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Editorial on the Research Topic
Hot topic: luminescence in rare earth coordination compounds

Rare-earth coordination compounds exhibit unique spectroscopic properties that
include long emission decay times, high magnetic moments, narrow-bandwidth
emissions, and large pseudo-Stokes shifts (Bünzli, 2015). These qualities underpin a
wide array of photonic and biomedical technologies including light-emitting diodes
[LEDs; (Kido and Okamoto, 2002)], anti-counterfeiting inks (Eliseeva and Bünzli,
2010), and chemical probes for diagnostics and bioimaging (Heffern et al., 2014). The
ability of these metal ions to take part in luminescence resonance energy transfer (Qiu
et al., 2022) and to exhibit photon upconversion (Wen et al., 2018) further expands their
potential applications. Given their unique and fascinating properties, there is intense and
ongoing interest in the fundamental and applied science of rare-earth coordination
compounds and related molecular architectures, including metal-organic frameworks
(Cui et al., 2014), polymer films, gels, hybrid materials (Binnemans, 2009), and
nanomaterials (Wang et al., 2011).

The electronic configuration of rare-earth elements dictates their chemical and
photophysical properties (Bünzli, 2015). Comprised of the lanthanide series, along with
yttrium and scandium, the rare-earth elements are grouped together due to their similar
geochemical properties. However, the only luminescent species are lanthanides with partially
filled 4f orbitals (elements 58–70) from cerium to ytterbium. Lanthanides are predominantly
trivalent (Ln3+) and form cations in solution. The larger radial expansion of the 5s25p6

subshells causes the 4f orbitals to be shielded from the influence of their surroundings.
Consequently, lanthanide coordination is omnidirectional and metal-ligand interactions are
electrostatic.

A rigorous understanding of the physicochemical properties of lanthanides informs
the design of functional coordination compounds. The orbital shielding results in very
weak perturbations of 4f electronic transitions by the ligand field that gives rise to
lanthanides’ characteristically narrow, multi-line absorption and emission spectra. The
4f–4f electronic transitions are electric dipole (ED) forbidden to first order because the
initial and final states belong to the same parity. The types of intraconfigurational 4f–4f
electronic transitions that are allowed to first order are magnetic dipole (MD) or electric
quadrupole (EQ) transitions (Tanner and Duan, 2010). The extinction coefficients (ε) of
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Ln3+ are typically small. This means that even if the compounds
of these ions exhibit large values of intrinsic quantum yield
(Q Ln

Ln), the brightness values (B) remain small (B = ε x Q Ln
Ln).

As a result, various ways to sensitize lanthanides emission are
approached. One of them is the so-called antenna effect. It relies
on the fact that the lanthanide ion is coordinated to organic
ligands that have absorption transitions (e.g. π*← π) with a high
value of the extinction coefficient. After the absorption of
electromagnetic radiation from the range of the ligand
absorption band occurs, intramolecular non-radiative energy
transfer from the ligand to the lanthanide ion takes place.
Ln3+ are characterized by long decay times of the emission, in
the order of micro- and milliseconds.

This Research Topic highlights the science of luminescent
coordination compound design with four different contributions.
The first article included in this Research Topic highlights the
relevance of the structure of lanthanide complexes on
luminescent properties. Luminescent processes based on the
absorption of visible light and emission in the visible/NIR region
are relevant for the development of biosensors for biomedical
applications. Ohmagari et al. describe the syntheses of a highly
planar tetradentate ligand and its corresponding complexes by using
a set of different lanthanide ions. The resulting compounds show
thermosensitive, visible light-excited, dual-color luminescence that
reflects simultaneous ligand phosphorescence and metal f-f
emission. The emission characteristics are a consequence of π-
electronic system coplanarity through H-bonding, and the color
profile of these complexes’ luminescence varies depending on the
coordinated lanthanide ion. These features are discussed in terms of
structural and photophysical properties.

The dinuclear lanthanide compounds containing
hexafluoroacetylacetonate and pyrene-based phosphine oxide,
an organic-based luminophore, are the core of the research
paper by Nakai et al. With this complex, lanthanide
coordination sets the geometry of two pyrene moieties into a
stacked configuration that exhibits excimer emission. The
identity of the coordinated lanthanide, Eu(III), or Gd(III)
affects pyrene stacking geometry and emission spectra.
Moreover, the compounds with coordinated Eu(III) provide a
thermosensitive ratiometric luminescence based on 4f*→4f and
excimer emission. The use of lanthanide coordination to control
aggregation structure opens up new avenues in the design of
luminescent materials.

Dinga et al. describe the development and characterization of
spherical polymer particles (polymer beads) that contain Eu(III)
complexes. Polymer particles with Eu(III) or other luminescent
lanthanides have found widespread use as highly detectable labels
for a variety of bioanalytical assays and point-of-care diagnostics.
As discussed in the study, polymer beads incorporate up to
hundreds of individual coordinated Eu(III) compounds, and
their luminescence and biocompatibility require careful
selection of coordinating ligands and appropriate surface

functionalization. The authors analyze the luminescence
properties of pure Eu(III) complexes with trifluoro-substituted,
aromatic β-diketones, and TOPO (trioctylphosphinoxide) co-
ligands as well as the complexes incorporated into polymer
beads. Emission quantum yields of the obtained polymer beads
for all coordination compounds are higher than 80%. The surface
of the polymer bead with the best properties was functionalized
and model proteins were coupled (Avidine, Neutravidine). The
core-shell beads were tested for ELISA-like analyses and for lateral
flow immunoassays, and high-end commercial beads were
compared as control. It has been shown that obtained beads,
taking advantage of large amplification factors and ultimate
brightnesses, enable determinations in the attomolar regime and
that they are superior to commercial materials.

The last contribution to this topical issue is a review of the
thermal and photophysical properties of Eu3+ and Tb3+

coordination compounds with phenyl-containing
carbacylamidophosphates. Materials containing Eu3+ and Tb3+

are important for red and green emissions, and their
coordination compounds with β-diketones are the most
studied. However, β-diketones are not good Tb3+ emission
sensitizers. Hence, there is a search for sensitizers among
other groups of ligands, and one of them is
carboxamidophosphates. Kariaka et al. provide an illuminating
discussion of photophysics and energy transfer processes in
lanthanide light-converting molecular devices. A variety of
carbacylamidophosphate coordination compounds were
evaluated for their photophysical properties and the results
were compared with those of β-diketonates.
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