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Abstract
In this note, we prove that

(
xn

1 − e−x

)(n)

> 0

for all x ∈ (log 2,∞) and n ∈ N. This result improves a theorem of Al-Musallam and
Bustoz (Ramanujan J 11:399–402, 2006).

Keywords Completely monotonic function · Digamma function · Bernoulli numbers

Mathematics Subject Classification 33B15 · 11B68

1 Introduction

A function f : (a, b) ⊂ R −→ R is completely monotonic if it is infinitely differen-
tiable and

(−1)n f (n)(x) ≥ 0

for all x ∈ (a, b) and n ∈ N. A function f (−x) is called absolutely monotonic on
(−b,−a) if and only if f (x) is completelymonotonic on (a, b). Absolutelymonotonic
functions were introduced by Bernstein. Bernstein himself, and later Widder indepen-
dently, discovered that a necessary and sufficient condition for f to be completely
monotonic on (0,∞) is that
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f (x) = L(μ)(x) =
∫

e−xt dμ(t),

where μ is a positive measure on [0,∞) and the integral converges for all positive
x . (These and other classical results on absolutely/completely monotonic functions
can be found in [8, Chapter IV] and [3].) As it was remarked in [2], by Bernstein’s
theorem, it is easy to see that the absolute value of the derivatives of digamma function
(the polygamma functions), ψ(n) = (�′/�)(n), are completely monotonic functions
on (0,∞). Indeed,

(−1)n+1ψ(n)(x) = L
(

tn

1 − e−t

)
(x)

for all x ∈ (0,∞) and n ∈ N \ {0}. (The digamma function ψ and its absolute value
are neither completely monotonic on x ∈ (0,∞).) In [4], Clark and Ismail introduced
the functions

Fm(x) = xmψ(x), Gm(x) = −xmψ(x).

These authors proved that F (m+1)
m is completely monotonic on (0,∞) for m ∈

N \ {0} [4, Theorem 1.2] and that G(m)
m is completely monotonic on (0,∞) for

m = 1, 2, . . . , 16 [4, Theorem 1.3]. Afterwards, they wrote “We believe Theorem
1.3 [G(m)

m is completely monotonic on (0,∞)]is true for all m [...]”. However, Alzer,
Berg, and Koumandos [2, Theorem 1.1] proved that there exists an integer m0 such
that for all m ≥ m0, the function G(m)

m is not completely monotonic. From this and
the relation [4, (2.4)]

G(m)
m (x) = L

(
tm

(
tm

1 − e−t

)(m)
)

(x),

it follows that the following conjecture of Clark and Ismail [4, Conjecture 1.4] is false:

Conjecture The inequality

(
xn

1 − e−x

)(n)

> 0 (1)

holds for all x ∈ (0,∞) and n ∈ N.

Since (1) holds for n = 1, 2, . . . , 16, Clark and Ismail proved that G(n)
n is (strictly)

completely monotonic on (0,∞) for these values of n. Regardless of the fact that
the conjecture is not true, the inequality (1) is of interest in its own right. It remains
an open problem to determine the smallest positive number a (respectively, positive
integer n0) such that (1) remains positive for all x ∈ (a,∞) and n ∈ N (respectively,
x ∈ (0,∞) and n > n0 with n ∈ N). This problem was placed in [2, Section 4]. In [1,
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Theorem 2.1],1 Al-Musallam and Bustoz proved that (1) holds for all x ∈ (2 log 2,∞)

and n ∈ N. This was also proved independently in [2, p. 112] using the same idea:
an inequality proved by Szegő [8, Theorem 17a, p. 168]. Our main theorem, which
improves the result in [1], reads as follows:

Theorem The inequality (1) holds for all x ∈ (log 2,∞) and n ∈ N.

As in [1, Theorem 3.1], the next result follows from the theorem above. The details
are left to the reader.

Corollary The inequality

(
xn+α

1 − e−x

)(n)

> 0

holds for all α ∈ (0,∞), x ∈ (log 2,∞), and n ∈ N.

Let us give now an application of our main result.

Example It is easy to obtain from [5, (1), p. 11], for n ∈ N\{0}, the power series
(

xn

1 − e−x

)(n)

= n!
2

+
∞∑
j=2

( j + n − 1)!
( j − 1)!

Bj

j ! x
j−1

valid in the disk |x | < 2π which extends to the nearest singularities x = ±2π i of
x/(ex −1). The coefficients Bj are the Bernoulli numbers. The odd Bernoulli numbers
are all zero after the first, but it is a highly complex task to determine the even Bernoulli
numbers. Let us imagine that we are questioned about the sign of the following sum:

Sn = (n + 0)!
0! 1! B0 + (n + 1)!

1! 2! B2 + (n + 3)!
3! 4! B4 + (n + 5)!

4! 5! B6 + · · ·

= n! +
∞∑
j=1

(2 j + n − 1)!
(2 j − 1)!

B2 j

(2 j)! .

(Recall that B0 = 1.) Note that

(
xn

1 − e−x

)(n)
∣∣∣∣∣
x=1

= Sn − n!
2

.

Since log 2 ≈ 0.693147 < 1 < 2π , our main result gives

Sn >
n!
2

,

1 This paper was submitted on May 21, 2003 and accepted for publication on October 24, 2003. J. Bustoz
passed away on August 13, 2003.
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n ∈ N \ {0}. It is worth pointing out that from the results obtained in [1, 2], it is not
possible to conclude this because 2 log 2 ≈ 1.38629 > 1. Now it only remains to
check that Sn converges, which follows from

lim
j→∞

2 j
√

(2 j + n − 1)!
(2 j − 1)!

|B2 j |
(2 j)! = 1

2π
< 1.

In [2], the relation of the function given in (1) with a function of Hardy and Littlewood
was extensively explored.

2 Proof of the theorem

Set

fn(x) = dn

dxn

(
xn

1 − e−x

)
.

If c > 0 is arbitrary and fixed, the series

1

1 − e−x
=

∞∑
j=0

e− j x

converges uniformly on [c,∞). We then write fn in the form

fn(x) =
∞∑
j=0

dn

dxn

(
e− j x xn

)
.

Recall that [6, (5), p. 188] n!Ln(x) = ex (dn/dxn)
(
e−x xn

)
, Ln being the Laguerre

polynomial of degree n, and so

n!e− j x Ln( j x) = dn

dxn

(
e− j x xn

)
.

Hence,

fn(x) = n!
∞∑
j=0

Ln( j x)e
− j x

on [c,∞). There is a well-known connection between the Laguerre and Hermite
polynomials due to Feldheim [6, (33), p. 195]:

∫ ∞

0
e−t2H2

n (t) cos(21/2y t) dt = √
π2n−1n!Ln(y

2),
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Hn being the Hermite polynomial of degree n. Write

y2 = j x .

From the above expressions, we have

fn(x) = 1√
π 2n−1

∞∑
j=0

∫ ∞

0
g j (t) dt,

where

g j (t) = e−t2e− j x H2
n (t) cos(

√
2 j x t)

for all x ∈ [c,∞). Recall that it it is not true that uniform convergence is sufficient to
allow interchange of the sum and integral when the integral is over an infinite interval.
However, we claim that the function g j is integrable and

∞∑
j=0

∫ ∞

0
|g j (t)| dt < 0,

for all x ∈ [c,∞). (These conditions allow the interchanging of the above sum and
integral, see, for instance, [7, Corollary 17.4.7].) Indeed, since

|g j (t)| < e−t2e− j x H2
n (t),

we see at once that
∫ ∞

0
|g j (t)| dt < e− j x

∫ ∞

0
e−t2H2

n (t) dt

< e− j x
∫ ∞

−∞
e−t2H2

n (t) dt ≤ √
π2nn! e− j c < ∞,

and the integrability of g j is guaranteed. Moreover,

∞∑
j=0

∫ ∞

0
|g j (t)| dt <

√
π 2n n!

∞∑
j=0

e− j x

≤ √
π 2n n! ec

ec − 1
< ∞.

Consequently, we can interchange the sum and integral to obtain

√
π2n−1 fn(x) =

∫ ∞

0
e−t2H2

n (t)
∞∑
j=0

e− j x cos(
√
2 j x t) dt .
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Finally, note that

∞∑
j=0

e− j x cos(
√
2 j x t) > 1 −

∞∑
j=1

e− j x = 1 − 1

ex − 1
= g(x).

Thus g(x) ≥ 0 if and only if x > log 2. This completes the proof.
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