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Abstract: Classical machine learning techniques have dominated Music Emotion Recognition. How-
ever, improvements have slowed down due to the complex and time-consuming task of handcrafting
new emotionally relevant audio features. Deep learning methods have recently gained popularity in
the field because of their ability to automatically learn relevant features from spectral representations
of songs, eliminating such necessity. Nonetheless, there are limitations, such as the need for large
amounts of quality labeled data, a common problem in MER research. To understand the effectiveness
of these techniques, a comparison study using various classical machine learning and deep learning
methods was conducted. The results showed that using an ensemble of a Dense Neural Network and
a Convolutional Neural Network architecture resulted in a state-of-the-art 80.20% F1 score, an im-
provement of around 5% considering the best baseline results, concluding that future research should
take advantage of both paradigms, that is, combining handcrafted features with feature learning.

Keywords: music information retrieval; music emotion recognition; deep learning

1. Introduction

Most early attempts at Music Emotion Recognition (MER) tackled classical machine
learning (ML) techniques, where much of the effort is put into feature engineering [1–4].
The usual pipeline for improving the classification of such techniques involves identifying
gaps in musical dimensions, such as melody, harmony, rhythm, dynamics, tone color
(timbre), expressivity, texture, and form, designing feature extraction algorithms that
can capture those dimensions, and then training ML models on those extracted features.
However, due to the complexity involved in the process, most current works only employ
low- and mid-level descriptors, many proposed for other problems of the broader Music
Information Retrieval (MIR) field. One recent exception is the work by Panda et al. [5],
with the development of new emotionally relevant features based on audio analysis, which
resulted in 76% accuracy in the 4 Quadrant Audio Emotion Dataset (4QAED) dataset.
The study aimed to create new features to break the current MER glass ceiling as observed in
the MIREX challenge, where results attained a plateau of about 69% accuracy [5]. However,
the design process of such features is a time-consuming and challenging task that requires
expert domain knowledge in signal processing, musicology, and ML.

Deep learning (DL) has recently seen a rise in popularity for its ability to reduce such
workloads due to its ability to learn relevant features from raw input data automatically
and has been applied in a variety of fields. Recently, various DL methods have been applied
to tackle MER, many of which employ Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and various combinations of the two [6–8]. Typically, raw input
data are represented by a spectrogram, but end-to-end architectures that do not require
previous processing have also been proposed [9,10]. In addition, learning paradigms, such
as transfer learning from other domains with larger available datasets [11,12], and different
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data representations, such as from embeddings that can be extracted from pre-trained
CNNs [13] have also been proposed.

Despite the potential seen in the field of Computer Vision, these techniques have
limitations, such as the need for large amounts of quality labeled data, a common problem
since the infancy of the MER field. Classical ML methodologies have previously dealt with
this problem by applying audio transformations to the available samples and obtaining new
synthesized samples to increase the training set for the chosen algorithms. Since previous
studies on this matter focused especially on singing voice [14] and genre recognition [15],
the impact of data augmentations specifically for MER is not well known and needs to
be assessed.

A drawback of methodologies based on neural networks is their lack of interpretability
given their black-box nature, meaning that it is not known what kinds of features deemed
relevant for the data are learned and extracted during the training process. For the case
of MIR, questions have arisen in the past regarding whether these networks are learning
relevant information for the task at hand, such as genre, with the same concerns applicable
to emotion.

However, a study by Choi et al. [16] shows that a five-layer convolutional portion of
a CNN learns to extract features closely related to melody, harmony, percussion, and tex-
ture for four very different songs through a process called auralization. More recently,
Won et al. [17] demonstrated that a self-attention mechanism is able to learn relevant infor-
mation for instrument, genre, and emotion detection using heatmaps to visualize which
areas of the spectrograms are taken into account to perform classification.

Taking into account the various promising paths to exploit DL-based approaches,
in this article, we conduct a comparison study of various classical ML and DL method-
ologies applied to MER to understand the effectiveness of these techniques, using the
4QAED dataset complemented with a recent expansion. Methodologies include archi-
tectural improvements, the inclusion of audio augmentation techniques, experimenting
with alternative input data representations, and exploiting knowledge from related tasks.
Moreover, the expansion of the baseline dataset enabled the study of the impact of dataset
size on the classification accuracy of DL models.

The output of this study resulted in the following contributions: (i) an ensemble of a
Dense Neural Network (DNN) and a CNN architecture, which resulted in a state-of-the-
art 80.20% F1 score (based on data augmentation); (ii) a thorough comparison between
possible methodological improvements for solving MER; and (iii) an analysis of the impact
of dataset size and class balancing on classification performance.

2. Background

The connection between music and emotions has long been a focus of research in
music psychology. Emotion from a musical piece can be examined through the lens of
(i) expressed, or the emotion the composer or performer tries to convey to the listener;
(ii) perceived, or which emotion is identified by the listener; and (iii) induced, or the emotion
felt by the listener. These different types of analyses may produce equal or completely
different interpretations of the emotional content of a song, but a key difference lies in
the different levels of subjectivity [18]. Perceived emotion has been shown to provide the
highest level of objectivity among the types as mentioned earlier and can be found as the
focus of most works in the MER literature.

Various models have been proposed to represent the spectrum of human emotion, ei-
ther by clustering similar emotions, also designated as categorical models, such as Hevner’s
Adjective Circle [19], or by having a multi-dimensional plane where the axes represent
different biological systems to mimic how the brain perceives emotion, intuitively re-
ferred to as dimensional models in the literature, the most widely accepted being Russell’s
Circumplex Model [20], seen in Figure 1.

Many scholars have raised concerns about both categories of models. On one hand, cat-
egorical models do not realistically reflect the continuous nature of the emotional spectrum,
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leading to limitations in pinpointing the exact emotion. On the other hand, dimensional
models are known to have a high degree of complexity because of the basis on which they
are constructed, and although they may provide more accurate accounts of the emotions
reported by annotators, prior knowledge of their inner workings is required to properly do
so, severely impacting the range of annotators using such models and the accuracy of the
output annotations [21].

Figure 1. Russell’s Circumplex Model. Emotions can be mapped with continuous values as shown by
the words in each isolated point, or as discrete labels, representing a broader emotion.

Recently, Panda et al. [5] proposed the 4QAED dataset using labels from experts found
on the AllMusic API [22]. Through a thorough process, these labels were translated into
arousal and valence values, collectively called A–V values, the y- and x-axes of Russell’s
model, respectively. Instead of maintaining the continuous approach of this model, all
annotations were grouped into one of the four quadrants, making them discrete and more
easily understood as categorical models. A more in-depth explanation of the dataset,
as well as its expansion, is provided in the following section.

3. Methods

This section describes the methodologies explored in this work, ranging from archi-
tectural improvements to alternative data representation, data augmentation techniques,
and knowledge transfer.

We begin by defining both ML and DL baseline methodologies, discussed in more
detail in Section 3.1, and evaluating them on multiple datasets. The obtained results provide
a comparison point with the explored methodologies, in addition to making it possible to
assess the impact of increased dataset size and class imbalance.

The remaining section explains the explored methodologies and what led us to con-
sider them. These include architectural improvements that exploit time-related infor-
mation (Section 3.2.1), architectures that learn features from portions of whole samples
(Section 3.2.2), alternative input representations obtained through high-dimensional projec-
tions (Section 3.2.3), increased training data through sample synthetization (Section 3.2.4),
and exploiting learned information from related tasks (Section 3.2.5).

3.1. Baseline Architectures

As a baseline for our experiments, we first considered the state-of-the-art model from
Panda et al., a simple Support Vector Machine (SVM) classifier (classical baseline) in which
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hyperparameters were fine-tuned for each dataset experimented using the same set of
optimal features found in the original work.

A CNN architecture based on the work by Choi et al. [6] (see Figure 2) was previously
developed by our team and is used as the DL baseline. The original architecture was
adapted so that, instead of outputting a binary vector, the extracted features are processed
on a small DNN that predicts one of the four quadrants from Russell’s model. This baseline
is essential for assessing the viability of new DL architectures on our datasets and provides
a basis for further improvement. The Stochastic Gradient Descent (SGD) optimizer was
used to train the DL baseline, and the following hyperparameters were found to be optimal:
batch size = 150, epochs = 200, learning rate = 0.01. An early stopping strategy was employed,
which halted training when the accuracy of the train set reached a value above or equal to
90%, as it overfits above this value as found from previous experimentation. These points
are the default configuration for the remaining approaches described in this section unless
explicitly stated otherwise.

Figure 2. DL baseline architecture. The frontend portion first extracts relevant features inferred from
the input data, which are then fed to the backend for classification.

3.2. Explored Methodologies

We began by reviewing recently proposed DL approaches for MER. It is important to
note that this work focuses on improving the classification of static emotion (Static MER)
in music. We do not delve into emotion variation detection (MEVD), a higher complexity
problem based on identifying the emotional content and its fluctuations across an entire
music piece, or other modalities such as lyrics.

Recently, Won et al. [23] conducted a comparison study on various DL architectures,
including the Convolutional RNN (CRNN) architecture, an end-to-end approach, a simple
architecture that takes small segments of the whole sample as input, and an architecture
with trainable harmonic filters. Implementations for all of the abovementioned are available
in a GitHub repository [24], which we adapted for experimenting with our data. The re-
mainder of this section briefly describes the explored approaches, including existing and
novel ones.

3.2.1. Architecture Improvements

As a starting point to improve our baseline architecture, two Gated Recurrent Units
(GRUs), reported in their original paper to be more stable to train than Long Short-Term
Memory units [25], were added to our baseline CNN architecture in an attempt to process
and extract time-domain-specific features. To understand how appropriate the CNN
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portion of this network is for such a task, an implementation of the CRNN architecture,
depicted in Figure 3 was adapted from the aforementioned repository.

Figure 3. CRNN architecture. The number of filters applied to the input data is larger when
compared with the DL baseline architecture, and, as a result, the extracted information is more
heavily downsampled. In addition, the backend portion replaces the dense network with two GRU
units to process time-related information.

In addition, one of the best-performing methodologies was a simple ensemble of
the baseline CNN with a DNN fed with all the extracted features, previously pre-trained
and with its weights frozen, that fuses the information before being post-processed by a
smaller DNN. It was decided to fuse information from both networks at the feature level
to understand how handcrafted and learned features complement each other. As stated
before, the reason for the lack of improvement in classical approaches is missing features
relevant for emotion recognition. With the inclusion of the learned features from the CNN
portion, we should observe how relevant these are in relation to the handcrafted features.

To understand the impact of information fusion at the feature level, we first conducted
experiments using only a DNN architecture. The full set of 1714 features was considered,
as well as the top 100 features used for training the SVM baseline. The best-performing
model is incorporated into the previously described ensemble. The experimented
architectures are depicted in Figure 4.

The idea is to combine the information extracted from both approaches to improve the
overall classification. To improve the capabilities of the CNN portion, we pre-train it with
synthetic samples resulting from classical audio augmentation techniques (time shifting,
time stretching, pitch, and power shifting, as discussed below) already studied in the same
work, referred to as Hybrid Augmented for clear distinction. The architecture is depicted
in Figure 5.

Figure 4. DNN architectures. The input feature sets are processed, akin to a feature selection process,
and classified.
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Figure 5. Hybrid Augmented architecture. Both feature extraction portions are pre-trained with the
train set samples and synthesized samples for the DL feature extraction portion exclusively. Late
feature fusion is performed before classification.

3.2.2. Segment-Level Approaches

Our previous work focused on using the full 30-s samples available on 4QAED as the
model’s input. However, humans can identify emotions in smaller samples with some ease.
Considering the small size of the datasets used for evaluating the explored methodologies,
breaking down these samples into smaller segments has the added advantage of increasing
the number of training examples, an indirect form of data augmentation. By considering
small inputs at a time, the network is also able to learn local-level features more easily
when compared with sample-level approaches. A simple model that applies this idea is
presented in [23], referred to as ShortChunk CNN. The architecture is presented in Figure 6.
To train the model, each segment was treated as its own sample. In contrast, for testing,
the mode of all segments’ predictions pertaining to a sample is used as the final prediction,
also known as a many-to-one approach. The best hyperparameters values found were:
batch size = 50, epochs = 100, learning rate = 0.001.

Another usual architectural component in previous DL works is using a set of convo-
lutional layers to downsample and extract features from spectral representations, requiring
the definition of parameters for generating such a representation. Although the ideal
parameters have been previously studied as is the case in [6], they are not architecture-
independent. A solution to this problem would be to work directly with the raw audio
signal without pre-processing and extracting features directly from it. This was achieved
by Lee et al. [9] who proposed a model referred to as Sample CNN, which uses a sequence
of one-dimensional convolutional blocks, very similar to the two-dimensional variant,
and processes the outcome in a dense layer. The architecture is depicted in Figure 7.
With these architectures, the best values for the hyperparameters were almost the same
as those for the ShortChunk CNN, with the exception of the number of epochs, which
increased to 150. It is important to note that the original models were designed to output
one of a set of labels, differing depending on the dataset used, and were translated from
PyTorch to TensorFlow with reworked output to categorical labels.
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Figure 6. ShortChunk CNN architecture. The model processes smaller chunks of a full sample at
a time, increasing the data available for training. The full sample is classified by aggregating the
smaller chunks’ predictions.

Figure 7. Sample CNN architecture. The process for classifying samples is similar to ShortChunk
CNN; however, the features used for classification are learned directly from the raw audio sample.

3.2.3. Data Representations

As mentioned previously, when describing the Sample CNN architecture, Mel-spectrograms
may not be the optimal representation for training a model to classify emotions. Embeddings,
or the mapped representation of a sample in a lower-dimensional space learned from the
original data’s space, are very popular in Natural Language Processing (NLP) tasks, such
as for Speech Emotion Recognition (SER), due to the natural translation of words to smaller
dimensions. The same idea was applied to audio by Koh et al. [13], utilizing the OpenL3 deep
audio embedding library (v0.4.1) [26] and training the classical ML techniques classifier on its
output. The embeddings are obtained directly from a Mel-spectrogram representation, resulting
in a feature matrix of 298 × 512.

Results were provided for the baseline dataset for this study, reaching a 72% F1 score
using the Random Forest (RF) classifier of the scikit-learn library (v1.0.1) [27], very close to
the classical baseline. The experiment was replicated and extended to the baseline dataset
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extension. The embeddings provided by the autoencoder mentioned when describing the
DeepSMOTE-like approach in the following subsection were also tested for comparison.

3.2.4. Data Augmentation

We further explored both classic and DL approaches for data augmentation. For the
former, several audio augmentation techniques were applied directly to the audio signal of
a sample, randomly increasing or decreasing a factor associated with the transformation,
namely, time shifting (shifts start or end by a maximum of 5 s), pitch shifting (increasing or
decreasing pitch by a maximum of 2 semitones), time stretching (speeding up or slowing
down by a maximum of 50%), and power shifting (increasing or decreasing amplitude
by a maximum of 10 dB). Continuing in this line, we experimented with more of these
techniques using the audiomentations library (v0.24.0) [28], namely, the following:

• Time–Frequency Masking (TFM), popular in the field of SER, which applies a mask
over a portion of the time and frequency domains [29];

• Seven-Band Parametric Equalization (SB), applying a seven-filter pass on the sample,
changing its timbre in the process;

• Tanh Distortion (TD), applying a distortion similar to an electric guitar;
• Random Gain (RG), randomly increasing or decreasing the loudness of a sample;
• Background Noise (BG), which adds random background noise from a specified set of

samples, in our case, the ESC-50 dataset [30].

For each transformation, a random value is picked from a set of predefined intervals
to be used as the factor for the transformation, e.g., RG predefined interval is between
[−12.0, 12.0] dB. These intervals were left unchanged from the defaults found in the library.
It is important to note that a transformation is only applied to each sample once. This means
that when experimenting with a single transformation, the training data are effectively
doubled, while for the previously discussed Hybrid Augmented approach, the training
data are increased fourfold since we are applying four transformations at a time.

As for DL-based techniques, Generative Adversarial Networks (GANs) [31] were
previously tested with underwhelming results. Not only is the process of training a
GAN overly complex when compared with classical audio augmentation but the lack of
constraints when sampling the learned space from the data leads to noisy and emotionally
ambiguous samples.

To impose some constraints on the generation of samples, the SMOTE [32], or Synthetic
Minority Oversampling Technique, was considered. Although it was apparent that directly
applying this technique to the raw audio signal produces even noisier samples than the
GAN, owing to the high dimensionality of the audio signal, we used the autoencoder
used for training the GAN to reduce significantly the number of dimensions of a sample
akin to the DeepSMOTE approach proposed by Dablain et al. [33]. A raw sample in a
waveform representation presents approximately 482 k values or dimensions to represent a
30 s sample with a 16 kHz sampling rate. In contrast, by passing the Mel-spectrogram rep-
resentation through the autoencoder, we retrieve an embedded representation comprised
of 60,416 values, a significant decrease for improving the SMOTE’ing process. To the best
of our knowledge, this is the first application of the technique to music samples.

One problem with this approach is the choice of SMOTE implementation because
many alternatives exist, many of which have domain-specific applications. Regarding
which is the most optimal SMOTE variant to use, the article by Kovács [34] as well as
the accompanying repository (v0.7.1) [35], are a comprehensive resource to better support
a decision, presenting a comparison of over 80 variants. Because of this large number,
we only experimented with the most widely used variants, SMOTE, BordelineSMOTE,
and Adasyn. BorderlineSMOTE, specifically the Borderline_SMOTE2 implementation, was
found to be the best fit based on preliminary tests. In addition, it was found from these
tests that 25 synthesized samples for each quadrant, in addition to the original ones, were
optimal, with such an increase accompanied by an increased batch size of 200.
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As a final note, precautions are taken to prevent synthesized samples from leaking
to the test set. It is possible that by modifying the samples, the same also happens to the
underlying emotion. For example, when we apply pitch shifting with a +2 factor, i.e., an
increase of 2 semitones, to a melancholic song, we may be making the song happier. Manual
re-annotating the synthesized samples is not at all feasible due to the necessary resources,
and such efforts should be directed to new original samples that can increase the dataset as
a whole.

To ensure that the synthesized samples do not distort the evaluation of the model,
we first assign each original sample to the train or test set, and only after the synthesized
samples are added to the train set, only if the corresponding original sample is already
present. This guarantees that no synthesized sample is used for evaluation and preserves
the viability of the evaluation metrics. With this in mind, the benefits of using a data
augmentation technique can be assessed indirectly by the performance of the model in
question. If it increases, we can infer that the techniques involved are beneficial for our
tasks and that they most likely preserve the original emotion, while if they considerably
change the emotion, we would observe a decrease in performance.

3.2.5. Transfer Learning

Another approach is to transfer the learned knowledge from a domain with a larger
data corpus to deal with the reduced size of the dataset, which in practice means transferring
the learned weights from a network to a new network with a different task, freezing them
to avoid information loss, and replacing the output portion of the model appropriate for the
task at hand. Our team previously experimented with exploiting the learned weights of a
network trained for genre recognition for MER. Here, the idea was not to use a larger dataset
but to take advantage of the learned information pertaining to genres to improve emotion
recognition since specific genres are tightly connected to particular emotion quadrants,
e.g., heavy metal and Q2, reggae, and Q4 [36].

In a similar fashion, we experimented with transferring the knowledge from the
models presented by Park et al. [12] developed for artist classification. For the purposes of
this work, the simpler model was adapted, consisting of a sequence of 5 one-dimensional
convolutional blocks, a global average pooling layer, and a dense layer that outputs a
256-value vector, as seen in Figure 8. For the experiment, the model’s weights, which
can be retrieved from the article’s accompanying repository [37], were loaded and frozen,
and the last layer was replaced with an also dense layer outputting to one of the quadrants.
Differences from the DL baseline configurations include using the Adam optimizer in place
of SGD, as per the original implementation. Moreover, almost identical hyperparameters
were used, except for a decrease in the batch size to 100.

Another experiment was performed to understand the impact of applying the informa-
tion gained from larger datasets for MER, using the available weights for the CRNN model
trained on the MagnaTagATune (MTAT) [38], MTG-Jamendo (JAM) [39] and MSD dataset
on Won’s repository, referred to as CRNN TL. It is also important to note that these weights
result from training the CRNN to output for the available set of labels, i.e., multi-label
classification. The optimization process here is adaptive, meaning that it changes at certain
epochs, beginning with Adam with a learning rate of 0.001 until epoch 80, then changes
to the SGD optimizer with a learning rate of 0.0001, decreasing to 0.00001 at epoch 100,
and finally to 0.000001 at epoch 120. The authors state that this leads to a more stable
training process and ensures optimal results at 200 epochs with only a batch size of 16, both
of which are used as these hyperparameter values, in addition to reducing the necessary
computational resources for model optimization.
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Figure 8. Architecture of CNN pre-trained on artists classification task. The feature extraction portion
is frozen; only the classification portion is trained.

4. Evaluation Details

In this section, we introduce the datasets used for evaluating the presented methods
(Section 4.1), data pre-processing details (Section 4.2), and the experimental setup used to
conduct evaluation (Section 4.3).

4.1. Datasets

As mentioned in Section 2, the dataset used for the conducted experiments is the
4QAED dataset [40] previously created by our team [5]. The dataset contains 900 samples
evenly distributed among the four quadrants of Russell’s model. Each corresponds to
a set of emotions: Q1 represents happiness and excitement; Q2, anger and frustration;
Q3, sadness and melancholy; and Q4, serenity and contentment. The dataset provides
30-second excerpts of the complete songs and two sets of emotionally relevant handcrafted
features as data sources. The two sets of features contain (i) 1714 found to be relevant for
emotion recognition, (ii) and the top 100 features obtained after feature selection. Regarding
the targets, the dataset provides categorical labels for one of the four quadrants.

As part of this work, the dataset in question was expanded, increasing the number
of available samples from 900 to 1629. Henceforth, each dataset is referred to as Original-
4QAED and New-4QAED. Furthermore, as can be seen in Table 1, besides the complete (C),
unbalanced, New-4QAED dataset, a balanced subset (B), comprising 1372 samples, was
also experimented with. The latter also takes into account the distribution of genre in each
quadrant to avoid possible bias.

Table 1. Datasets used for evaluation with respective sample distribution.

Dataset Q1 Q2 Q3 Q4 Total

Original-4QAED 225 225 225 225 900
New-4QAED C 434 440 397 358 1629
New-4QAED B 343 343 343 343 1372

4.2. Data Preprocessing

To obtain the Mel-spectrogram representations of the samples used as input data
for these methodologies, the librosa (v0.8.1) [41] Python library was used with default
parameters. One exception is the sample rate, which was set to 16 kHz after experimenting
with different values.
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Although higher sample rates are normally used due to more accurately presenting au-
ditory information, the resulting Mel-spectrograms are significantly more computationally
heavy for the model to process. Other studies have also found that DL-based architectures
are robust to the decrease in information related to lower sample rates [42].

4.3. Experimental Setup

The performed experiments were conducted on a shared server with two Intel Xeon
Silver 4214 CPU with a total of 48 cores running at a clock speed of 2.20 GHz as well as
three NVIDIA Quadro P500 with 16 GB of dedicated memory, the latter necessary for
developing and evaluating each network in a reasonable time. Due to high demand at the
time of evaluation, Google Colaboratory [43] was also used, where it offered a very similar
GPU and either a NVIDIA P100 PCIE with 16GB or NVIDIA T4 with the same amount of
dedicated memory depending on availability.

Most of the experimented DL approaches were developed using the TensorFlow’s
(v2.8.0) [44] Python library, allowing us to build and optimize complex models in a simple
and quick manner. The PyTorch (v2.0.1) [45] library was also used to utilize the provided
weights for the pre-trained CRNN models discussed in Section 3.2.5.

5. Experimental Results and Discussion

Results for each methodology and considered datasets are presented according to the
high-level division discussed in Section 3.2.

The presented metrics are Precision, i.e., how many samples of a given class are
predicted as this class, Recall, i.e., how many samples are correctly predicted as belonging
to a given class, and F1 score, i.e., the harmonic mean between Precision and Recall. These
are obtained through the widely used scikit-learn Python library [27].

The evaluation process to obtain these metrics consisted of firstly optimizing the rele-
vant hyperparameters on Original-4QAED, experimenting with a set of possible values in
a grid search strategy to serve as a baseline for performance on New-4QAED, and utilizing
these same parameters to ensure a fair comparison.

For each set of hyperparameters, a 10-fold and 10-repetition stratified cross-validation
strategy is used, totaling 100 different train–test splits, as it is the accepted approach to deal
with the small dataset sizes and provide reliable results. For each repetition, the dataset is
randomly split into 10 different portions while ensuring equal distribution of quadrants as
found in the original dataset, using 9 portions for training and 1 for testing. The portion
held out for testing changes for each train–test split, resulting in 10 different combinations
for each repetition. An example of the process for obtaining the train–test splits can be seen
in Figure 9.

Figure 9. Example of 10-fold stratified cross-validation process for obtaining train–test splits. Red
folds are part of the train set, while green folds are the test set. Each fold retains the original class
distribution of the full dataset.
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The hyperparameters’ values tested using this method differed from methodology to
methodology. For those based on the baseline CNN, neighboring values were tested to
account for possible variations in the data. Otherwise, the same process was followed using
values from the original articles if available, using the baseline CNN values as backup.
Although a more thorough analysis would require that the same process be repeated
when changing the dataset, this was not possible due to resource constraints. Regardless,
conclusions can be drawn from the impact of different sizes and quadrant distributions of
a dataset.

A decision was also made regarding the multiple classical audio augmentation tech-
niques and multiple datasets on the evaluated CRNN TL methodology to proceed with the
evaluation on New-4QAED only if the performance on Original-4QAED at least matched
the DL baseline methodology. This is reflected in the absence of results in the tables present-
ing the results of data augmentations and transfer learning methodologies across datasets.

Regarding observed improvements, the increased dataset size was beneficial for the
baseline CNN with GRU and CRNN methodologies, which saw an increase from 60.07% to
61.99% and 60.35% to 63.33% in F1 score, respectively from Original- to New-4QAED C,
both better in relation with the DL baseline results (see Table 2), as seen in Table 3. It was
also apparent that increased dataset size made the optimization phase more stable than
previously observed. There was a slight decrease when the balanced variations of the latter
were applied, reinforcing the importance of the dataset size.

Table 2. Precision, Recall and F1 score of baseline methodologies across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

SVM Baseline
Precision 75.63% 69.92% 70.03%

Recall 76.03% 70.26% 70.05%
F1 Score 75.59% 69.79% 69.82%

DL Baseline
Precision 61.60% 62.46% 61.39%

Recall 61.21% 63.99% 63.42%
F1 Score 60.62% 61.66% 60.28%

As for the DNN-based methodologies, the 1714 feature set model performs better on
the New-4QAED variations, while the 100 feature set performs considerably better on the
Original-4QAED. This is to be expected since the top 100 features were found using the
latter and may not translate to a dataset with more samples. Thus, using the complete
feature set for our Hybrid Ensemble should perform better since the DNN is able to process
the relevant features for a given dataset.

To wrap up the improvements related to architectures, the overall best result was
obtained with the Hybrid Augmented methodology, which reached an F1 score of 80.20%
on the balanced subset of New-4QAED. Here, both the size and quadrant distribution
heavily influenced the obtained score, the latter most likely related to the biased nature of
the DNN, similar to classical ML techniques.

Some improvements were also observed when applying Time–Frequency Masking,
Seven-Band Parametric Equalization, and Random Gain, which achieved the best results
with an increase of around 1.5% in F1 score, seen in Table 4, compared with the DL baseline
on Original-4QAED and was consistently better on New-4QAED. As for the Tanh Distortion
and Background Noise transformations, their poor results may be caused by considerable
changes in the underlying emotion when compared to the original samples. These results
call for a need to conduct more studies on data augmentation applied to MER, as most of
the applied techniques in the literature are drawn from studies in other fields, as already
discussed in Section 1, with implications for the emotional content of the resulting samples
not being known.
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Table 3. Precision, Recall, and F1 score of methodologies with improved architectures across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

Baseline CNN With GRU
Precision 61.58% 62.29% 60.69%

Recall 61.01% 62.46% 60.01%
F1 Score 60.07% 61.99% 58.85%

CRNN
Precision 65.14% 64.20% 63.31%

Recall 65.07% 64.03% 63.34%
F1 Score 64.63% 64.09% 62.54%

DNN Precision 69.41% 69.01% 68.58%
With 1714 Recall 69.27% 69.00% 68.40%

Feature Set F1 Score 69.18% 68.63% 68.05%

DNN Precision 72.61% 67.63% 67.77%
With 100 Recall 72.74% 67.67% 67.72%

Feature Set F1 Score 72.48% 67.40% 67.41%

Hybrid Augmented
Precision 67.81% 68.15% 80.56%

Recall 68.08% 68.14% 80.50%
F1 Score 68.04% 67.85% 80.24%

Bold results indicate statistical significant improvements over the DL Baseline.

In a more negative light, all segment-level methodologies performed poorly compared
to the DL baseline as presented in Table 5. Such poor performance may be attributed to
the reduced size of the datasets compared with the ones used in the original proposal of
the architectures, which are already in the order of hundreds of thousands of samples,
which means that the available training data thwart our own, and also the difference of
the problem-solving approach as already mentioned in the previous section. Moreover,
splitting samples into smaller segments may introduce more variability to the data and,
in turn, make it difficult for the architecture to learn relevant features for discerning each
quadrant, a hypothesis that should be further investigated.

Other methodologies, especially related to knowledge transfer and data representation,
performed worse than this baseline as seen in Tables 6 and 7, respectively. In regard to
knowledge transfer, both approaches presented significant underperformance compared
with the same baseline, which implies that this information is not useful for emotion recog-
nition, particularly regarding the multi-label classification approach when using larger
datasets. The poor performance of these methodologies may be attributed to significant
differences from the learned features for the specific task, meaning that potentially relevant
information is lost due to a higher prevalence of features not relevant for emotion recogni-
tion. Other possible factors include the quality of the datasets considered for pre-training
the models, especially MSD, and the data distribution in terms of emotion, genre, and other
relevant factors for MER. Experimenting with an ensemble of models trained for emotion
recognition and another related task should be considered in the future.

Table 4. Precision, Recall, and F1 score of methodologies trained with synthesized data across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

Baseline CNN Precision 63.05% 62.51% 62.33%
With Synthesized Recall 62.75% 62.17% 61.85%

Samples (TFM) [29] F1 Score 62.03% 61.82% 61.39%

Baseline CNN Precision 63.38% 62.54% 62.13%
With Synthesized Recall 62.79% 62.16% 61.71%

Samples (SB) F1 Score 62.12% 61.73% 61.01%

Baseline CNN Precision 63.37% 63.02% 62.35%
With Synthesized Recall 63.13% 62.80% 62.10%

Samples (RG) F1 Score 62.24% 62.08% 61.36%
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Table 4. Cont.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

Baseline CNN Precision 61.83% N.A. * N.A. *
With Synthesized Recall 61.58% N.A. * N.A. *

Samples (TD) F1 Score 60.59% N.A. * N.A. *

Baseline CNN Precision 61.97% N.A. * N.A. *
With Synthesized Recall 61.79% N.A. * N.A. *

Samples (BG) F1 Score 60.84% N.A. * N.A. *

Baseline CNN Precision 61.91% 62.40% 61.62%
With Synthesized Recall 61.61% 62.02% 61.41%

Samples (DeepSMOTE) [33] F1 Score 60.70% 61.47% 60.48%

Bold results indicate statistical significant improvements over the DL Baseline. * Experiment was not conducted
for this dataset.

Table 5. Precision, Recall, and F1 score of methodologies with segment-level architectures across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

ShortChunk CNN [23]
Precision 64.66% 64.07% 60.23%

Recall 61.48% 62.13% 59.19%
F1 Score 60.61% 61.84% 57.07%

Sample CNN [9]
Precision 62.64% 65.17% 62.43%

Recall 61.26% 62.62% 56.70%
F1 Score 60.92% 60.78% 54.46%

As for embedding-based methodologies, we were not able to replicate the results
presented for the OpenL3 embeddings on Original-4QAED, reaching, at most, a 55.70% F1
score against the reported value of 72%, which may be due to the unclear data splitting
(apparently, the authors followed 80/10/10 train–validation–test data splitting instead
of 10-fold cross-validation). Moreover, the parameters disclosed in the original approach
lacked mention of the parameters for creating the RF classifier, so it was understood as
using the default parameters from the scikit-learn implementation. At the same time,
cross-validation was another point not made clear, for which we applied the usual method
for consistency matters. We also observed that the autoencoder embeddings performed
consistently better on New-4QAED when compared with OpenL3 embeddings, which may
indicate that these are not the best suited for MER.

Table 6. Precision, Recall, and F1 score of methodologies with embedded data representations
across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

OpenL3 Embeddings [13]
Precision 55.67% 53.92% 53.03%

Recall 56.75% 54.49% 53.18%
F1 Score 55.70% 53.62% 52.85%

Autoencoder Embeddings
Precision 50.63% 53.78% 53.56%

Recall 50.40% 55.45% 54.76%
F1 Score 50.18% 53.56% 53.69%

The poor results of the autoencoder embeddings were also reflected in the DeepSMOTE-
based augmentation, with no significant improvement over the DL baseline. The lack of
improvement may be attributed to the high dimensional embedding space, as sampling
from this space provides little variability in comparison with the original samples. Another
possibility is the distortion of important regions in the Mel-spectrogram representations,
which make it difficult for the network to classify the synthesized sample. Reducing the
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input data size, e.g., using the segments of the full samples, should decrease the embedding
space dimension and produce more relevant synthesized samples.

Table 7. Precision, Recall, and F1 score of methodologies leveraging knowledge transfer across datasets.

Methodology Metrics Original-4QAED New-4QAED C New-4QAED B

CNN Precision 51.95% 51.81% 51.56%
Pre-Trained On Artist Recall 53.93% 53.29% 52.43%

Classification Task F1 Score 50.85% 50.27% 50.22%

CRNN Precision 51.93% 52.97% 52.16%
Pre-Trained On Recall 51.71% 53.72% 52.50%

MagnaTagATune F1 Score 50.21% 51.70% 51.44%

CRNN Precision 49.98% N.A. * N.A. *
Pre-Trained On Recall 48.07% N.A. * N.A. *
MGT-Jamendo F1 Score 47.94% N.A. * N.A. *

CRNN Precision 47.50% N.A. * N.A. *
Pre-Trained On Recall 46.18% N.A. * N.A. *

MSD Subset F1 Score 45.84% N.A. * N.A. *

* Experiment was not conducted for this dataset.

6. Conclusions and Future Directions

In this study, the performance results of different classical ML and DL methodologies
were evaluated on differently sized datasets to assess the impact of data quantity for various
approaches, with a greater focus on the latter to deal with the existing semantic gap found
in the former approaches. Various routes have been explored, including improvements
to previously developed architectures and exploring segment-level ones, applying data
augmentation to increase the available training data, performing knowledge transfer for
leveraging information from other datasets and/or domains, and using different data
representations as input.

From the evaluated methodologies, the proposed Hybrid Augmented, an ensemble of
both a CNN trained with synthesized samples in addition to the original ones, and DNN using
Mel-spectrogram representations and previously extracted features from each song as input,
achieved the best result overall of an 80.20% F1 score on the New-4QAED balanced dataset.
Another significant improvement was obtained by applying the CRNN on the increased sized
New-4QAED datasets, surpassing the DL baseline by approximately 2% on the complete set,
and the improvements observed when applying classical data augmentation.

The comparison between the various methodologies has also highlighted the perfor-
mance improvement provided by classical audio augmentation techniques in addition to
the already discussed architectural improvements. The same cannot be said regarding
segment-level architectures, knowledge transfer from related tasks, and embedding-based
input representations, although some of these may be improved as already discussed in
the previous section. It was also evident from the obtained results that dataset size is
more impactful than class balance for classification performance in most cases, which we
can observe in the CRNN experiment for instance, where the New-4QAED complete set
outperforms the balanced set by around a 1.5% F1 score. Moreover, this is more noticeable
in the segment-level architectures experiments, where the complete set outperforms the
balanced set by 4%.

The results indicate that research should be pursued to develop novel classical features
and improve DL architectures for further performance improvement. Moreover, data
augmentation research specifically for MER appears to be a promising route to fully exploit
DL models’ abilities to extract relevant features automatically. With increasing training
data, future DL architectures should incorporate an RNN portion to extract time-domain-
specific features. To conclude, various spectral representations as inputs are also an exciting
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research route as found from early experimental efforts, but it is necessary to address the
unstable nature of such approaches first.
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