of
⊕

k∈IMk, we get S =
∑

k∈I ik(Mk). Applying the ℓth canonical pro-
jection pℓ :

⊕
k∈IMk →Mℓ, we get T = Mℓ. This shows that Nℓ ⋐Mℓ.

It should be noted that the properties stated in Proposition 1.3(ii) and
(iii) cannot be extended to infinite sums. To give counter-examples we need
the notion of radical. Given a ring R and an R-module M we can define
Rad(M) as the sum of all superfluous subobjects in M . This definition is
equivalent to the usual one via the intersection of maximal subobjects by [1,
Proposition 9.13].

Now consider the case R = Z and M = Q/Z. By [1, Exercise 9.2], we
have Rad(Q/Z) = Q/Z. This shows that Rad(Q/Z) is not a superfluous
submodule of Q/Z despite being a sum of superfluous submodules.

Next let R be a ring and M an R-module such that Rad(M) is not su-
perfluous in M . Denote by S the set of all superfluous submodules in M .
The set S is infinite as otherwise we would get a contradiction to Propo-
sition 1.3(iii). Consider the submodule Ñ :=

⊕
N∈S N of M̃ :=

⊕
N∈SM .

Then Ñ is an infinite direct sum of superfluous submodules. We will show
that Ñ is not superfluous.
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Since Rad(M) is not a superfluous subobject of M , there is a submodule
T ⊂M such that T 6=M and T + Rad(M) =M . We define

T̃ =

{
(mN)N∈S ∈ M̃

∣∣∣∣∣
∑

N∈S

mN ∈ T

}
.

We will show that Ñ + T̃ = M̃ and T̃ 6= M̃ . For the second assertion, note
that if we take m ∈M \ T and N ∈ S then iN (m) is not an element of T̃ .

Now we will show that T̃ + Ñ = M̃ . For this it is enough to check that
for every m ∈ M and N ∈ S the element iN(m) belongs to T̃ + Ñ . Since
T+Rad(M) =M and Rad(M) is the sum of all superfluous subobjects we can
write m as a linear combination m = t +

∑
N ′∈S′ mN ′ , t ∈ T, mN ′ ∈ N ′,

where S ′ is a finite subset of S. Now iN ′(mN ′) ∈ Ñ for every N ′ ∈ S ′.

Further the elements iN(t) , iN (mN ′)− iN ′(mN ′) of M̃ lie in T̃ . Therefore

iN (m) =

(
iN (t) +

∑

N ′∈S′

(iN(mN ′)− iN ′(mN ′))

)
+
∑

N ′∈S′

iN ′(mN ′)

is a sum of an element in T̃ and of an element in Ñ . This shows T̃ + Ñ = M̃
and thus Ñ is not a superfluous submodule of M̃ despite being a direct sum
of superfluous subobjects in the corresponding components.

For completeness of the exposition we recall the definitions of projective
object and projective resolution. An object P in C is called projective if for
every epimorphism φ : X → Y in C the map C(P, f) : C(P,X) → C(P, Y ) is an
epimorphism. A projective cover of Y in C is a projective object P together
with an epimorphism π : P → Y such that ker π ⋐ P . If a projective cover
of Y exists it is unique up to isomorphism (cf. [12, Theorem 5.1]).

A projective resolution of an object M ∈ C is an exact complex P• =
(Pk, k ≥ −1) with differentials dk : Pk+1 → Pk, P−1 = M , and Pk projec-
tive. This resolution is called minimal if, additionally, ker(dk) ⋐ Pk+1 for all
k ≥ −1.

It follows from the definition, that if P• is a minimal projective resolution
of M , then d−1 : P0 → M and dk : Pk+1 → ker(dk−1) for k ≥ 0 are projective
covers. Since a projective cover is unique up to isomorphism, we see by an
induction argument, that a minimal projective resolution of M is unique up
to isomorphism.
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2 Graded algebras and modules

Let R be a commutative ring with identity, Γ a monoid with neutral element
e, and A a Γ-graded associative R-algebra, that is we have an R-module
decomposition

A =
⊕

γ∈Γ

Aγ ,

satisfying Aγ1Aγ2 ⊂ Aγ1γ2 for all γ1, γ2 ∈ Γ. We also assume that the identity
eA of A is an element of Ae.

A left A-module M is Γ-graded if M =
⊕

γ∈ΓMγ , where each Mγ is
an R-submodule of M , and Aγ1Mγ2 ⊂ Mγ1γ2 for all γ1, γ2 ∈ Γ. We will
work with the category A-Γ-gr of left Γ-graded A-modules and A-module
homomorphisms respecting the grading: a map of A-modules f : M1 → M2

is in A-Γ-gr if f(M1,γ) ⊂M2,γ for all γ ∈ Γ. This category A-Γ-gr is abelian
(see for example Proposition 3.1 in [12]).

Given a Γ-graded A-module M , the support of M is

supp(M) = { γ ∈ Γ |Mγ 6∼= 0} .

We call a monoid Γ equipped with an order < an ordered monoid if
for any three elements α, β, γ ∈ Γ such that α < β we have that also
αγ < βγ and γα < γβ. Notice that we require that the multiplication with
γ preserves strict inequalities. This is a stronger condition than to require
just preservability of non-strict inequalities. Terminological conventions on
this matter can vary from article to article.

A poset (P, <) is called well-founded if every strictly decreasing sequence
of elements in P is finite. With this definition we can speak about well-
founded ordered monoids.

The following theorem is a reformulation of Proposition 5.2 in [10].

Theorem 2.1. Let Γ be a well-founded ordered monoid such that e is the
least element of Γ. Then every Γ-graded A-module has a projective cover if
and only if every Ae-module has a projective cover.

Consider the general monoid Γ. For every β ∈ Γ and every Γ-graded
A-module M , we define the Γ-graded A-module M [β] to be M as a left A-
module with the homogeneous components given by M [β]γ =

⊕
αβ=γMα.

Note that each component Mα of M appears exactly once in the decomposi-
tion M [β] =

⊕
γ∈ΓM [β]γ , since Mα is a direct summand of M [β]αβ and not

a direct summand of any M [β]γ for γ 6= αβ.
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It is proved in [10, Proposition 4.3], that the set {A[β] |β ∈ Γ} is a set of
projective generators for the category of Γ-graded A-modules. This fact will
be used in the proof of the following proposition.

Proposition 2.2. Let Γ be a monoid and A a Γ-graded algebra. If P is a
projective Γ-graded A-module, then P is projective as an A-module.

Proof. Since P is a projective Γ-graded A-module it is a direct summand of⊕
β∈B A[β], for some family B of elements in Γ. As A[β] ∼= A as an A-module

we get that P is a direct summand of the free A-module
⊕

β∈B A. Hence P
is a projective A-module.

Proposition 2.2 implies that if P• is a projective resolution of a Γ-graded
A-module M then P• is a projective resolution of M considered as an A-
module. If P• is minimal as Γ-graded projective resolution, it is not always
true that it is minimal if considered without grading. Our next step will be
to determine conditions under which minimality is preserved upon forgetting
the grading.

Proposition 2.3. Let Γ be a well-founded ordered monoid with least element
e, and A a Γ-graded algebra. Suppose M is a Γ-graded A-module with finite
support and N is a superfluous subobject of M in the category A-Γ-gr. Then
N is a superfluous subobject of M in the category A-Mod.

Proof. We will prove the proposition by induction on the cardinality of the
support of M . If | supp(M)| = 1 there is nothing to prove, as any A-
submodule of M is automatically Γ-graded. Suppose the result holds for
all M with | sup(M)| ≤ n − 1. Consider M with | supp(M)| = n. Let T be
an A-submodule of M such that N +T =M . We have to show that T =M .
Let γ be a maximal element of supp(M). Define M ′ as the Γ-graded A-
submodule of M generated by

⊕
β 6=γMβ , that is M ′

β = Mβ if β 6= γ, and
M ′

γ =
⊕

β<γ

⊕
αβ=γ AαMβ . Note that in the last sum, we can take β < γ

and not just β 6= γ, as the existence of α such that αβ = γ implies that
γ > β. Also, since γ is a maximal element of supp (M), both M ′

γ and Mγ

are Γ-graded A-submodules of M . We will prove first that

M ′
γ ⊂ T. (2)

By Proposition 1.3(i), we have that

(N +Mγ)
/
Mγ ⋐ M

/
Mγ (3)
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in the category A-Γ-gr. Since the support of M
/
Mγ has cardinality n − 1,

by the induction hypothesis we get that (3) also holds in A-Mod. Obviously

(N +Mγ)
/
Mγ + (T +Mγ)

/
Mγ = M

/
Mγ .

Therefore
(T +Mγ)

/
Mγ = M

/
Mγ . (4)

It is now easy to show (2). In fact, we only have to check that AαMβ ⊂ T
for every β < γ and α, such that αβ = γ. Note that, for such α we have
α 6= e and so α > e. Let y ∈ Mβ and a ∈ Aα. It follows from (4) that there
is z ∈ Mγ such that y + z ∈ T . Thus also a(y + z) ∈ T . Since αγ > γ and
γ is a maximal element of supp(M), we get that az = 0. Thus ay ∈ T , i.e.
AαMβ ⊂ T . Now define

M = M
/
M ′

γ
, N =

(
N +M ′

γ

)/
M ′

γ
⊂M, T = T

/
M ′

γ
⊂M.

Note that M is the internal direct sum of Mγ and
⊕

β 6=γMβ in the category

of Γ-graded A-modules. Our next step is to prove that N ⋐ M in the
category A-Mod. By Proposition 1.3(i) we have that N ⋐M in the category
A-Γ-gr. Since N is Γ-graded, we get that Nγ is a Γ-graded A-submodule
of Mγ and

⊕
β 6=γ Nβ is a Γ-graded A-submodule of

⊕
β 6=γMβ. Moreover

(
⊕

β 6=γ Nβ)
⊕

Nγ = N . Therefore from Proposition 1.3(iii), we have that

Nγ ⋐ Mγ and
⊕

β 6=γ Nβ ⋐

⊕
β 6=γMβ in the category A-Γ-gr. Since the

cardinalities of the supports of Mγ and of
⊕

β 6=γMβ are less than n, the

induction assumption gives that Nγ ⋐Mγ and
⊕

β 6=γ Nβ ⋐

⊕
β 6=γMβ in A-

Mod. Applying Proposition 1.3(iii) with C the category A-Mod, we conclude
that N ⋐ M in A-Mod. Thus N + T = M implies that T = M . Therefore
T =M .

We will use the result of Proposition 2.3 only in the caseM is a projective
module. It is natural to wonder if the condition of finiteness on | supp(M)|
is redundant. The next example shows that this is not the case.

Let R be a commutative ring with identity, with the property that its
Jacobson radical J = J(R) is not left T-nilpotent. For example, we can take
R = Z(p), the localization of Z at the ideal (p), for some prime p. Consider
R as an N-graded ring with R0 = R and all other homogeneous components
equal to zero. Define the N-graded R-module F by Fn = RR. Clearly F

10



is a projective N-graded R-module. If we consider F as an R-module, by
Proposition 9.19 in [1], we have N := Rad(F ) =

⊕
n∈N J . In particular, N

is an N-graded submodule of F . It is easy to check that N ⋐ F in R-N-gr.
Indeed, if T =

⊕
n∈N Tn is another N-graded R-submodule of F such that

N+T = F , then for each component n we have Nn+Tn = R, i.e. J+Tn = R.
Since J ⋐ R in R-Mod, this implies Tn = R and T = F .

By Proposition 17.10 and Lemma 28.3 in [1], we know that N = JF ,
and that JF is a superfluous subobject of F in R-Mod if and only if J is
a left T -nilpotent ideal. Hence, under our assumption on the ring R, N is
not a superfluous submodule of F in R-Mod. This shows that forgetting the
grading can render a superfluous subobject to become non-superfluous.

Proposition 2.4. Let Γ be a monoid, A a Γ-graded algebra with finite sup-
port, and M a Γ-graded A-module with finite support. Then there exists a
projective resolution P• of M in A-Γ-gr such that each Pk has finite support.

Proof. It is enough to show that for every M with finite support there is
a projective Γ-graded A-module P with finite support and an epimorphism
f : P → M . Then using this fact for ker(f), we get P2 → ker(f), and
hence the first two steps of a projective resolution of M with finite support.
Repeating this process recursively we obtain a projective resolution of the
required type.

Since {A[β] |β ∈ Γ} is a set of projective generators of A-Γ-gr, there is
P =

⊕
β∈ΓA[β]

κβ , where κβ are cardinals, and an epimorphism of Γ-graded
A-modules f : P → M . Suppose β 6∈ supp(M). Then the restriction of f to
each summand A[β] in P is zero. In fact, the module A[β] is generated as
an A-module by the element e ∈ Ae ⊂ A[β]β, and its image under f is in
Mβ = 0. Therefore, without loss of generality, we can assume that κβ = 0 for
all β 6∈ supp(M). Since | supp(A[β])| ≤ | supp(A)| and A has finite support,
we get that | supp(P )| ≤

∑
β∈supp(M) | supp(A[β])| ≤ | supp(M)| · | supp(A)|

is finite.

We can now state and prove the main result of this section.

Theorem 2.5. Let Γ be a well-founded ordered monoid with least element e,
and A a Γ-graded algebra with finite support. Given a Γ-graded A-module M
with finite support, let P• be a minimal projective resolution of M in A-Γ-gr.
Then P• is a minimal projective resolution of M in the category A-Mod. In
other words, the grading forgetting functor from A-Γ-gr to A-Mod preserves
minimal projective resolutions of Γ-graded A-modules with finite support.
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Proof. We know that P• is a projective resolution of M in the category A-
Mod by Proposition 2.2. Thus we have only to check that it is minimal.

By Proposition 2.4 there is a projective resolution P • ofM in A-Γ-gr such
that all P k, k ≥ 0, have finite support. Since P• is a minimal projective res-
olution (by applying for example Theorem 5.1 in [12]) there is an embedding
of P• into P •. Thus each Pk, k ≥ 0, has finite support. Since the resolution
P• is minimal in A-Γ-gr, all the maps d−1 : P0 → M and dk : Pk+1 → Pk
for k ≥ 0 have superfluous kernels in A-Γ-gr. From Proposition 2.3, these
kernels are also superfluous in A-Mod.

3 Twisted products

We start this section with an overview of the concept of twisted product
of rings. Then we specialise to twisted products of Γ-graded algebras and
modules, and study under which conditions the functor − ⋉Γ N , defined
below, preserves minimal projective resolutions.

Given rings S, A1, andA2 , suppose we have ring homomorphisms φi : S →
Ai, for i = 1, 2. We say that A is a twisted product of A1 and A2 over S if
there are a ring homomorphism φ : S → A and an S-bimodule isomorphism
γ : A1 ⊗S A2 → A such that

γ(φ1(s)⊗ 1) = γ(1⊗ φ2(s)) = φ(s), γ(a1 ⊗ a2) = γ(a1 ⊗ 1)γ(1⊗ a2)

γ(a1a
′
1 ⊗ 1) = γ(a1 ⊗ 1)γ(a′1 ⊗ 1), γ(1⊗ a2a

′
2) = γ(1⊗ a2)γ(1⊗ a′2).

(5)
If A is a twisted product of A1 and A2 over S, one can define a twisting
homomorphism of abelian groups

T : A2 ⊗S A1 → A1 ⊗S A2

a2 ⊗ a1 7→ γ−1(γ(1⊗ a2)γ(a1 ⊗ 1)).

Note that it is then possible to reconstruct A from φ1, φ2 and T . The
name twisted product is justified by the existence of the map T .

Twisted products of algebras over fields where studied in [4]. A more
general approach, that can be applied to monoids in arbitrary monoidal
categories, was considered in [2].

Next we study a twisted product involving a Γ-graded algebra. As usual,
all the unnamed tensor products are considered over R.
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We say that an R-algebra B is a Γ-algebra if there is a right action of Γ
on B

r : B × Γ → B

(b, γ) 7→ bγ ,

such that for each γ ∈ Γ the map b 7→ bγ is an algebra homomorphism.
Let A be a Γ-graded R-algebra and B a Γ-algebra. We define a binary

operation m on A⊗B by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bβb′, for a ∈ Aα, a
′ ∈ Aβ, b, b

′ ∈ B.

The R-module A ⊗ B when considered together with the binary operation
m will be denoted by A ⋉Γ B. It is routine to check that the following
proposition holds.

Proposition 3.1. The pair (A⋉ΓB,m) is an R-algebra with identity 1A⊗1B.
It is a twisted product of A and B (over R), where φA, φB, and φA⋉ΓB are the
unity maps, and γ : A⊗B → A⋉Γ B is the identity map. Moreover A⋉Γ B
is Γ-graded, with the grading given by (A⋉Γ B)γ = Aγ ⊗ B, γ ∈ Γ.

Note that the maps A→ A⋉Γ B and B → A⋉Γ B given by

a 7→ a⊗ 1B b 7→ 1A ⊗ b

are homomorphisms of algebras, being the first one a homomorphism of Γ-
graded algebras.

Let N be a B-module and M =
⊕

γ∈ΓMγ a Γ-graded A-module. We
define an (A⋉Γ B)-module structure on M ⊗N as follows

aγ1 ⊗ b⊗mγ2 ⊗ x 7→ aγ1mγ2 ⊗ bγ2x,

for all aγ1 ∈ Aγ1 , b ∈ B, mγ2 ∈ Mγ2 and x ∈ N . We denote this module by
M ⋉Γ N . This is a Γ-graded module, with (M ⋉Γ N)γ =Mγ ⊗N .

Let ϕ : M1 →M2 be a homomorphism of Γ-gradedA-modules and ψ : N1 →
N2 a homomorphism of B-modules. We write ϕ⋉Γ ψ for the map

M1 ⋉Γ N1 → M2 ⋉Γ N2

m⊗ x 7→ ϕ(m)⊗ ψ(x).

13



Clearly ϕ⋉Γ ψ is a homomorphism of Γ-graded A⋉Γ B-modules. It follows
that the correspondence

(M,N) 7→M ⋉Γ N

(ϕ, ψ) 7→ ϕ⋉Γ ψ

gives a bifunctor from the categories A-Γ-gr and B-Mod to the category
(A ⋉Γ B)-Γ-gr. In particular, for each B-module N , we have the functor
− ⋉Γ N from the category A-Γ-gr to the category (A ⋉Γ B)-Γ-gr. This
functor is exact if and only if N is a flat R-module. Note that − ⋉Γ N
preserves arbitrary direct sums. In fact, the R-isomorphism

φ :
(⊕

i∈I

Mi

)
⋉Γ N →

⊕

i∈I

(Mi ⋉Γ N)

(mi)i∈I ⊗ x 7→ (mi ⊗ x)i∈I .

is also an isomorphism of Γ-graded A⋉Γ B-modules.
Next we will establish a sufficient condition for the functor − ⋉Γ N to

preserve projective objects. For every β ∈ Γ, we denote by βN the B-module
with the same underlying abelian group as N but with the B-action defined
by

b ·β x = bβx, (6)

for every x ∈ N and b ∈ B.

Proposition 3.2. Let A be a Γ-graded R-algebra and B a Γ-algebra. Suppose
that N is a B-module with the property that all the B-modules βN , β ∈ Γ,
are projective. Then, for any projective Γ-graded A-module P , the Γ-graded
A⋉Γ B-module P ⋉Γ N is projective.

Proof. First we consider the case P = A [β], for some β ∈ Γ. We claim
that A [β] ⋉Γ N ∼= (A⋉Γ βN) [β] as Γ-graded A ⋉Γ B-modules, and so it is
projective. For this note that, for any a′ ∈ Aα, a ∈ A, b ∈ B, and x ∈ N , the
A⋉ΓB-action on A [β]⋉ΓN gives (a⊗ b)(a′ ⊗x) = aa′ ⊗ bαβx. On the other
hand, in (A⋉Γ βN) [β] there holds (a⊗b)(a′⊗x) = aa′⊗(bα)βx = aa′⊗bαβx.
Therefore the identity map gives the desired isomorphism.

Now let P be an arbitrary projective Γ-graded A-module. Then P is a
direct summand of

⊕
β∈I A[β], for some family I of elements in Γ. Since
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the functor − ⋉Γ N preserves direct sums, we get that P ⋉Γ N is a direct
summand of (⊕

β∈I

A [β]
)
⋉Γ N ∼=

⊕

β∈I

(
A [β]⋉Γ N

)
,

which is projective. Therefore P ⋉Γ N is a projective Γ-graded A ⋉Γ B-
module.

Let N be a B-module which is flat as an R-module and such that all

βN are projective B-modules. Then Proposition 3.2 shows that the functor
−⋉ΓN preserves projective resolutions. Note that it does not map in general
a minimal projective resolution into a minimal projective resolution.

Proposition 3.3. Suppose M1 ⋐M2 in A-Γ-gr. Then, for any B-module N
which is finitely generated over R, we have M1 ⋉ΓN ⋐M2 ⋉ΓN in A⋉ΓB-
Γ-gr.

Proof. Let T be a Γ-graded A⋉Γ B-submodule of M2 ⋉Γ N such that

M1 ⋉Γ N + T =M2 ⋉Γ N. (7)

Every Γ-graded A ⋉Γ B-module can be considered as a Γ-graded A-module
via the canonical homomorphism A → A ⋉Γ B. Therefore (7) also holds in
the category of Γ-graded A-modules. Let {x1, . . . , xk} be a generating set
of N over R. Since M1 ⋐ M2 in A-Γ-gr, we get from Proposition 1.3(iii),
that

⊕k
j=1M1 ⊗ Rxj ⋐

⊕k
j=1M2 ⊗ Rxj in A-Γ-gr. Consider the canonical

epimorphism

φ :
k⊕

j=1

M2 ⊗ Rxj → M2 ⋉Γ N

of Γ-graded A-modules. We have φ
(⊕k

j=1M1 ⊗ Rxj

)
= M1 ⋉Γ N . Thus,

by Proposition 1.3(i), M1 ⋉Γ N ⋐ M2 ⋉Γ N in A-Γ-gr. Therefore T =
M2 ⋉Γ N .

The following corollary is an immediate consequence of Propositions 3.2
and 3.3.

Corollary 3.4. Let φ : P → M be projective cover in A-Γ-gr. Suppose that
N is a B-module which is flat and finitely generated over R, and such that
all βN are projective B-modules. Then φ ⋉Γ N : P ⋉Γ N → M ⋉Γ N is a
projective cover in A⋉Γ B-Γ-gr.
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For future reference, we bring together in the next theorem the results
proved in this section.

Theorem 3.5. Let A be a Γ-graded algebra and B a Γ-algebra. Suppose
that N is a B-module which is flat and finitely generated over R, and such
that for all β ∈ Γ the B-modules βN are projective. Then the functor
−⋉Γ N : A-Γ-gr → A⋉Γ B-Γ-gr preserves minimal projective resolutions.

4 Relative stratifying ideals and projective

resolutions

In this section we adopt a different setting. Once more R denotes a commu-
tative ring with identity, but A is simply an associative R−algebra. Given
an ideal I of A, we are interested in determining conditions for the functor
A/I ⊗A − : A-Mod → A/I-Mod (or, equivalently, the functor N 7→ N/IN)
to preserve minimal projective resolutions. For this we will use relative ho-
mological algebra. So we start with a brief overview of this topic.

We say that an A-module P is (A,R)-projective if for every epimorphism
f : M → N which is split as an epimorphism of R-modules, the homomor-
phism HomA(P, f) is surjective.

Given an A-module M and an exact complex P• ։ M , we say that P•

is an (A,R)-projective resolution of M if every Pk is an (A,R)-projective
module and the complex P• ։ M is split as a complex of R-modules. Every
A-moduleM admits a canonical (A,R)-projective resolution, β• (A,R,M) ։
M, known as bar resolution. Recall that βk (A,R,M) = A⊗R(k+1)⊗RM, and
the differentials and the splitting maps are the usual ones and can be found
in [7].

Let N be a right A-module and M a left A-module. Given an (A,R)-

projective resolution P• ofM , we define the relative tor groups Tor
(A,R)
k (N,M) =

Hk(N⊗AP•), all k ≥ 0. It follows from Theorem IX.8.5 in [7], that the groups

Tor
(A,R)
k (N,M) are independent of the choice of the (A,R)-projective reso-

lution of M and, in particular, can be computed using the bar resolution of
M .

As we mentioned in the introduction, in [11] we obtained an efficient com-

binatorial criterion for a triple (A,R, I) to have the property Tor
(A,R)
k (A/I, A/I) ∼=

0 for k ≥ 1. In the next series of propositions we derive various consequences
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of this property under additional conditions on (A,R, I) culminating in The-
orem 4.3. This gives a criterion for the functor A/I⊗− to preserve (minimal)
projective resolutions.

Proposition 4.1. Let A be an R-algebra and I an ideal of A such that,
for k ≥ 1, Tor

(A,R)
k (A/I, A/I) ∼= 0. Suppose that A and A/I are projective

as right R-modules. Then Tor
(A,R)
k (A/I,M) ∼= 0, for k ≥ 1 and any M ∈

A/I-Mod.

Proof. Since Tor
(A,R)
k (A/I, A/I) ∼= 0 for k ≥ 1, we get that the complex

A/I ⊗A β(A,R,A/I) ։ A/I ⊗A A/I

is exact. Moreover, the differentials in this complex are homomorphisms of
A/I-bimodules. Further, the first term of this complex is A/I⊗AA/I ∼= A/I
and every other term is of the form A/I⊗AA

⊗(k+1)⊗A/I ∼= A/I⊗A⊗k⊗A/I,
where all the unnamed tensor products are over R and k ≥ 0. Now, since
A/I is a projective right R-module, we get that A/I⊗A is a projective right
A-module. This fact together with the fact that A is a projective right R-
module, implies that A/I ⊗ A is a projective right R-module. Continuing,
we get that A/I ⊗ A⊗k are projective right R-modules, for all k ≥ 0. Thus
A/I ⊗ A⊗k ⊗ A/I is a right A/I-projective module. Therefore the exact
complex A/I ⊗A β(A,R,A/I) ։ A/I ⊗A A/I splits in the category of right
A/I-modules. Hence A/I⊗Aβ(A,R,A/I)⊗A/IM ։ A/I⊗AA/I⊗A/IM is an
exact complex. But it is isomorphic to A/I⊗Aβ(A,R,M) ։ A/I⊗AM ∼=M,

and therefore it computes the torsion groups Tor
(A,R)
k (A/I,M). We get then

that Tor
(A,R)
k (A/I,M) ∼= 0, k ≥ 1.

In the next proposition we relate relative with classical torsion groups.

Proposition 4.2. Let A be a free R-algebra, I an ideal of A, and M an
R-free left A-module. Then Tor

(A,R)
k (A/I,M) ∼= TorAk (A/I,M), for all k.

Proof. We consider the bar resolution β(A,R,M) of M . Every module in
this resolution is of the form A⊗A⊗k ⊗M , with k ≥ 0, where all the tensor
products are taken over R. Since M and A are free R-modules, A⊗k ⊗M is
a free R-module. Hence A⊗ A⊗k ⊗M is a free A-module. This shows that
β(A,R,M) is a projective resolution of M in the category of left A-modules.

Now, both tor groups Tor
(A,R)
k (A/I,M) and TorAk (A/I,M) can be computed

using the complex A/I ⊗A β(A,R,M). This proves the result.
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Theorem 4.3. Let M ∈ A/I-Mod be an R-free left module. Then, in the
conditions of the previous two propositions, the functor A/I ⊗A − sends ev-
ery projective resolution of M in A-Mod to a projective resolution of M in
A/I-Mod. If the initial resolution of M in A-Mod is minimal, then the final
resolution in A/I-Mod is also a minimal projective resolution of M .

Proof. Let P• ։ M be a projective resolution of M in A-Mod. By Proposi-
tions 4.1 and 4.2, TorAk (A/I,M) ∼= 0, for k ≥ 1. Therefore, since TorA0 (A/I,M) =
A/I ⊗A M ∼= M , the complex A/I ⊗A P• ։ M is exact. As every Pk is a
projective A-module, it follows that A/I ⊗A Pk is an A/I-projective module.

To prove that the minimality is preserved, consider in A-Mod the minimal
projective resolution P• ։ M , with differentials dk : Pk+1 → Pk for k ≥ −1
(for simplicity, we write P−1 =M). This can be decomposed into short exact
sequences

0 → kerαk
βk−→ Pk+1

αk−→ kerαk−1 → 0,

where dk = βk−1αk. Write F for the functor A/I ⊗A −. Then it is easy to
see that ker(F (dk)) = ker(F (αk)) = Im(F (βk)) = π(Im(βk)) = π(ker(αk)) =
π(ker(dk)), where π : Pk+1 7→ F (Pk+1) is the epimorphism given by x 7→ 1⊗x.
Since ker(dk) ⋐ Pk+1, the result follows from Proposition 1.3 (i).
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products of algebras, Comm. Algebra 23 (1995), no. 12, 4701–4735. MR
1352565 (96k:16039)

[5] Leonid Positselski (https://mathoverflow.net/users/2106/leonid posit-
selski), Example of a projective module with non-superfluous radi-
cal, MathOverflow, URL:https://mathoverflow.net/q/363673 (version:
2020-06-20).

[6] Saunders Mac Lane, Categories for the working mathematician, second
ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York,
1998. MR 1712872

[7] Saunders MacLane, Homology, first ed., Springer-Verlag, Berlin-New
York, 1967, Die Grundlehren der mathematischen Wissenschaften, Band
114. MR 0349792 (50 #2285)

[8] Vanessa Miemietz and Will Turner, The Weyl extension algebra of
GL2(Fp), Adv. Math. 246 (2013), 144–197. MR 3091804

[9] Alison E. Parker, Higher extensions between modules for SL2, Adv.
Math. 209 (2007), no. 1, 381–405. MR 2294227

[10] Ana Paula Santana and Ivan Yudin, Perfect category-graded algebras,
Comm. Algebra 40 (2012), no. 1, 157–172. MR 2876296

19



[11] , Stratifying ideals and twisted products, Categorical methods in
algebra and topology, Textos Mat./Math. Texts, vol. 46, Univ. Coimbra,
Coimbra, 2014, pp. 245–258. MR 3445409

[12] Ivan Yudin, Semiperfect category-graded algebras, Comm. Algebra 39

(2011), no. 1, 267–278. MR 2810601 (2012e:16103)

20


	1 Superfluous subobjects and minimal projective covers in abelian categories
	2 Graded algebras and modules
	3 Twisted products
	4 Relative stratifying ideals and projective resolutions

