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Abstract

We associate with each differentiable manifold M equipped with a Jacobi structure and
a Nijenhuis operator, a pair of Lie algebroids in duality. We show that this pair constitute a
generalized Lie bialgebroid if and only if M is a strict Jacobi-Nijenhuis manifold.
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1 Introduction

The notion of Jacobi-Nijenhuis manifold was introduced in [13] by J. Marrero, J. Monterde and
E. Padrén. Their definition is a generalization of the Poisson-Nijenhuis structure presented in
[14]. In this paper we introduce the notion of strict Jacobi-Nijenhuis manifold, which seems to
be the natural generalization of the definition of Poisson-Nijenhuis manifold initially given by F.
Magri and C. Morosi in [12], here called strict Poisson-Nijenhuis manifold. Obviously, every strict
Jacobi-Nijenhuis manifold is a Jacobi-Nijenhuis manifold in the sense of [13]. An intermediate
definition of Jacobi-Nijenhuis structure was used in [16] and [17].

It is well known that when a Poisson manifold (M, A) is equipped with a Nijenhuis tensor N,
we can associate with this manifold two Lie algebroids structures, one defined on the cotangent
bundle T*M of M and the other on the tangent bundle TM of M. Using the notion of Lie
bialgebroid, which was introduced by K. Mackenzie and P. Xu in [11], Y. Kosmann-Schwarzbach
established, in [7], a characterization of strict Poisson-Nijenhuis manifolds: (M, A, N) is a strict
Poisson-Nijenhuis manifold if and only if the two Lie algebroids mentioned above constitute a
Lie bialgebroid. The aim of this paper is to show that a similar relation can be obtained when a
differentiable manifold is equipped with a Jacobi structure and a Nijenhuis operator. However,
the associated structure is no more a Lie bialgebroid, but a generalized Lie bialgebroid. This last
notion was introduced by D. Iglesias and J. Marrero in [2] and it admits the Lie bialgebroid as a
particular case. Generalized Lie bialgebroids are closely related with Jacobi structures. In fact,
it was proved in [2] that with each Jacobi manifold one can associate, in a certain manner, a

“Research partially supported by CMUC-FCT and PRAXIS.



generalized Lie bialgebroid and that the base manifold of a generalized Lie bialgebroid possesses
a Jacobi structure.

We must stress that the first relationship between Jacobi manifolds and Lie algebroids was
established by Y. Kerbrat and Z. Souici-Benhammadi in [3]. They showed that there exists a
Lie algebroid structure on the 1-jet bundle of a Jacobi manifold.

Taking into account that we can associate with each strict Jacobi-Nijenhuis manifold a strict
Poisson-Nijenhuis manifold, as it was shown in [17], and using the techniques of [2], we deduce
from the result of Y. Kosmann-Scharzbach, a characterization of strict Jacobi-Nijenhuis manifolds
by means of generalized Lie bialgebroids.

The paper is divided into 5 sections. In sections 2 and 3 we make a review of the essen-
tial results concerning Lie algebroids, Poisson-Nijenhuis manifolds and Jacobi-Nijenhuis man-
ifolds, needed in the sequel. In section 4 we associate with each Jacobi-Nijenhuis manifold
(M, (A, E),N) two Lie algebroids over M, that are in duality. From these Lie algebroids, and
using the procedures presented in [2], we deduce two Lie algebroids over M x IR. We show that
a manifold endowed with a Jacobi structure and a Nijenhuis operator is a strict Jacobi-Nijenhuis
manifold if and only if these two Lie algebroids over M x IR form a Lie bialgebroid. Finally, in
section 5, we rewrite this results in terms of a generalized Lie bialgebroid (over M).

Notation: In the following, we will denote by M a C'°°-differentiable manifold of finite dimen-
sion, by C°(M) the algebra of C* real-valued functions on M, by Q¥(M), k € IN, the space of
k-forms on M, and by V¥(M), k € IN, the space of skew-symmetric contravariant k-tensors on
M.

2 Lie algebroids and Poisson-Nijenhuis manifolds

In this section we review some results on Lie algebroids and Lie bialgebroids and their relation
with Poisson-Nijenhuis manifolds.

A Lie algebroid (A,[.,.], p) over a manifold M is a vector bundle A over M together with a
bundle map p: A — TM and a Lie algebra structure [.,.] on the space I'(A) of the global cross
sections such that

i) the induced map T'(p) : T'(4) — V(M) is a Lie algebra homomorphism;
ii) for any f € C*°(M) and X,Y € I'(A), then
(X, fY] = fIX, Y]+ (p(X).f)Y.

The map p is called the anchor map and usually the map I'(p) is denoted by p.

Example 2.1 If M is a differentiable manifold, then the triple (T'M,[.,.], Idrar) is a Lie alge-
broid over M.

Example 2.2 Let N be a tensor field of type (1,1) on a manifold M with vanishing Nijenhuis
torsion, ¢.e., for any vector fields X and Y on M,

T(N) = [NX,NY] - N([NX,Y]+[X,NY] - N[X,Y]) = 0.

Then the triple (T'M,|.,.]n, N) is a Lie algebroid over M, where [.,.]x; is the Lie bracket on
V(M) given by

[(X,Y]y =[NX,Y]+ [X,NY] - N[X,Y], X,Y eV (M). (1)

A tensor field N of type (1,1) with vanishing Nijenhuis torsion is called a Nijenhuis tensor.



Example 2.3 Let (M, A) be a Poisson manifold and
A T*M - TM, < B,Aa) >=A(a,), «,BeT*M,

the bundle map associated with the Poisson tensor A, which can also be seen as a homomorphism
of C°(M)-modules, Af: QL (M) — VI(M).

Then the triple (T*M,[.,.]a, A?) is a Lie algebroid over M, where [.,.]5 is the Lie bracket of
1-forms given, for all o, 3 € Q' (M), by

[0[, IB]A = LAﬂ(a)IB - LAﬁ(ﬁ)a - d(A(O[, /6)) (2)

When (A4, [.,.],p) is a Lie algebroid over a manifold M, we may define a differential d on the
space of sections of the algebra bundle AA* = @czA*A* of the dual bundle of A. Explicitly, if
6 € T(A¥A*) then df € T'(A*+1A*) and for any Xi,..., X},1 € T'(4),

k
da(Xla s an+1) = Z(_l)H_lp(Xl) 9(X17 vy Xy an+1)
i=1
+ Z(_l)l—l_]g([XzaX]]aXla s 1Xi7 s ana s an+1)' (3)
1<J

The triple (I'(AA*), A, d) is a differential graded algebra.

For the given examples of Lie algebroids, we have:
e the differential of (T'M, [.,.], Idryr) is the de Rham differential;

e the differential of (T'M,[.,.|n,N) is dy = [in, d], where [.,.] is the graded commutator, d is
the de Rham differential and i is the derivation of degree zero defined, for any 8 € QF(M),

by
k

iNB(X1, X)) =D B(X1, - NX;, -+, Xp), Xi,--+, Xy, € VH(M);
=1

(If p € Q'(M), dn(B) = indB — d(*NB) .)

o the differential of (T*M,[.,.]x,A"), (M, A) being a Poisson manifold, is the Lichnerowicz-
Poisson differential dy = [A,.].

Furthermore, when (A4,[.,.],p) is a Lie algebroid, the Lie bracket on I'(4) can be extended
to the algebra of sections of AA, I'(AA) = @pezl'(A¥A). The result is a graded Lie bracket
defined on the multivectors of the Lie algebroid, which is called the Schouten bracket of the Lie
algebroid. We will also denote the Schouten bracket of the Lie algebroid by [.,.]. The triple
(T(AA), A, [.,.]) is a Gerstenhaber algebra. For more details see [6].

The notion of Lie bialgebroid was introduced by K. Mackenzie and P. Xu in [11].

Suppose that the vector bundle (A4, [.,.], p) and its dual vector bundle (A*,[.,.]«, p«) are both
Lie algebroids over a manifold M. Let d (resp. d.) denote the differential (3) associated with A
(resp. A*). The pair (A, A*) is a Lie bialgebroid if for all X, Y € T'(A),

d.[X,Y] = [d. X, Y] + [X,d.Y] (4)
or, equivalently, if for all «, 5 € T'(A*),

dle, B« = [dev, Bl + [, df]s. (5)



Example 2.4 Given a Poisson manifold (M, A), let us consider the two Lie algebroids (T'M, [., .|, Idrar)
and (T*M,[.,.]a, A"), presented in examples 2.1 and 2.3, respectively. Then, the pair (TM, T*M)
is a Lie bialgebroid, [11].

A Poisson-Nijenhuis manifold (M, A, N) is a Poisson manifold (M, A) equipped with a Ni-
jenhuis tensor N verifying the following compatibility conditions:

i) NAP = ABEN,
ii) the map Af o C(A, N) : Q'(M) x Q'(M) — Q' (M) identically vanishes on M,

where ! N stands for the transpose of N and C(A, N) is the Magri-Morosi concomitant which is
given, for all o, 8 € Q'(M), by

C(A,N)(a, ) = [, Blva — ['Nev, fla — [o,) NBJs +' Nlav, ], (6)

where [.,.Ja (resp. [.,.]na) is the bracket (2) associated with A (resp. NA).
If condition ii) is replaced by

ii") C(A,N) =0,

we say that (M,A,N) is a strict Poisson-Nijenhuis manifold. This last one is the definition
introduced by F. Magri and C. Morosi in [12], while the first version is closer to the one used in
[14].

Given a Poisson-Nijenhuis manifold (M, A, N), we have both a Nijenhuis tensor and a Poisson
structure on M. So, we may associate with it two Lie algebroids whose structures are given
respectively by examples 2.2 and 2.3. The next theorem, due to Y. Kosmann-Schwarzbach,
shows how the compatibility conditions of a strict Poisson-Nijenhuis structure are related with
the notion of Lie bialgebroid.

Theorem 2.5 ([7]) Let (M,A) be a Poisson manifold and N a Nijenhuis tensor on M. Then,
(M, A, N) is a strict Poisson-Nijenhuis manifold if and only if the pair (T M, [, |x,N), (T*M,[.,.]x, A"))
1s o Lie bialgebroid.

3 Jacobi-Nijenhuis manifolds

The notion of Jacobi-Nijenhuis manifold was introduced by J. Marrero and al. in [13]. In
this paper we will consider a more strict definition, and we will call it strict Jacobi-Nijenhuis
manifold. This section is dedicated to a review of the essential results concerning the (strict)
Jacobi-Nijenhuis manifolds. For more details about this structure, see [17].

Let M be a C*®-differentiable manifold and A" : V(M) x C®(M) — V(M) x C®(M) a
C°(M)-linear map defined, for all (X, f) € V(M) x C*°(M), by
N(X, f) = (NX + fY, (v, X) + gf), (7)

where N is a tensor field of type (1,1) on M, Y € VY(M), v € QY (M) and g € C®(M).
N :=(N,Y,~,g) can be considered as a vector bundle map, N : TM x IR — T'M x IR. Since the
space V(M) x C*(M) endowed with the bracket

[(Xaf)a(zah)]:([X’Z]aX'h_Z'f)v (8)

(X,f),(Z,h) € VI(M) x C®(M), is a real Lie algebra, we may define the Nijenhuis torsion
T(N) of NV,



= NIX, ), N(Z W)+ N*[(X, f), (2, 1)), (9)
(X, f),(Z,h) € VI(M)x C>®(M). When T (N) identically vanishes, we say that A is a Nijenhuis
operator on M.
Now let (M, A, E) be a Jacobi manifold. We denote by (A, E)# : T*M x R — TM x IR, the
vector bundle map associated with (A, E), i.e., for any section o of T*M and f € C*°(M),
(A, B)* (e, f) = (A (@) + [ B, (o, ). (10)

This vector bundle map can be considered as a homomorphism of C*°(M)-modules, (A, E)# :
QY M) x C®°(M) — VH{(M) x C®°(M).

The space Q' (M) x C°°(M) possesses a real Lie algebra structure with a bracket [., o g
defined as follows, (cf. [3]): for all (a, f), (8, h) € QY (M) x C*®(M),

[(CM, f)a (ﬁa h)](A,E) = (’71 T)a (11)

where
v 1= Ly#)B — Laxpy — d(Ma, B)) + [LeS — hLpa —ip(a A B),
r:=—A(a,B) + Ao, dh) — A(B, df) + (fdh — hdf, E).

Suppose now that M is equipped with a Jacobi structure (A, E) and a Nijenhuis operator N’
and consider a tensor field A; of type (2,0) and a vector field E; on M, defined by

(A1, E))* =N o (A, E)¥. (12)

Definition 3.1 A Jacobi-Nijenhuis manifold (M, (A, E),N) is a Jacobi manifold (M, A, E) with
a Nijenhuis operator N verifying the following compatibility conditions:

i) No(A,E)# = (A, E)#o !N,

i) the map (A, E)# o C((A,E),N) : (Q' (M) x C®(M))? — V(M) x C®(M) identically
vanishes on M,

where 'N is the transpose of N and C ((A, E),N) is the concomitant of (A, E) and N which is
given, for all (e, f), (B,h) € Q' (M) x C*(M), by

C((Ao, Eo), N)((e, ), (B, 1)) = (e, ), (B, )]a 1) — [N (e, f), (B, W)]a, )
— [l f), "N (B, W)]a,m) + N(a f), (B, )]y, (13)

where [.,.Ja,my (resp. [, J(ay,m,)) is the bracket (11) associated with (A, E)(resp. (A1, Ev)).
If condition ii) is replaced by

ii’) C((A,E),N)=0
we say that (M, (A, E),N) is a strict Jacobi-Nijenhuis manifold.

Remarks 3.2 A) The bivector A; given by (12) is skew-symmetric if and only if N'o(A, E)# =
(A, E)# o IN;



B) When A; is skew-symmetric, the pair (A, E1) given by (12) defines a Jacobi structure on
M if and only if, for all (o, f), (B8,h) € QY (M) x C®(M),

TW) (B (., ), (A, BYF (8,h)) =
= N o (A, B)¥ (C (A E),N) (a0, £), (8,h))) ;

C) In the case where (A1, E) is a Jacobi structure, it is compatible with (A, E) (i.e., the sum
(A+ A1, E + Ey) is again a Jacobi structure, see [15]) if and only if, for all (o, f), (8,h) €
QY M) x C®(M),
(A, B)* (C (A E),N) ((a f), (B, h))) = 0.

Theorem 3.3 ([13]) Let ((Ao, Eo),N') be a Jacobi-Nijenhuis structure on a differentiable man-
ifold M. Then, there exists a hierarchy ((Ag, Ex),k € IN) of Jacobi structures on M, which are
pairwise compatible. For all k € N, (Ag, Ey) is the Jacobi structure associated with the vector
bundle map (Ay, Ex)# given by (Ay, Ex)# = N* o (Mg, Eo)#. Moreover, for all k,1 € N, the pair
((Ag, Eg),N') defines a Jacobi-Nijenhuis structure on M.

In order to show the relation between Jacobi-Nijenhuis manifolds and Poisson-Nijenhuis struc-
tures, we recall that with each Jacobi manifold (M, A, E) we may associate a Poisson manifold
(M, A), with

M =M x IR, A:et(A+%/\E) (14)

where ¢ is the usual coordinate on IR, [9]. The manifold (M, A) is called the Poissonization of
(M, A, E).

Proposition 3.4 ([17]) With each (strict) Jacobi-Nijenhuis manifold (M, (A, E),N), N :
(N,Y,7,9), a (strict) Poisson-Nijenhuis manifold (M, A, N) can be associated, where (M,
is the Poissonization of (M, A, E) and N is the Nijenhuis tensor field on M, given by

t
|

-

)

- 0 0
N=N4+YQdt+ — 2 Qdt 1
+Y @dt+ o @7+ g5 @d, (15)

and reciprocally.

4 Lie algebroids associated with a Jacobi-Nijenhuis manifold

In this section we start by associating with each Jacobi-Nijenhuis manifold (M, (A, E),N), two
Lie algebroids over M that are in duality. Then, we apply the techniques used in [2] to these Lie
algebroids, in order to obtain a Lie bialgebroid over M x IR associated with a Jacobi-Nijenhuis
manifold.

Let (M, A, E) be a Jacobi manifold. In opposition to the case of a Poisson manifold, in
general one cannot define a Lie algebroid structure on the cotangent bundle of a Jacobi manifold.
However, it is possible to associate a Lie algebroid with a Jacobi manifold if one considers the
1-jet bundle T*M x IR — M. In fact, if (M, A, E) is a Jacobi manifold,

(T*M x R, [, .JA,m), 7o (A, E)Y) (16)

is a Lie algebroid over M, where [.,.J(z gy is the bracket (11), (A, E)Y:T*M xR - TM x R is
the bundle map given by (10) and 7 : TM x IR — T'M is the projection over the first factor (see

[3])-



Remark 4.1 In (16), if £ = 0, by projection, we obtain the Lie algebroid structure on the
cotangent of a Poisson manifold, presented in example 2.3.

The differential d. of the Lie algebroid (T*M xR, [, .J(a,r), 7o (A, E)%), defined by expression
(3), is given for all (P,Q) € V¥(M) & VF~1(M), by

d.(P,Q)=([A\,P]+kEANP+ANQ,—[A, Q]+ (L —k)EANQ +[E,P]). (17)

Now we consider a differentiable manifold equipped with a Nijenhuis operator N := (N, Y, ~, g),
given by (7). Using the operator A, we may define a new bracket on V!(M) x C> (M), which is
a deformation of the bracket (8), by setting, for all (X, f), (Z,h) € VY (M) x C®(M),

(X, 1), (Z,)v = IN(X, f),(Z,W)] + [(X, ), N(Z,h)] = N[(X, [),(Z,h)] (18)
= ([sz]N+f[Y7Z]_h[YvX]v h(X'g_Yf)_f(Z-g_Yh)
+(NX).h— (NZ).f +dvy(X, Z)),

where [.,.]y is the bracket on V(M) given by (1). Since the Nijenhuis torsion 7 (N) of N given
by (9) vanishes, the bracket [.,.]y is a Lie bracket on V(M) x C°°(M). Moreover, we have the
following.

Proposition 4.2 Let N := (N,Y,,g) be a Nijenhuis operator on M. Then,
(TM xR, [ Jy, 70 N) (19)

is a Lie algebroid over M, where [.,.|n is the bracket (18) and @ : TM x R — TM is the
projection over the first factor.

Proof. Take any (X, f), (Z,h) € V'(M) x C*®(M). Using the fact that the Nijenhuis torsion
of N vanishes, i.e.

N(X, £), N (Z,h)] = N([(X, ]), (Z, 7)]w),

we show that the anchor map 7 o A induces a Lie algebra homomorphism from (V!(M) x
C®(M),[.,.]x) to (VL(M),][.,.]), where [.,.] is the usual Lie bracket of vector fields:

r o N((X, 1), (Z W) = w(N(X, ), N(Z, W)
— [NX + fY,NZ +hY]
= [roN(X,f),moN(Z,h)].

Finally, a straightforward computation shows that for all s € C°°(M),
(X, ), s(Z, W)lv = s[(X, [), (Z,h)]x + (NX + fY).5)(Z, h).

&

The differential of the Lie algebroid (TM x R, [.,.Ja, ™ o N) is dnr = [inr, d], where [.,.] is

the graded commutator, d = (d, —d) with d the de Rham differential and i,r is the derivation of
degree zero defined, for all (8, a) € QF(M) @ Q¥—1(M), by

k

iN(ﬁaa)((Xlafl)a'”?(Xkafk)) = Z(Baa)((Xlafl)a'” ?N(Xzafz)a ) (Xkafk))a

=1



(X1, f1) -, (X, fr) € VI(M) x C®(M). If (B, f) € Q' (M) x C®(M), dn(B,f) = (dnf —
fdvy, LyB — N (df) + fdg), where dy is the differential of the Lie algebroid (TM,|.,.]n,N) (cf.
§1).

Now let us take a Jacobi-Nijenhuis manifold (M, (A, E),N), N := (N,Y,v,g). Since we
have simultaneously a Jacobi structure and a Nijenhuis operator on M, we can associate with
this Jacobi-Nijenhuis manifold (M, (A, E),N) the two Lie algebroids over M that are in duality,
given by (16) and (19), respectively:

(T*M xR, [, Japy 7o (A, E)) and (TM xR, [, Jv,moN).

But this pair is not a Lie bialgebroid, because condition (4) doesn’t hold!
Next we briefly recall the techniques introduced in [2], in order to apply them to the Lie
algebroids (16) and (19), considered above.

Let (A,][.,.], p) be a Lie algebroid over M and consider the Lie algebroid cohomology complex
with trivial coefficients (see [10]). A 1-cochain 0 € I'(A*) is a 1-cocycle if, for all X, Z € I'(A4),

0(1X, Z]) = p(X).(0(2)) — p(%).(0(X)). (20)

Given a Lie algebroid (A4, [.,.], p) over M, let us consider the vector bundle A = A x R —
M xTR over M xIR. The sections of A can be identified with the t-dependent sections of A, t being
the canonical coordinate on IR, i.e., for any X € I'(4) and (z,t) € M x R, X(x,t) = X;(z),
where X; € T'(A). This identification induces, in a natural way, a Lie bracket on F(;l), also
denoted by [.,.]:

(X, Z|(x,t) = [X}, Z](z), X,Z eT(A),(x,t) e M xR,

and a bundle map, also denoted by p, p : A — T(M x R) = TM @ TR, in such a way that
(A, [.,.], p) becomes a Lie algebroid over M x IR. }
Now, take a 1-cocycle @ € T'(A*) and consider the following new brackets on I'(A):

2,27 = expl=0)(%. 2]+ 000 (22 = 2) - 0(2) (2o — ) 1)
and . ~
(X, 2] =[X,Z] + e(X)%—f - 9(2)‘98—):, (22)

X,Z € T(A). Also consider the maps p*?, p=?:T(A) = V(M x IR) given, for any X € T'(A),
respectively by

p*?(X) = exp(—t)(p(X) + 9(5()(%) (23)
and 9
p~(X) = p(X) + 9(5()&- (24)

Proposition 4.3 ([2]) Let A — M be a vector bundle over M, [.,.] : T'(A) x T'(4) = T'(4) a
bracket on T'(A), p: T(A) — VI(M) a homomorphism of C*°(M)-modules and 0 a section of the
dual bundle A*. Then the following conditions are equivalent:

i) (A,[.,.],p) is a Lie algebroid over M and 6 is a 1-cocycle,
i) (A,[.,.]*%, p*%) is a Lie algebroid over M x IR,
ii) (A,[.,.]7%, p7?) is a Lie algebroid over M x R,



where [.,.]*% and p*0 (resp. [.,.]7 and p=%) are given by (21) and (23) (resp. (22) and (24)).

Let us now come back to the Lie algebroids (T*M x IR, [, .]a,g), 7 © (A, E)*) and (TM x
R, [, .Jnv, T o N) over M, associated with a Jacobi-Nijenhuis manifold (M, (A, E),N), N :=
(N,Y,7,9).

Lemma 4.4 The pair (v,g) € Q' (M) x C*®(M) is a 1-cocycle in the Lie algebroid cohomology
with trivial coefficients of (TM X R, [.,.]ar, m o N).

Proof. In order to show that (v, g) verifies condition (20), we will use the equalities

Lyy = gdy (25)
and
'N(dg) = Ly + gdg, (26)

which together with 7(N) =Y ®dy and Ly N = —Y ®dg are equivalent to T (N') = 0 (see [17]).
Let (X, f) and (Z,h) be any sections of V!(M) x C°°(M). Then,

(779)([(X7f)7(zah)]/\/) = <’)’,[X,Z]N—|—f[Y,Z]—h[Y,X] >+gh’(X'g_Yf)
—f9(Z.g =Y.h) + g(NX).h = (NZ).f) + gdv(X, Z)
@ 1 INX,Z] > + <, [X,NZ] > — <,N[X, 7] >
+ < Lyy+g9dg, hX — fZ >+fY. <y, Z>—-hY. <7y, X >
—gh(Y.f) + fg(Y.h) + g(NX).h —g(NZ).f
+dy(NX, Z) + dy(X,NZ) — d("Ny)(X, Z)
= —f((N2).9) +((NX).g) + f(Y.<7,Z>) = h(Y. <7, X >)
—gh(Y.f) + fg(Y.h) + g((NX).h) — g((NZ).f)
+(NX). <v,Z>—-(NZ2). <v,X >
= (NX+fY)(< 7, Z > +gh) — (NZ + hY).(< 7, X > +fqg).
¢
Taking into account that (—F,0) € V(M) x C®(M) is a l-cocycle in the Lie algebroid

cohomology with trivial coefficients of (T*M xIR, [.,.J(a,z), To(A, E)"), (see [2]), from Proposition
4.3 and Lemma 4.4, we end up with the following.

Proposition 4.5 If (M, (A, E),N), N =: (N,Y,~,9), is a Jacobi-Nijenhuis manifold, then
the triples (TM x R) x R, [, Jy7, (r o N)=09) and (T*M x R) x R, [, J;{ 7, (7 o
(A, E)Hy*(“E0) gre Lie algebroids over M x TR.

Let (M JAN ) be the strict Poisson-Nijenhuis manifold associated with the strict Jacobi-
Nijenhuis manifold (M, (A, E),N), N' =: (N,Y,7,g), in the sense of Proposition 3.4 and take
the two Lie algebroids (TM [ ]5s N) and (T*M,|.,.]5,moA") over M = M x IR which constitute
a Lie bialgebroid (cf. Theorem 2.5).

Lemma 4.6 The map

b (TM,[, ], N) = (TM x R) x R, [, ]9, (r o N)~09)), (X + fgt) (X, f),

is a Lie algebroid isomorphism, where X is a vector field on M depending on t and f € C®(M x



' 3
Proof. For any section X + f& of TM = TM @ TR we have, using (24) and (15),

(roN) 9 op(X 4 F0) = (moN)(X, )t < (1,9, (X, ) > o

= (NX+ V)4 (<7, X > +o)g,

= N(X'—l—f%).

-~ =0
On the other hand, a long but straightforward computation shows that for all sections X + f g

and Z + E% of TM = TM & TIR, the following equality holds:

(X + Fon), B2+ )9 = (X + F ), (

where [.,.] i is the bracket (1). o

_ .9
Z+ho)ly),

In [2] it was proved that the adjoint ismorphism of v,
P (T*M xR) x R, [, J\50Y, (o (A, BY*CP0) o5 (T*M, [, |5, 7o Al),

P*(a, f) — & + fdt, is also a Lie algebroid isomorphism, i.e., for all sections (&, f) and (B fz)

T"M =T*M & T*IR, one has
(w0 A¥) (4" (@, f)) = (w0 (A, E))* "0 (a, f) (27)
and
(@, F), v (B, I)g = (G ), GRS, (28)

Suppose that A; and Ay are Lie algebroids over M such that their duals A} and A% are also
Lie algebroids over M. Next result from [2] will be useful in the sequel.

Lemma 4.7 ([2]) Let ¢ : Ay — Ay be a Lie algebroid isomorphism such that its adjoint ho-
momorphism * : A5 — A is also a Lie algebroid isomorphism. Then, if (A1, A}) is a Lie
bialgebroid, so is (Ag, AS).

Taking into account the previous comments and using Lemma 4.7 and Theorem 2.5, we can
state the following.

Proposition 4.8 Let (M, A, E) be a Jacobi manifold and N =: (N,Y,~,g) a Nijenhuis operator
on M. Then, (M,A, E),N) is a strict Jacobi-Nijenhuis manifold if and only if the pair
) * —E,O —
(TMXR)XIR, [, 37, (roN)~09), (T*MXR)XIR, [ JGEY, (ro(a, BY* CE)) (29)

1s o Lie bialgebroid over M x IR.

5 The generalized Lie bialgebroid of a strict Jacobi-Nijenhuis
manifold
Using the notion of generalized Lie bialgebroid, introduced by D. Iglesias and J. Marrero in [2],

we are going to give a characterization of a strict Jacobi-Nijenhuis manifold.
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Let us recall how we can “add” a 1-cocycle in the differential calculus of a Lie algebroids.
Fore more details, see [2].

Let (A4,].,.],p) be a Lie algebroid over M and 6 € I'(A*) a 1-cocycle (cf. (20)). Using the
1-cocycle 6, we can define a new representation p? of the Lie algebra (T'(4),[.,.]) on C®(M), by
setting

o i T(A) x CX(M) = C¥(M), (X, f) = p'(X, f) = p(X).f +6(X)f.  (30)

Therefore, we obtain a new cohomology complex, whose differential cohomology operator is given
by
d’ :T(AFA*) - T(AFHAY), B d’(B) =dB+0 AB. (31)

Also, for any X € I'(A), the Lie derivative operator with respect to X is given by
L% T(AFA*) - T(AFA%), B L% (8) = LxB + 0(X)B. (32)

It is also possible to consider a §-Schouten bracket on the graded algebra I'(AA), denoted by
[.,.]%, which is defined as follows:

[,.]7 : T(APA) x D(AYA) — T(APFHI-1A)
(P,Q) = [P,Q° =[P,Ql+ (p— )P A (i9Q) + (=)’ (¢ = )(isP) AQ.  (33)

Suppose that (A,[.,.],p) is a Lie algebroid over M such that in the dual bundle A* of A
also exists a Lie algebroid structure over M, ([.,.]«,p«). Let 8 € T'(A*) (resp. W € I'(A)) be a
1-cocycle in the Lie algebroid cohomology complex of (A4, [.,.],p) (resp. (A%, [., J«, px))-

Definition 5.1 ([2]) The pair ((A,0), (A*,W)) is a generalized Lie bialgebroid if for all X, Z €
I'(A) and P € T'(APA),

1. dV[X, 7] = [dV X, 2] + [X, d¥ 7]’
2. (LY)g(P) + Ly (P) =0,
where dV and LY are, repectively, the W -differential and the W -Lie derivative on A*.

Note that when # = 0 and W = 0, the generalized Lie bialgebroid is a Lie bialgebroid.

Let the vector bundles A =AxRand A* = A* x IR be equipped with the Lie algebroid
structures over M = M x R, ([.,.]?,p7%) and ([.,.]x", px") given by (22) and (24), and (21)
and (23), respectively.

Proposition 5.2 ([2]) If (AxR,][, 172,079, (A* xR, [.,.IxV, px")) is a Lie bialgebroid (over
M =M xR), then ((A,0),(A*,W)) is a generalized Lie bialgebroid (over M ), and reciprocally.

Using this result, we may rewrite Proposition 4.8, to obtain a characterization of a strict
Jacobi-Nijenhuis structure on a manifold by means of a generalized Lie bialgebroid.

Theorem 5.3 Let (M, A, E) be a Jacobi manifold and N =: (N,Y,~,g) a Nijenhuis operator
on M. Then, (M,A, E),N) is a strict Jacobi-Nijenhuis manifold if and only if the pair

(TM xR, [, Jxv, 7o N), (7,9)), (T*M xR, [, Ja,m), w0 (A, E)),(=E,0)))  (34)

1s o generalized Lie bialgebroid.
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Remark 5.4 In [2] it was proved that on the base manifold M of a generalized Lie bialgebroid
((A,0),(A*,W)), there exists a Jacobi structure whose bracket is given by

{f,hy =< d’f, dh >, fheC®M).

In the case of the generalized Lie bialgebroid (34) associated with a strict Jacobi-Nijenhuis
manifold we have, for all f,h € C*>(M),

(fny = <dy?s d "0 >
= < ('N(df)+ fv, Y-f + fg), (=A¥(dh) — hE, E.h) >
= <df,(-NA*+Y @ E)dh > —h < df, NE > +f < dh,A*(y) + gE > .

Taking into account that
NA—Y @ E=A and A(y)+gE=NE=E,
where Ay and FE; are given by (12), see [17], we obtain
{f,h} ={f,h}1,
for all f,h € C*°(M), where {.,.}; is the Jacobi bracket associated with (A, Ey).

Acknowledgments. The author wishes to thank Fani Petalidou for helpful discussions.

References

[1] D. Iglesias and J. C. Marrero, Some linear Jacobi structures on vector bundles, C. R. Acad.
Sci. Paris, t. 331, Série I (2000) 125-130.

[2] D. Igesias and J. C. Marrero, Generalized Lie bialgebroids and Jacobi structures, arXiv:
math.DG/0008105.

[3] Y. Kerbrat and Z. Souici-Benhammadi, Variétés de Jacobi et groupoides de contact, C. R.
Acad. Sci. Paris, Série I, 317 (1993) 81-86.

[4] A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976) 55-75.

[5] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. LH.P. 53 (1990)
35-81.

[6] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl.
Math. 41 (1995) 153-165.

[7] Y. Kosmann-Schwarzbach, The Lie Bialgebroid of a Poisson-Nijenhuis Manifold, Lett. in
Math. Phys. 38 (1996) 421-428.

[8] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in : Elie Cartan et les
mathématiques d’aujourd’hui, Astérisque, numéro hors série (1985) 257-271.

[9] A. Lichnerowicz, Les variétés de Jacobi et leurs algebres de Lie associées, J. Math. Pures
Appl. 57 (1978) 453-488.

[10] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, Cambridge Univer-
sity Press, 1987.

12



[11]

[12]

[13]

[14]

K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994)
415-452.

F. Magri and C. Morosi, A geometric characterization of integrable Hamiltonian systems
through the theory of Poisson-Nijenhuis manifolds, Universita di Milano, Quaderno S 19,
1984.

J. C. Marrero, J. Monterde, E. Padron, Jacobi-Nijenhuis manifolds and compatible Jacobi
structures, C. R. Acad. Sci. Paris, Série I, 329 (1999) 797-802.

J. M. Nunes da Costa and C.-M. Marle, Reduction of bihamiltonian manifolds and recursion
operators, in : Proc. Conf. Diff. Geometry and Appl. (Brno 1995), Masaryk, Univ. Brno,
1996, 523-538.

J. M. Nunes da Costa, Compatible Jacobi manifolds : geometry and reduction, J. Phys. A:
Math. Gen. 31 (1998) 1025-1033.

J. M. Nunes da Costa and F. Petalidou, Reduction of Jacobi-Nijenhuis manifolds, to appear
in J. of Geom. and Phys.

F. Petalidou and J. M. Nunes da Costa, Local structure of Jacobi-Nijenhuis manifolds, to
appear in J. of Geom. and Phys.

13



