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Abstract

We establish a new, very close, relationship which links Jacobi structures and homo-
geneous Poisson structures defined on the same manifold and we study the characteristic
foliations of the related structures. Several examples of this construction are also given.
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1 Introduction

The notion of Jacobi structure on a manifold, introduced by A. Lichnerowicz in [14], in-
cludes as particular cases important geometric structures, among them the symplectic, co-
symplectic, Poisson, contact and locally conformal symplectic, and provides a new framework
for the study of these structures. Introducing also the notion of homogeneous Poisson mani-
fold, A. Lichnerowicz ([14]) and A.M. Justino ([8]) set up a very close connection that links
these manifolds with the Jacobi manifolds, known as the Poissonization. P. Dazord et al.
([4]), investigating this connection in detail, prove that : 1) An 1-codimensional submanifold
of a homogeneous Poisson manifold, transverse to the homothety vector field, possesses a Ja-
cobi structure induced by the homogeneous Poisson structure of the manifold and any Jacobi
manifold may be obtained in this manner. 2) An 1-codimensional submanifold of a Jacobi
manifold, transverse to the Jacobi vector field, possesses a homogeneous Poisson structure
induced by the Jacobi structure of the manifold and any homogeneous Poisson manifold may
be obtained in this manner.

It is remarkable that the above referred relations between Jacobi and homogeneous Poisson
manifolds concern manifolds whose dimensions differ by one unity. In this work, we establish
a new relation between these two structures on the same manifold. After a brief review of the
basic definitions and results on Jacobi manifolds (§2), in paragraph 3, we prove that on any
homogeneous Poisson manifold we may construct a Jacobi structure (Proposition 3.4) and, in
a converse sense, that on any Jacobi manifold we may build, at least locally, a homogeneous
Poisson structure (Proposition 3.10). Related questions on these constructions are studied
and several examples are also presented. In the last paragraph (§4), an extensive study of
the characteristic foliations of the related Jacobi and homogeneous Poisson manifolds are
developed.

*Research supported by CMUC-FCT.



Notation : In this paper, M is a C*°-differentiable manifold of finite dimension n. We denote
by TM and T*M, respectively, the tangent and cotangent bundles over M, C*°(M,R) the
space of all real C*®-differentiable functions on M, Q¥(M), 0 < k < n, the space of all
exterior differentiable k-forms on M, and V¥(M), 0 < k < n, the space of all skew-symmetric
contravariant k-tensor fields on M. Also, Q(M) = @%_,QF(M) and V(M) = &7_,V*¥(M)
denote, respectively, the algebras of all skew-symmetric covariant and contravariant tensor
fields on M.

For the Schouten bracket (cf. [24], [13]) and the interior product of a form with a multi-
vector field, we use the convention of sign indicated by Koszul [11], [20].

2 Jacobi manifolds

A Jacobi manifold (M, A, E) is a C*°-differentiable manifold M of finite dimension endowed
with a bivector field A and a vector field E such that

[A,A] = —2EAA and LpA=[E,A] =0, (1)

where [, | denotes the Schouten bracket ([24], [11]) and L the Lie derivative operator. We
say that (A, E) defines on M a Jacobi structure.

Defining a Jacobi structure (A, E) on M is equivalent to defining an internal composition
law {7 }(A,E) on Coo(Ma R)a

{f. 9} g = Adf,dg) +(fdg — gdf , E),  [f,g€ C™(M,R), (2)
that is bilinear, skew-symetric, and verifies, for all f,g,h € C*°(M,R), the Jacobi identity

{f7 {ga h}(A,E)}(A,E) + {ga {ha f}(A,E)}(A,E) + {h7 {f7 g}(A,E)}(A,E) =0,

and the local condition

support{f, g}, C (support f) N (support g).

The bracket {, }(a,g) is called the Jacobi bracket associated with (A, E) and the space
C*(M,R) endowed with the Jacobi bracket (2) is a local Lie algebra in the sense of Kirillov
[9]. Conversely, a local Lie algebra structure on C*°(M,R) yields a Jacobi structure on M,
[9], [6].

A Jacobi manifold (M, A, E) on which the vector field E identically vanishes is called a
Poisson manifold ([13],[26]) and it is denoted by (M, A). In this case, conditions (1) reduce
to

[A,A] =0
and its associated bracket {, }A on C*°(M,R) is a Poisson bracket, i.e. it endows C*°(M,R)
with a Lie algebra structure and, for all f,g,h € C*°(M,R), the Leibniz rule holds :

{frgh}a = {f,g3nh +g{f, h}a.

We denote by A# : T*M — TM the vector bundle map associated with A, i.e. for all
sections «a, 8 of T* M,

(8, A% () = A(a, B).

This map can be seen as a homomorphism of C*®°(M, R)-modules A% : Q' (M) — V(M) and
it can be extended to a homomorphism, which we also denote by A#, from the space Q¥ (M)
onto the space V¥(M), k € N, as follows :

A (f)=f and  A*(o)(ar,... 1) = (=1) o (A% (a1),..., A% (), (3)



for all f € C®°(M,R), 0 € Q¥(M) and ay,..., o € Q' (M). Finally, we denote by (A, E)# :
T*M x R — TM x R the vector bundle map associated with (A, F), i.e. for all sections «, 3
of T*M and for all f € C*(M,R),

(A, E)* (e, f) = (A* (@) + [ B, ~(a, E)).

A vector field on (M, A, E) of type
Xy = A*(df) + fE, f € C®(M,R), (4)

is called the Hamiltonian vector field associated with f and the function f is called the
Hamiltonian function of Xy. We remark that F is the Hamiltonian vector field of (M, A, E)
associated with the constant function 1.

The image ImA# of the vector bundle map A# and the vector field E define over M
a distribution with singularities, called the characteristic distribution of (M, A, E), which is
completely integrable, [6], [9], [3]. Therefore, the maximal integral submanifolds of (ImA#, E)
form a Stefan foliation of M ([25]), called the characteristic foliation of (M, A, E). The leaves
of this foliation are called the characteristic leaves of the Jacobi structure (A, E) of M. If
E € ImA¥ (resp. E ¢ ImA#), these are of even (resp. odd) dimension. Obviously, the orbits
of the Hamiltonian vector fields (4) generate the characteristic leaves of (M, A, E). When
FE identically vanishes on M, i.e. A is a Poisson tensor on M, the characteristic foliation of
(M, A) is its symplectic foliation and the characteristic leaves of (M, A) are its symplectic
leaves, [12].

If the characteristic distribution (ImA#, E) of a Jacobi manifold (M, A, E) coincides with
TM, (M, A, E) is said to be transitive. According to the parity of the dimension of M, there
are two kinds of transitive Jacobi manifolds :

1. If M has odd dimension, (A, E) is defined by a contact 1-form, (see [14], [4]).

2. If M has even dimension, (A, E) is defined by a locally conformal symplectic structure,
(see [14], [4]).

We notice that the Jacobi structure of a Jacobi manifold induces a transitive Jacobi
structure on each of its characteristic leaves, [14], [4].

Let a € C*°(M,R) be a function that never vanishes on (M, A, E). We denote by (A%, E%)
the pair formed on M by the bivector field A® := aA and the vector field E* := A#(da) + oE.
It defines another Jacobi structure on M, which is said to be a-conformal to the one given
initially. Its associated Jacobi bracket on C*°(M,R) is given by

1
{f, 9} A, mey = E{af’ ag(a,e), Vf,g € C*°(M,R),

and, of course, it endows C'°°(M,R) with a new local Lie algebra structure. The structures
(A,E) and (A%, E%) are said to be conformally equivalent. The equivalence class of the
Jacobi structures on M that are conformally equivalent to a given Jacobi structure is called
a conformal Jacobi structure on M.

Let (M, A1, Ey) and (Ms, Ay, E2) be two Jacobi manifolds and ¢ : My — My a differ-
entiable map. If (Aq, F1) and (Ay, Es) are ¢-related, i.e. ¢p«Ay = Ay and ¢.E; = Es, then
¢ : My — Mo, is said to be a Jacobi morphism or a Jacobi map. When ¢ : M1 — M, is a
diffeomorphism, the Jacobi structures (Aq, F1) and (A, Es) are said to be equivalent.

A map ¢ : (My,A1,E)) — (Ma, Ay, Es) is called an a-conformal Jacobi map if there
exists a function a € C°°(M;,R) that never vanishes on M; such that ¢ : (M, A}, Ef) —
(M, Ao, E5) is a Jacobi map.



A vector field X on a Jacobi manifold (M, A, E) is said to be an infinitesimal Jacobi
automorphism (resp. a conformal infinitesimal Jacobi automorphism) of (A, E) if its flow
defines Jacobi automorphisms (resp. conformal Jacobi automorphisms) on M. This fact is
equivalent to LxyA = [X,A] = 0 and LxE = [X,E] = 0 (resp. LxA = [X,A] = aA and
LxE = [X,E] = A#(da) + aE, for a function a € C®°(M,R)), [8].

For further details and expositions see, for example, [14], [18] and [19].

3 Homogeneous Poisson manifolds and Jacobi manifolds

Definition 3.1 A homogeneous Poisson manifold (M, A,T) is a Poisson manifold (M,A)
equipped with a vector field T, called the homothety vector field, such that

LyA =[T,A] = —A.

The particular close relationships that exist between homogeneous Poisson manifolds and
Jacobi manifolds were already indicated and studied in extension in [4]. Precisely, P. Dazord
et al. ([4]) have shown the following propositions.

Proposition 3.2 ([4]) Let (M,A,T) be a homogeneous Poisson manifold and ¥ a subman-
ifold of M, of codimension 1, transverse to the homothety vector field T. Then, ¥ has an
induced Jacobi structure (Ayx,, Ex)) characterized by one of the following properties :

1. For any pair (f,g) of homogeneous functions of degree 1 with respect to T, defined on an
open subset O of M, the Jacobi bracket of f and g, restricted to XN QO, is the restriction
to XN O of the Poisson bracket of f and g.

2. Let m : U — X be the projection on X of a tubular neighbourhood U of ¥ in M such
that, for any x € ¥, m~'(x) is a connected arc of the integral curve of T through x. Let
a be a function on U, equal to 1 on % and homogeneous of degree 1 with respect to T.
Then, the projection w is an a-conformal Jacobi map.

Proposition 3.3 ([4]) Let (M,A, E) be a Jacobi manifold and N an 1-codimensional sub-
manifold of M transverse to E. Let m: U — N be the projection on N of a tubular neighbour-
hood U of N in M such that, for any x € N, 7 (z) is a connected arc of the integral curve
of E through x. Let n be the 1-form along N that verifies i(E)n =1 and i(X)n =0, for any
vector field X on M tangent to N. Then, there exists on N a unique Poisson structure such
that w is a Jacobi map; this structure, which is homogeneous with respect to the homothety
vector field A¥(n), is called the homogeneous Poisson structure induced on N by the Jacobi
structure of M.

On the other hand, it is well known that with any Jacobi manifold (M, A, E) we may
associate a homogeneous Poisson manifold (M, A, T) by setting
M=MxR ]\:e_t(A—l—g/\E) and T =2 (5)
’ ot ot’
where ¢ is the canonical coordinate on the factor R, (see [14], [8]). The manifold (M , A,T)
so defined is called the Poissonization of the Jacobi manifold (M, A, E).

We observe that the relations between homogeneous Poisson manifolds and Jacobi man-
ifolds mentioned above concern manifolds whose dimensions differ by one unity. In the fol-
lowing proposition we establish another close relation between these two structures defined
on the same manifold.



Proposition 3.4 Let (M,A,T) be a homogeneous Poisson manifold and E a vector field on
M such that
[E,A—TAE]=0. (6)

Then, the pair (C, E), where
C:=AN-TAE, (7)

defines a Jacobi structure on M.

Proof : By construction, the second condition of (1) holds. We compute

[C,C] = [N\—-TAE,A-TAE]=
= [AMA]=2[A\TANE|+[TNE,TNE]=
= 2[ANTINE+2T N[N E]-2[T,EJANENT =

— 2ANE—2TA(E,A—T A E]) LD

= —2EANC.
Hence, (C, E) endows M with a Jacobi structure.

Remark 3.5 Given a homogeneous Poisson manifold (M, A, T) it is natural to ask about the
existence of a vector field E on M wverifying (6). The answer is that such a vector field always
exists. For example, E may be :

* a strict infinitesimal Poisson automorphism of (A, T), i.e. [E,A] =0 and [E,T] =0;

* a Hamiltonian vector field with respect to A whose Hamiltonian function f is a homo-

geneous function with respect to T, i.e. Lrf = Af, A € R.

Remark 3.6 It is easy to check that the Poisson bracket {, }n and the Jacobi bracket
{s gy on C°(M,R) coincide on the vector subspace of C°(M,R) formed by the ho-
mogeneous functions of degree 1 with respect to T, i.e. the functions f € C*°(M,R) that

verify Lrf = f.

Remark 3.7 Under the assumption that the space M = M/E of the integral curves of E has
the structure of a manifold for which the canonical projection m: M — M is a submersion,
condition (6) assures that both the bivector fields A and C = A—T NE are reduced via (M, E)
([21]) to the same bivector field A on M, i.e. A = m,(A) = m,(C), which is a Poisson tensor.
Hence, m : M — M is simultaneously a Poisson and a Jacobi map. Moreover, if T is a
projectable vector field, its projection T = , (T') is a homothety vector field of A, [22].

The relationship between the Poissonization (5) of the constructed Jacobi structure (C, E)
on M and the initially given Poisson structure A is studied in the next proposition.

Proposition 3.8 Under the same hypothesis and notations as in Proposition 3.4, let (M A T)
be the Poissonization of the Jacobi structure (C, E) and 7 : M — M the projection of M on
M parallel to the integral curves of d/0t —T. Then, 7 : (M,A) — (M, A) is a Poisson map.

Proof : We identify M with the submanifold M x {0} of M = M x R and we remark that

the vector field 9/0t — T' is transverse to M. Hence, M may be also seen as the set of the

integral curves of /0t —T. We consider the projection 7 : M — M of M on M parallel to

the integral curves of /0t — T' that maps each point (z,t) of M = M x R to the unique

point ' of M such that (z,0) and (z,t) belong to the same integral curve of /0t —T'. Since
9 0

—T, Al = (E—T)/\(E+[T,E]),

5



we have that A = e~*(A+ (9/0t — T) A E) is projectable by # and its projection is #,(A) = A.
¢

In the following, we present some examples concerning the result of Proposition 3.4.
Examples 3.9

1. Jacobi structures on vector spaces : First, we consider an orientable manifold M of
dimension n with a volume element v and we recall the following construction of the operator
D : V(M) — V(M) due to Koszul, [11].

Given v, it induces an isomorphism & : V¥(M) — Q" %(M), 0 < k < n, defined by
®(Q) = i(Q)v, Q € V¥(M), where i denotes the interior product of a form with a multivector
field on M. We introduce the operator D : V(M) — V(M),

D:=—-3'odod,

(d being the exterior derivative of differential forms). D is of degree —1 and of square 0, it
generates the Schouten bracket on V(M), i.e. for P € VP(M) and Q € VI(M),
[P,Ql = (=)’ (D(PAQ) = D(P)AQ - (=1)"P A D(Q)), (8)

and it is a derivation of the Schouten bracket, [11], [10]. For a vector field X on M, D(X) =
—div, (X), where div, denotes the divergence with respect to v, and for a Poisson tensor A on
M, D(A) is its modular vector field that verifies [D(A), A] = 0, (see [11], [10] and references

therein).
Now, we assume that M = V is a vector space. Let A be a Poisson bivector on V'
whose components are homogeneous polynomials of degree k, i.e. if (z1,...,x,) are linear

coordinates on V,

n

Aij(z) = Z ci}“mﬁ” ...x?;s, (z eV),
01yeenyls=1

with n;, +...4+n;, =k, (the quantities cz;“ are constants, cz;“ = —c%"'is Z;Zm“zs =

cz;z"lm“), and let T'= "1 | x;0/0z; be the radial vector field on V. Then, A has a unique

decomposition A = C + T A E, where C and E are, respectively, a D-exact homogeneous

2-tensor field and a D-exact homogeneous vector field, [17]. From (C, E) we derive a Jacobi

structure on V. Effectively, we have [T, A] = (k — 2)A. But,

and ¢

T,A1Y — (DT AA) = D(T) AA+T AD(A)).

Hence,
(k—2)A=—-D(T ANA) —nA—T AND(A),
and 1
A=————(D(TANN)+TAND(AN)).
5 (DT AN + T AD(L)) )
By putting
C= #D(T/\A) and E:—#D(A),

n+k—2 n+k—2
we obtain the decomposition of A mentioned above. A simple computation yields
[E,C]=0 and [C,C]=-22—-kEANC
(because E is the modular vector field of A and its components are homogeneous polynomials
of degree k — 1). Thus, the pair (C, (2 — k)E) defines a Jacobi structure on V.
We remark that :



i) If A is a linear Poisson bivector, i.e. & = 1, (in this case, it is well known that the
constants ¢j7, i,5,m = 1,...,n, are the structural constants of a Lie algebra structure
on the dual space V* of V and A is the Lie-Poisson structure on the dual V of the Lie
algebra V*  [12], [20]), E is a constant vector field on V. Precisely, E is equal to the
linear 1-for ~—tr(ad) on V*, where tr(ad) : v € V* — tr(ad,) and tr denotes the
trace, [11]. The condition [E,C] = 0 is equivalent to the 1-cocycle condition for E.

ii) If A is a quadratic Poisson bivector, i.e. k = 2, then its associated Jacobi structure
(C,(2 —k)E) = (C,0) is a Poisson structure; it is exactly the one that appears in the
canonical decomposition of quadratic Poisson structures established in [15].

2. Linear Jacobi structures on vector bundles : We present the construction of a linear
Jacobi structure on the dual A* to a Lie algebroid (4, [, ], o) over a differentiable manifold
M given in [7]. This structure may be viewed as a Jacobi structure associated with the
homogeneous linear Poisson structure on A*, in the sense of Proposition 3.4.

A Lie algebroid (A, [, ], o) over a differentiable manifold M is a vector bundle 7 : A — M
endowed with a Lie algebra structure [, | on its space I'(A) of the global cross sections
and with an anchor morphism o : A — TM of vector bundles such that, if we also denote
by o : T'(A) — V(M) the homomorphism of C*(M,R)-modules induced by the anchor
morphism, then, for every si,s9 € I'(A) and f € C*°(M,R),

o([s1,82]) = [o(s1), 0(s2)] and  [s1, fso] = f[s1,82] + (Ly(s,) f)s2-

We choose coordinates (z1,...,z,) on an open neighbourhood U of M and a local basis
of sections (ey,...,e;) of m: A — M in U. With respect to this choice, the bracket [, ] and
the anchor morphism p are determined by structure functions ci-“j, ol € C®(U,R), as

r n a
[eivei] = > cijen, Z %
k=1 =

Let (z1,...,%n,p1,...,4r) be the induced linear coordinates on the dual bundle A*, i.e
;= (-ye;), i =1,...,7. By setting

0
A= Ciilh —|— — and T = Lbi
. Dt g S o i

we define a homogeneous Poisson structure on A* such that the Poisson bracket of linear
functions is again linear, [2].

Next, we introduce the Lie algebroid cohomology complex with trivial coefficients ([16])
whose space of all 1-cocycles is the set of the sections ¢ € I'(A*) that verify

(‘;07 [[81782]]> )(‘Pa 82) LQ(S2)<(p781>7 V1,82 € F(A)

We have that, if p € T'(A*), ¢ = Zi:l pie' with p; € C®°(U,R) and (e',...,e") the dual
basis of (ei,...,e;), is an 1-cocycle, then its vertical lift ([5]) ¢” = >.i_; p;0/0p; satisfies

[A,¢°] =0 and [p",T] =
Therefore, the pair (C, E), where
C=A-TA¢" and FE =",

is a Jacobi structure on A*. The fact that the Jacobi bracket {, }c g) of linear functions on
A* is again linear ([7]) is an immediate consequence of Remark 3.6 and the analogous result

for {, }a.



In particular, when M is a point, A is a Lie algebra G and A is the Lie-Poisson structure
on G* = A*. By taking ¢ = tr(ad) € G* =T'(G*), tr(ad) : x € G — tr(ad,) and tr denotes
the trace, ¢V is the modular vector field of A and the obtained Jacobi structure on G* = A*
coincides with the Jacobi structure of Example 3.9.1 (for k£ = 1).

For further examples of linear Jacobi structures on vector bundles, see [7].

3. Jacobi structures on the cotangent bundle of a Lie group : Let G be a Lie group
of dimension n with Lie algebra (G, [, |). We equip the cotangent bundle 7*G of G with the
canonical symplectic Poisson structure A, i.e. A is defined by the inverse of the differential
of the Liouville 1-form on T*G, [12].

In order to facilitate certain calculations, we trivialize T*G and we identify it with G* x G,
via the right trivialization of T*G, (see [12], [1]). We fix a basis (X7, ..., X, ) of the Lie algebra
G with structure constants cfj, ie. [ X4, X5 =20 c‘ijk, and we consider the dual basis
(&1,...,&,) in G*. Let (z1,...,zy,) be the associated linear coordinates functions on G*. In
these coordinates the symplectic Poisson structure on G* x G induced by A via the right

trivialization of T*G, also denoted by A, is given by (see [1])

- 0 1 & 0 0
A=S"RiA——+= Fare— A5,
; a’L‘Z * 2 i§lcz]$k 8:51 axj

where R;, i = 1,...,n, are the right invariant vector fields on G' which take the values X;
at the neutral element e of G. We observe that A is a homogeneous Poisson structure on
G* x G with respect to the vector field T = Y1 | x;0/0x;. Let E be a left invariant vector
field on G. Since, for any right invariant vector field R on G, [E, R] = 0 ([12]), we have that
[E,A —T AN E] = 0. Thus, the pair (C,E) = (A — T A E, E) defines a Jacobi structure on
G* x G. The image of (C, E) by means of the inverse map of the right trivialization of T*G
endows T*G with a Jacobi structure.

A natural question which arises from the above study is : Does any Jacobi structure on
M comes from a homogeneous Poisson structure on M, in the sense of Proposition 3.4¢ The
answer is :

Proposition 3.10 Any Jacobi structure (C, E) on a differentiable manifold M may be seen,
at least locally, as a Jacobi structure associated with a homogeneous Poisson structure (A,T')
on M, in the sense of Proposition 3.4.

Proof : Let (C, E) be a Jacobi structure on M. For each point p € M such that E(p) # 0,
there are an open neighbourhood U of p in M and a function f € C*(U,R) such that
Lrf = 1. We take the Hamiltonian vector field T = C#(df) + fE associated with f. Tt
is a conformal infinitesimal Jacobi automorphism of (C,E) whose conformity function is
a=—Lgf=-1([8]),ie [T,C]=—-C and [T, E] = —E. We set

ANA=C+TANE

and we easily verify that [A,A] = 0. Obviously, T is a homothety vector field of A. Conse-
quently, (A, T') defines a homogeneous Poisson structure on U and the restriction to U of the
initially given Jacobi structure (C, E) can be considered as the Jacobi structure associated
with (A, T, E) in the sense of Proposition 3.4. {

Remarks 3.11

1. The function f considered in the above proof is a homogeneous function of degree 1 with
respect to T = C#(df) + fE and a Casimir function of A=C +TANE = C + C#(df) NE.



The vector field C#(df) is also a homothety vector field of A. These remarks imply that E is
an infinitesimal Poisson automorphism of the constructed Poisson structure A.

2. Since Lgf = 1 and Lgdf = 0, at each point x € U, df(x) generates an 1-dimensional
subspace of TxU which is complementary of the annihilator (E(z))° of the subspace (E(z)) of
T,U generated by E(x). So, T*U = (E)° @ (df) and by duality TU = ker df & (E). The vector
subbundles kerdf and (E) of TU being involutive, they define two complementary foliations
of U. Then, U can be identified with a product M x I of two manifolds; M s interpreted
by the set of the integral curves of E and I by the set of the leaves of kerdf. From Remark
3.7 and the fact that f is a Casimir function of A, we get that A can be identified with the
projection of C by w: U — M. On the other hand, by identifying M with an 1-codimensional
submanifold of U transverse to E, via a section of 7 : U — M, (A, C#(df)) can be seen as
the homogeneous Poisson structure induced on M by the Jacobi structure (C|y, E|v) of U,
(see, Proposition 3.3).

Some characteristic examples of Jacobi structures and their associated homogeneous Pois-
son structures on the same manifold are developed in the following.

Examples 3.12

1. Contact manifolds : Let M be a (2n + 1)-dimensional differentiable manifold endowed
with a contact form 9, i.e. ¥ is an 1-form on M such that ¢ A (d¥)™ # 0 holds everywhere on
M. We consider on M the Reeb vector field E ([23]), which is defined by

i(B))=1 and i(E)dd =0,

and the bivector field C' whose associated vector bundle map C# : T*M — TM is defined,
for all sections a of T* M, by

i(C* ()9 =0 and i(C*(a))dd = —(a — (o, E)Y). (10)

Then, (C, E) defines a transitive Jacobi structure on M, determined by the contact form 4,
(see [14], [12]).

We observe that di is a presymplectic form of rank 2n on M and ker d¥ is an 1-dimensional
distribution over M spanned by E. Let f be a function on an open neighbourhood U of a
point p € M such that Lgf = 1. Then, developing the same argumentation as in Remark
3.11.2, we have T*U = (E)°®(df) and by duality TU = ker df & (E). Since ker d¥ = (E), d¥ is
a section of \%(E)° and defines an isomorphism di” : ker df — (E)° given, for all X € ker df,
by d¥’(X) = —i(X)dd. Thus, d endows each integral manifold of the involutive distribution
ker df with a symplectic structure. Hence, we obtain a foliation of U by symplectic manifolds.
Let A be the Poisson structure on U whose symplectic foliation coincides with the above one.
We have that ker A# = (df) and, for all semi-basic forms 3 on U, (i.e. the forms 3 € Q'(U)
such that i(E)B = 0), i(A#(B))d9 = —B. So, for all a € Q'(U),

i(A# (a — (o, E)0))dY = —(a — (v, E)9),

because o — (o, E)¥ is a semi-basic form on U. Taking into account the second condition of
(10) and the above remark, we obtain that, for all o € Q'(U),

i(C*())dY = i(A* (o — (v, E)9))d,

which means that C#(a) — A#(a — (@, E)9) € kerdd, i.e. there exists g € C®°(U,R) such
that
C#(a) — A¥ (o — (o, E)9) = gE.



Precisely,

g = (0,C*(a) = A% (a — (0, B9)) 2 (0, A# (9)).
Consequently, for all « € QY(U),

C*(a) = A () — (o, E)A™ (9) + (a, A¥ (9)) E. (11)
By setting T = —A#(¥9), from (11) we get
C=A-TAE.

Moreover, T is a homothety vector field of A. Effectively,

[T,A] = [-A%(9),A] = —0s(A¥(9)) = —A#(d),

where 9z denotes the operator of the Lichnerowicz-Poisson cohomology of (U, A) ([13]) and
A# . QF(U) — V¥(U), k € N, is the homomorphism of C*°(U, R)-modules determined by
(3). A simple computation yields A#(di) = A. Hence, we conclude that, at least locally, the
Jacobi structure (C, E) comes from the homogeneous Poisson structure (A,T'), in the sense
of Proposition 3.4.

According to Darboux’s theorem ([12]), there exist on U canonical coordinates (xo, . . ., T2, )
such that
- 0
9 = dxy + Z Top_1dror and FE = —.
b1 8:50
Then,
0 0 - 0
A= A T = — d
kz::l Ozor—1  Oxap’ kz::lx% YOy
0 0 0
C= A — Top 17—)-
kgl 8:52]6,1 (a’L‘gk Y2kt 8:50 )

2. Locally conformal symplectic manifolds : Let (M,Q,w) be a locally conformal
symplectic manifold, that is, M is a 2n-dimensional manifold equipped with a non-degenerate
2-form 2 and a closed 1-form w, called the Lee 1-form, such that

dQ+wAQ=0.
For any f € C*°(M,R), the associated Hamiltonian vector field X is given by
W(X7)Q = —(df + fw).
Let E be the unique vector field and C' the unique bivector field on M which are defined by
i(B)=—-w and i(C*(a)Q=—a, forall acQYM). (12)

Then, (C,E) endows M with a transitive Jacobi structure, [6]. Denoting also by C# the
extension (3) of the isomorphism C# : Q'(M) — V(M) of C*®°(M,R)-modules defined by
(12), we have that

E=C%(w), C=C*Q) and X;=C#(df+ fw), f€C®(M,R).

Let f be a function on an open neighbourhood U of a point p € M, w(p) # 0, such that
i(Xf)w = —1. We set
o=Q+ (df + fw) \w
and we consider the bivector field A = C# (o). Then, the pair (A,T) = (C#(0), X;) defines
a homogeneous Poisson structure on U and the restriction of the Jacobi structure (C, FE) on
U can be seen as a Jacobi structure associated with (A, T'), in the sense of Proposition 3.4.
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4 Characteristic foliations of (A,7T) and (C, E)

In this paragraph, and always in the context of Proposition 3.4, we study the position of the
characteristic leaves of the Jacobi structure (C, E), given by (7), with respect to the charac-
teristic (symplectic) leaves of A and the extended characteristic leaves of (A,T). First, we
recall the notion of extended characteristic leaf of a homogeneous Poisson manifold (M, A, T)
introduced in [4].

The extended characteristic distribution over a homogeneous Poisson manifold (M, A, T)
is the distribution over M that is generated by the image ImA# of A# : T*M — TM
and by the homothety vector field T' of A. It is completely integrable ([4]) and defines a
Stefan foliation ([25]) of M, called the extended characteristic foliation of (M,A,T). The
leaves of this foliation, noted S*!, are called the extended characteristic leaves of (M, A, T).
If an extended characteristic leaf S¢“ of (M, A, T) is of even dimension, it is a symplectic
leaf S of (M,A,T), T is tangent to S and its restriction T'|g is a homothety vector field of
the symplectic Poisson structure of S. If S¢** is of odd dimension 2k + 1, it is foliated by
symplectic leaves of (M,A,T), all of dimension 2k. In this case, the vector field T|gezt is
transverse to these symplectic leaves and its flow ¥ maps these symplectic leaves the ones to
the others by conformal symplectic transformations, i.e. the pull-back by 1 of the symplectic
form of a symplectic leaf is proportional to the symplectic form of another leaf.

Under the assumptions of Proposition 3.4, we have
|rank A(z) —rank (T ANE)(z)| < rank C(x) < rank A(z) +rank (TANE)(z), x € M, (13)

and also
C* = A* — (\TVE + (-, E)\T & C* + (-, T\E = A¥ + (-, ET,

which means that the characteristic distribution (ImC#, E) of (M,C, E) and the extended
characteristic distribution (ImA#,T) of (M,A,T) have a common subdistribution F =
Im(C# 4 (-, TVE) = Im(A# + (-, E)T). Hence, the position of the characteristic leaves
of (M, C, E) with respect to the symplectic leaves of (M, A) and the extended characteristic
leaves of (M,A,T) depends on the position of the vector fields T and E with respect to
ImA#,

We consider an open neighbourhood U of a point in M, we restrict the tensor fields A,
T, E and C to U and we distinguish the following cases.

1. T € ImA# and E € ImA# onU. Then ImA# = (ImA#,T), F C ImA#, ImC# C ImA#
and
F C (ImC¥*,E) C ImA¥. (14)

Let 7 and € be two sections of T*U such that T = A#(7) and E = A% ().

e If (WE) = f # -1 & (,T) = —f # 1, f € C°(U,R), we have that T € F,
because T = A#((1 4 f)7'7) + (1 + f)~'7, E)T, hence ImA# C F and E = C#((1 +
f)~te) € ImC#. Consequently, F' = ImA#, (ImC# E) = ImC# and, from (14), we
get (ImC#, E) = ImA#. Therefore, in this case, the characteristic foliation of (U, C, E)
coincides with the extended characteristic foliation of (U, A, T') which is its symplectic
foliation.

o If (,E) = —1 & (,T) = 1, we have C#(7) = 0 and C#(¢) = 0. So 7,e € (ImC#)",
where (ImC#)? denotes the annihilator of ImC#, E ¢ ImC# (because, if E € ImC#,
(r,E) = 0) and T ¢ (ImC#, E) (because, if T € (ImC#,E), (¢,T) = 0). Thus, at
each z € U, rank C(z) = rank A(x) — 2, and the characteristic leaves of (U, C, E) are
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of odd dimension and transverse to 7. Taking into account (14), we conclude that each
2k-dimensional symplectic leaf S of (U, A,T), which is also an extended characteristic
leaf, is foliated by (2k — 1)-dimensional characteristic leaves C of (U, C, E) transverse
to T. The transitive Jacobi structure of each C coincides with the Jacobi structure
induced on C, seen as an l-codimensional submanifold of S transverse to 7', by the
homogeneous symplectic Poisson structure of S, in the sense of Proposition 3.2.

2. T € ImA* and E ¢ ImA# on U. Then F C ImA# = (ImA#,T) and, at each z € U,
rank C(z) = rank A(x), which gives

dim ImC# = dim ImA* (15)

on U. Also, T € F; because T = A#(a) + (o, E)T, where « is a section of the annihilator
(ImA#)% of ImA# such that (o, E) = 1. This fact implies F = ImA# = (ImA#, T) and
T = C#(a) € ImC#. Moreover, E ¢ ImC#. Effectively, if E € ImC#, (ImC#,E) =
ImC#; but ImA# = F C (ImC#, E); hence ImA# C ImC# = (ImC#, E) and, since (15)
holds, ImA# = (ImC#,E). The latter implies E € ImA# on U, which is in contradiction
with our assumption. Consequently, in this case, the extended characteristic foliation of
(U, A\, T) coincides with its symplectic foliation and the characteristic leaves of (U, C, E) are
of odd dimension. Any (2k + 1)-dimensional characteristic leaf C of (U, C, E) is foliated by
2k-dimensional symplectic leaves S of (U, A, T') transverse to E. The homogeneous symplectic
Poisson structure of each S coincides with the homogeneous Poisson structure induced on S,
considered as an 1-codimensional submanifold of C transverse to F, by the transitive Jacobi
structure of C, in the sense of Proposition 3.3.

3. T ¢ ImA* and E € ImA# on U. Then : i) E € ImC#, since E = C#(j3), where f3 is a
section of the annihilator (ImA#)? of ImA# such that (8,T) = —1, so,

F C (ImC¥ E) = ImC%; (16)

ii) at each z € U, rank C(x) = rank A(z), hence (15) also holds. On the other hand, we have
that ker A# = ker(A# + (-, E)T), because ker A# C ker(A# + (-, E)T) and there is no ¢ €
ker(A#4-(-, E)T) such that ¢ ¢ ker A* (if there was such ¢, we would have A% (¢)4-(¢, E)T = 0,
which gives : i) if (£, E) = 0, A#(¢) = 0, result in contradiction with the assumption
¢ ¢ ker A% and ii) if (£, E) #0, T = —(&, E)"'A#(¢) € ImA¥, result contradictory to the
assumption T' ¢ ImA# on U). Thus, dim F = dim Im(A# + (-, E)T) = dim ImA# on U.
Taking into account (15) and the latter relation, (16) yields F' = ImC# = (ImC#,E) on U.
Also, we have F = Im(A# +(-, E)T) C (ImA*,T) on U. These facts mean that, at each point
z € U, the characteristic leaf C of (U, C, E) through z intersects transversely the symplectic
leaf S of (U, A) through z, their intersection contains the integral curve of E passing by x,
and both leaves have the same even dimension. Also, each (2k + 1)-dimensional extended
characteristic leaf S¢! of (U, A, T) is foliated simultaneously by 2k-dimensional characteristic
leaves C of (U, C, E) and by 2k-dimensional symplectic leaves S of (U, A). Both foliations of
Sert are transverse to 7. The transitive Jacobi structure of each C is the structure induced
on C, seen as an 1-codimensional submanifold of S°! transverse to T, by the homogeneous
Poisson structure of S¢*!, in the sense of Proposition 3.2.

4. T ¢ ImA# and E ¢ ImA# on U. Then T € F, since T = A#(a) + (a, E)T, where
a € (ImA#)? and (o, E) = 1. Hence ImA# C F C (ImA#,T) on U, which implies
F = (ImA#,T) on U, because dim (ImA#,T) = dim ImA# + 1.

e If there exists a pair (7, d) of 1-forms of (ImA#)? verifying C(v,d) # 0, we have E =
(C(v,8))7" ({8, EYC# ()~ (v, E)C#(3)) and T = (C(v,4)) ™" ({8, T)C¥ (7) (7, T)C#(4)),
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ie. E,T € ImC# on U. So, ImC# = (ImC#, E) and
dim ImC# = dim ImA¥ + 2 (17)

on U. Also, F C (ImC#,E), because E ¢ F, (if E € F, ImC# C F and dim ImC# <
dim F' = dim ImA# 4 1, result in contradiction with (17)). Consequently, each (2k +2)-
dimensional characteristic leaf C of (U, C, E) is foliated by (2k+1)-dimensional extended
characteristic leaves S of (U, A,T) transverse to E and each S is foliated by 2k-
dimensional symplectic leaves S of (U, A) transverse to T. The homogeneous Poisson
structure of each S is the structure induced on S$%*!, viewed as an 1-codimensional
submanifold of C transverse to F, by the transitive Jacobi structure of C, in the sense
of Proposition 3.3.

If, for every pair (vy,d) of 1-forms of (ImA#)°, C(v,8) = 0, (this case always arises
when, at each z € U, corank A(x) = 1), we have that C#(y) and C#(J) are colinear
and they are contained in the plane generated by T and E. Also, E ¢ ImC# on U.
Effectively, if E € ImC# on U, (ImC#,E) = ImC# and ImC# is of even dimension
greater than dim ImA# 4+ 1 on U, since F C (ImC#,E). Taking into account (13),
the only possibility is dim ImC# = dim ImA# +2 on U, which implies dim(ImC#)? =
dim(ImA#)?—2 on U, i.e. there exists (7y,8) € (ImA#)?x (ImA#)? such that C(v, §) #
0, result in contradiction with our assumption. Thus, (ImC#, E) is of odd dimension
equal to dim ImA# 4 1 on U. Consequently, F = (ImA#,T) = (ImC#,E) on U,
which means that the extended characteristic foliation of (U, A,T) coincides with the
characteristic foliation of (U, C, E). Each (2k + 1)-dimensional characteristic leaf C of
(U, C, E), which is also an extended characteristic leaf S¢* of (U, A, T), is foliated by 2k-
dimensional symplectic leaves S of (U, A,T) transverse to E and T'. The homogeneous
symplectic Poisson structure of each S coincides with the structure induced on S, seen as
an 1-codimensional submanifold of C transverse to E, by the transitive Jacobi structure
of C, in the sense of Proposition 3.3.
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