A Line Thicker than the Michael Line

F. J. Craveiro de Carvalho and Bernd Wegner

The Michael line was introduced in [3] in connection with the proof that the product of a normal space and a metric space need not be normal. Topological structures of the same type were considered in [4]. Our interest here is on some coarser topologies on the line, their connected components and the topology of their orbit space under their group of self-homeomorphisms.

1. The Finer Topology \mathcal{T}_Y

Let (X, \mathcal{T}) be a topological space and $(Y, \mathcal{T}|Y)$ be a subspace of X. We denote by \mathcal{T}_Y the topology on X obtained by the union of \mathcal{T} with $\mathcal{T}|Y$, i.e., a basis of \mathcal{T}_Y is given by the open sets in \mathcal{T} and their restrictions to Y.

Then $\mathcal{T}_Y = \mathcal{T}$ if and only if Y is open with respect to \mathcal{T} . Also the topological structure of Y as a subspace of (X, \mathcal{T}) is the same as the topological structure of Y as a subspace of (X, \mathcal{T}_Y) . Moreover if $f: X \to X$ is a homeomorphism with respect to \mathcal{T} such that f(Y) = Y then f is also a homeomorphism with repect to \mathcal{T}_Y .

In what follows X will be the standard real line R and for the final conclusions Y will consist of the irrational numbers or the rational numbers Q. Reference [5] is meant for the topological background.

2. Connectedness

Definition: $Y \subset R$, $Y \neq \emptyset$, is called an *NLE-set* (set without local extrema) if there is no open interval $(a,b) \subset R$ such that $Y \cap (a,b)$ has a minimum or a maximum.

Remark: Examples for NLE-sets are intersections of the irrationals or rationals with open intervals or more generally dense subsets of open subsets (in \mathcal{T}). But NLE-sets non-necessarily have to be of that type.

Proposition 1: Let $Y \subset R$ be a non-empty set. Then we have: The connected sets with respect to \mathcal{T}_Y are exactly the intervals $\Leftrightarrow Y$ is an NLE-set.

Proof: \Rightarrow : Assume that Y is not an NLE-set. Then there is an open interval (a,b) such that (w.l.o.g.) Y has a maximum m in (a,b). Hence $(a,b) = (a,m] \cup (m,b)$, the union being disjoint, $(a,m] = (a,m) \cup (Y \cap (a,b))$ is nonempty and in \mathcal{T}_Y , and (m,b) also is nonempty and in \mathcal{T}_Y . Hence (a,b) is not connected with respect to \mathcal{T}_Y .

 \Leftarrow : $\mathcal{T}_Y \supset \mathcal{T}$ implies that a connected set with respect to \mathcal{T}_Y necessarily has to be in interval. We first show that the bounded closed intervals are connected with respect to \mathcal{T}_Y :

Assume that there are sets $O, \tilde{O} \in \mathcal{T}_Y$ and an interval I = [c, d] such that $\emptyset \neq O \cap I$, $\emptyset \neq \tilde{O} \cap I$, $I \subset O \cup \tilde{O}$, $I \cap O \cap \tilde{O} = \emptyset$. Assume further w.l.o.g. $c \in O$. We consider two cases:

 α) There is a maximal half-open interval $[c,\xi) \subset O \cap I$. Clearly $\xi \neq d$ because otherwise $\tilde{O} \cap I \neq \emptyset$ implies $d \in \tilde{O}$, and then $\tilde{O} \in \mathcal{T}_Y$ and the NLE-property of Y imply $\tilde{O} \cap O \cap I \neq \emptyset$, a contradiction. In the same way we conclude $\xi \notin \tilde{O}$. Hence $\xi \in O$. But then ξ has to be in Y, because otherwise a neighbourhood of the type $(\xi - \eta, \xi + \eta)$ has to be in O for some $\eta > 0$, which contradicts to the maximality of ξ .

Since $\xi \in Y \cap O$ and $\xi < d$ we find a $\delta > 0$ such that $[\xi, \xi + \delta) \cap Y \subset O \cap I$. Then the NLE-property of Y implies that there exists a $\xi_1 \in Y$, $\xi < \xi_1 < \xi + \delta$. Hence $\xi_1 \in O \cap I$. For the interval $[c, \xi_1) \subset I$ we consider the disjoint partition $([c, \xi_1) \cap O) \cup ([c, \xi_1) \cap \tilde{O})$. By construction $[c, \xi_1) \cap Y \subset [c, \xi_1) \cap O$ and $[c, \xi_1) \cap \tilde{O} = [\xi, \xi_1) \cap \tilde{O} \subset R \setminus Y$. For $x \in [\xi, \xi_1) \cap \tilde{O} = (\xi, \xi_1) \cap \tilde{O} \neq \emptyset$ we consider χ maximal such that $[x, \chi) \subset (\xi, \xi_1) \cap \tilde{O}$. This exists because $x \notin Y$. Applying the same argument like in the first paragraph, only interchanging the roles of O and \tilde{O} we see that $\chi \notin O$. Hence $\chi < \xi_1$ and as above it has to be in $Y \cap \tilde{O}$, giving a contradiction to $Y \cap \tilde{O} \cap [\xi, \xi_1) = \emptyset$.

 β) If there is no interval of the type $[c, \xi)$ in $O \cap I$, then $c \in Y$. Applying the same argument as in the second half of case α) we shall get a contradiction again. Hence the partition of I assumed above is not possible showing that [c, d] is connected with respect to \mathcal{T}_Y .

Since every other type of interval can be obtained as a monotonically increasing union of closed intervals, general results for connected sets imply that all intervals are connected with respect to \mathcal{T}_Y .

Proposition 2: Let, for $Y \subset R$, $x \in Y$ be a point such that $[x, x + \varepsilon) \setminus Y \neq \emptyset$ and $(x - \varepsilon, x] \setminus Y \neq \emptyset$ for all $\varepsilon > 0$. Then $\{x\}$ is the path component of x with respect to \mathcal{T}_Y .

Proof: Let C_x be the path component of $x, y \in C_x$ and $w : [0,1] \to R$ a path from x to y. Let $A := w^{-1}(x)$. Then $A \neq \emptyset$ because $0 \in A$. For $t \in A$ and $\varepsilon > 0$ $w^{-1}((x + \varepsilon, x - \varepsilon) \cap Y)$ contains an interval $K := (t - \eta, t + \eta) \cap [0, 1]$ for a suitable $\eta > 0$, because w is continous and $(x + \varepsilon, x - \varepsilon) \cap Y$ is a neighborhood of x with respect to \mathcal{T}_Y . By continuity w(K) has to be an interval. Obviously $x \in w(K) \subset (x + \varepsilon, x - \varepsilon) \cap Y$. From the assumption on the location of x in Y we get that $w(K) = \{x\}$ and hence X is open in X clearly X is closed in X, which implies X is an expression of X is closed in X, which implies X is an expression of X is closed in X.

Corollary 1: Let Q be the set of rationals. The \mathcal{T}_Q and $\mathcal{T}_{R\setminus Q}$ are totally path disconnected topologies on R which have all intervals as connected sets.

Proof: The statement on the connected sets is a consequence from Proposition 1. Proposition 2 implies that for \mathcal{T}_Q the rationals consist of 1-point path components. But then also the irrationals give 1-point path components only. The same applies to $\mathcal{T}_{R\setminus Q}$.

3. Self-homeomorphisms and Orbit Spaces

Proposition 3: Let Y be an NLE-set in R and $x \in Y$ such that $(x, x + \varepsilon) \cap (R \setminus Y) \neq \emptyset$ and $(x - \varepsilon, x) \cap (R \setminus Y) \neq \emptyset$ for all $\varepsilon > 0$. Let $f : R \to R$ be a continuous self-map with respect to \mathcal{T}_Y . Then for any $y \in f^{-1}(x) \cap (R \setminus Y)$ there is an $\eta > 0$ such that $f|(y - \eta, y + \eta)$ is constant.

Proof: Let $\varepsilon > 0$. Then $V_{\varepsilon} := (x - \varepsilon, x + \varepsilon) \cap Y \in \mathcal{T}_Y$ and $\{x\}$ is the component of x in V_{ε} . Let $y \in f^{-1}(x) \cap (R \setminus Y)$. By continuity of f there is an $O \in \mathcal{T}_Y$ such that $f(O) \subset V_{\varepsilon}$ and $y \in O$. Hence there are $O_1, O_2 \in \mathcal{T}$ such that $y \in O_1 \cup (O_2 \cap Y) \subset O$. Since y is not in Y we conclude $O_1 \neq \emptyset$. Hence $y \in O_1 \subset O$. Hence there is an $\eta > 0$ such that $(y - \eta, y + \eta) \subset O$ which implies with f(y) = x and the connectedness argument above $f((y - \eta, y + \eta)) = \{x\}$.

Corollary 2: Let Y be an NLE-set in R with empty interior. Then every self-homeomorphism of R with respect to \mathcal{T}_Y is monotonically increasing or decreasing and maps Y to Y and $R \setminus Y$ to $R \setminus Y$.

Proof: Since the interior of Y is empty the assumptions of Proposition 3 are satisfied, which implies the invariance of Y and its complement. The monotonicity is a consequence of Proposition 1. \bowtie

Let us denote by $Hom(R, \mathcal{T}_Y)$ the group of self-homeomorphisms of (R, \mathcal{T}_Y) .

Proposition 4: The quotient $(R, \mathcal{T}_{(R\setminus Q)})/Hom(R, \mathcal{T}_{(R\setminus Q)})$ is the Sierpinski space.

Proof: We prove that there are just two orbits, one consisting of the rational numbers, which are not open in $\mathcal{T}_{(R\setminus Q)}$, and the other one formed by the irrational numbers, which are open in this topology.

If $q_1, q_2 \in Q$ it is clear that there is a homeomorphism $f: R \to R$ with respect to $\mathcal{T}_{(R \setminus Q)}$ such that $f(q_1) = q_2$. In fact the translation of R which maps q_1 to q_2 will do.

If $q \in Q$ and $i \in R \setminus Q$ then there is not a homeomorphism $f : R_I \to R_I$ such that f(q) = i. This follows from Corollary 2.

It remains to show that given $i_1, i_2 \in R \setminus Q$ there is a homeomorphism $f: R \to R$ with respect to $\mathcal{T}_{(R \setminus Q)}$ such that $f(i_1) = i_2$. We will construct a homeomorphism $f: R \to R$ with respect to \mathcal{T} with this property such that f(Q) = Q.

Let $(x_i)_{i\in N}$ (resp. $(y_i)_{i\in N}$) be an increasing (resp. decreasing) sequence of rational numbers converging from below (resp. above) to i_1 . Similarly let now $(z_i)_{i\in N}$, $(w_i)_{i\in N}$ be analogous sequences but converging to i_2 this time. We define $f: R \to R$ by

$$f(x) = \begin{cases} i_2, & \text{if } x = i_1 \\ z_1 - x_1 + x, & \text{if } x \in (-\infty, x_1] \end{cases}$$

$$\frac{z_{i+1} - z_i}{x_{i+1} - x_i} (x - x_i) + z_i, & \text{if } x \in [x_i, x_{i+1}], i \in N$$

$$\frac{-w_{i+1} + w_i}{-y_{i+1} + y_i} (x - y_{i+1}) + w_{i+1}, & \text{if } x \in [y_{i+1}, y_i], i \in N$$

$$w_1 - y_1 + x, & \text{if } x \in [y_1, +\infty) \end{cases}$$

Then f is an increasing homeomorphism with the required properties. Obviously we could have defined f in such a way that it would be decreasing.

 \bowtie

Similarly $(R, \mathcal{T}_Q)/Hom(R, \mathcal{T}_Q)$ is the Sierpinski space as well.

Examples: With similar methods some other orbit spaces could be computed:

a) Let A_+ (resp. A_-) be the positive (resp. negative) rationals, B_+ (resp. B_-) be the positive (resp. negative) irrationals, and $C := \{0\}$. Then, taking $Y := A_- \cup B_+$ we get as a basis for the quotient topology of $(R, \mathcal{T}_Y)/Hom(R, \mathcal{T}_Y)$

$$\{\emptyset, \{A_-\}, \{A_-, B_-\}, \{B_+\}, \{A_+, B_+\}, \{A_-, A_+, B_-, B_+, C\}\},\$$

i.e. we have two Sierpinski 3-spaces matched at C, where by a Sierpinski 3-space we mean a space based on a set $\{a, b, c\}$ for which the non-trivial open sets are $\{a\}, \{a, b\}$.

b) With the notations above take $Y := A_- \cup B_+ \cup C$. Then we get as a basis for the quotient topology of $(R, \mathcal{T}_Y)/Hom(R, \mathcal{T}_Y)$

$$\{\emptyset, \{A_-\}, \{A_-, B_-\}, \{B_+\}, \{A_+, B_+\}, \{A_-, B_+, C\}\}$$

which contains two three point locally Sierpinski spaces (see below, $\S 5$) matched at C again.

c) With the notations above take $Y := A_{-}$ and set $D := (0, \infty)$. Then we get as a basis for the quotient topology of $(R, \mathcal{T}_Y)/Hom(R, \mathcal{T}_Y)$

$$\{\emptyset, \{A_-\}, \{A_-, B_-\}, \{D\}, \{A_-, B_-, C, D\}\}$$

matching a Sierpinski space and a Sierpinski 3-space at C.

d) Extend the Cantor set by reflections and similarities to all of R, leading to a set of the same type with the analogous self-similarities like they are exhibited by the original candidate in [0,1]. This set C contains two types of points. The first type consists of local extrema in C which are endpoints of open intervals in the complement of C. Call the set of these points C_0 . Furthermore there is a second type of points which are not local extrema. Call this non-empty set $C_1 = C \setminus C_0$. There are self-similarities of C mapping a given point of C_0 to another given point of C_0 . The same applies to C_1 . Calling $D := R \setminus C$ and setting $Y := C_1$ we get as a basis for the quotient topology of $(R, \mathcal{T}_Y)/Hom(R, \mathcal{T}_Y)$

$$\{\emptyset, \{C_1\}, \{D\}, \{C_1, C_0, D\}\}.$$

4. The Michael Line

This section is introduced just for the sake of completeness.

The Michael line (R, \mathcal{T}_M) is the topological space with R as base set and the unions $A \cup A'$, with A open in R and A' a subset of the irrational numbers, as open sets.

It follows that if $f: R \to R$ is an injective, continuous map with respect to \mathcal{T}_M then $f(Q) \subset Q$. Also if $f: R \to R$ is continuous with respect to \mathcal{T} and $f(Q) \subset Q$ then $f: R \to R$ is also continuous with respect to \mathcal{T}_M .

Proposition 5: $(R, \mathcal{T}_M)/Hom(R, \mathcal{T}_M)$ is the Sierpinski space.

Proof: By one of the remarks above there is no homeomorphism mapping a rational to an irrational or vice versa.

If $i_1, i_2, \in R \setminus Q$ then we can take as homeomorphism with respect to \mathcal{T}_M the map $f: R \to R$ given by $f(i_1) = i_2, f(i_2) = i_1, f(x) = x$, for $x \neq i_1, i_2$. If $q_1, q_2, \in Q$ take the translation of R that maps q_1 to q_2 .

If we replace $R \setminus Q$ by Q in the definition of the Michael line then a statement similar to the one we have just proved still holds. A map like the one in the proof of Proposition 4 could be used to establish it.

5. Locally Sierpinski Spaces

A topological space X is locally Sierpinski (l. S. in short) if, for $x \in X$, there is an open neighbourhood homeomorphic to the Sierpinski space [1].

Examples of connected 1. S. spaces are obtained as follows. Let X be a set with, at least, two points. Fix $p \in X$ and define a set to be open if it is either the empty set or contains p.

L. S. spaces can be characterized as locally (path-)connected spaces whose (path-)components are subspaces of the same type as X [2].

A more general question than the one we answered above is to know which l. S. spaces can be obtained as the quotient of any of the mentioned spaces by a group of homeomorphisms. We do not have the answer but we point out that l. S. spaces other than the Sierpinski space can be obtained. For example, if G is the group of homeomorphisms of $f: R \to R$ with respect to \mathcal{T}_Q such that f(Z) = Z (resp. f(Z) = Z and $f(Z + \frac{1}{2}) = Z + \frac{1}{2}$) then the orbit space is an l. S. space with 3 (resp. 4) points.

This question for the Sorgenfrey line was dealt with in [2].

References

- [1] A. M. d'Azevedo Breda, F. J. Craveiro de Carvalho, Bernd Wegner, *Products, covering spaces and group actions for locally Sierpinski spaces*, Rendiconti del Seminario Matematico di Messina, Seie II, 5 (1998) 127-132.
- [2] F. J. Craveiro de Carvalho, Locally Sierpinski quotients of the Sorgenfrey line, Pré-Publicações D. M. U. C., #00-09.
- [3] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963) 375-376.
- [4] Kiiti Morita, Results related to the Michael line, Topology and its Applications 82 (1998) 359-362.
- [5] S. Willard, General Topology, Addison-Wesley (1970).

Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, PORTUGAL. e-mail: fjcc@mat.uc.pt

Mathematisches Institut, TU Berlin, 10623 Berlin, GERMANY. *e-mail*: wegner@math.tu-berlin.de