A Line Thicker than the Michael Line

F. J. Craveiro de Carvalho and Bernd Wegner

The Michael line was introduced in [3] in connection with the proof that
the product of a normal space and a metric space need not be normal. Topo-
logical structures of the same type were considered in [4]. Our interest here
is on some coarser topologies on the line, their connected components and
the topology of their orbit space under their group of self-homeomorphisms.

1. The Finer Topology Ty

Let (X,7) be a topological space and (Y,7]Y) be a subspace of X. We
denote by Ty the topology on X obtained by the union of 7 with 7Y, i.e.,
a basis of 7Ty is given by the open sets in 7 and their restrictions to Y.

Then 7y = T if and only if Y is open with respect to 7. Also the
topological structure of Y as a subspace of (X, T) is the same as the topo-
logical structure of Y as a subspace of (X, 7y). Moreover if f : X — X is
a homeomorphism with respect to 7 such that f(Y) =Y then f is also a
homeomorphism with repect to 7Ty

In what follows X will be the standard real line R and for the final
conclusions Y will consist of the irrational numbers or the rational numbers
Q). Reference [5] is meant for the topological background.

2. Connectedness

Definition: Y C R, Y # (), is called an NLE-set (set without local extrema)
if there is no open interval (a,b) C R such that Y N (a,b) has a minimum or
a maximum.

Remark: Examples for NLE-sets are intersections of the irrationals or ra-
tionals with open intervals or more generally dense subsets of open subsets
(in 7). But NLE-sets non-necessarily have to be of that type.

Proposition 1: Let Y C R be a non-empty set. Then we have: The
connected sets with respect to 7y are exactly the intervals < Y is an NLE-
set.



Proof: =: Assume that Y is not an NLE-set. Then there is an open interval
(a,b) such that (w.l.o.g.) Y has a maximum m in (a,b). Hence (a,b) =
(a,m] U (m,b), the union being disjoint, (a,m] = (a,m) U (Y N (a,b)) is
nonempty and in Ty, and (m,b) also is nonempty and in 7y. Hence (a,b) is
not connected with respect to Ty-.

<: Ty D T implies that a connected set with respect to 7y necessarily
has to be in interval. We first show that the bounded closed intervals are
connected with respect to 7y

Assume that there are sets O, O € Ty and an interval I = [c, d] such that
0AO0NI,O+0NI,ICOUO, INONO = 0. Assume further w.l.o.g.
¢ € O. We consider two cases:

«) There is a maximal half-open interval [¢,&) C O N I. Clearly £ # d
because otherwise O N I #  implies d € O, and then O € Ty and the NLE-
property of Y imply O N O NI # ®, a contradiction. In the same way we
conclude € ¢ O. Hence € € O. But then ¢ has to be in Y, because otherwise
a neighbourhood of the type (£ —n,& + 1) has to be in O for some n > 0,
which contradicts to the maximality of &.

Since £ € YNO and £ < d we find a § > 0 such that [£,£+5)NY C ONI.
Then the NLE-property of Y implies that there existsa & € Y, € < & < £+90.
Hence & € ONI. For the interval [¢, ;) C I we consider the disjoint partition
([e,&) N O) U ([e,61) N 0). By construction [c, &) NY C [¢&) NO and
[,&) N0 =1[&)N0 CR\Y. Forz e [£,6)N0 =(£,6)N0 # 0 we
consider y maximal such that [z, x) C (§,&)NO. This exists because z ¢ Y.
Applying the same argument like in the first paragraph, only interchanging
the roles of O and O we see that y ¢ O. Hence x < & and as above it has
to be in Y N O, giving a contradiction to Y NO N [€, &) =

) If there is no interval of the type [¢, &) in O NI, then c €Y. Applying
the same argument as in the second half of case o) we shall get a contradiction
again. Hence the partition of I assumed above is not possible showing that
[¢, d] is connected with respect to Ty .

Since every other type of interval can be obtained as a monotonically
increasing union of closed intervals, general results for connected sets imply
that all intervals are connected with respect to 7Ty D

Proposition 2: Let, for Y C R, z € Y be a point such that [x,x+&)\Y # ()
and (r —e,z]\'Y # 0 for all ¢ > 0. Then {z} is the path component of =
with respect to Ty.



Proof: Let C, be the path component of z, y € C, and w : [0,1] — R a path
from z to y. Let A := w™'(x). Then A # () because 0 € A. For t € A and
e>0 wl((z+e,x—¢)NY) contains an interval K := (t —n,t +n) N[0,1]
for a suitable n > 0, because w is continous and (z + ¢,z —¢)NY is a
neighborhood of = with respect to 7y. By continuity w(K) has to be an
interval. Obviously z € w(K) C (z +¢,2 —¢)NY. From the assumption on
the location of z in Y we get that w(K) = {x} and hence A is open in [0,1].
Clearly A is closed in [0, 1], which implies A = [0, 1] and thus z = y. >

Corollary 1: Let @ be the set of rationals. The 7o and Tg\o are totally
path disconnected topologies on R which have all intervals as connected sets.

Proof: The statement on the connected sets is a consequence from Propo-
sition 1. Proposition 2 implies that for 7 the rationals consist of 1-point
path components. But then also the irrationals give 1-point path components
only. The same applies to Tr\q. D1

3. Self-homeomorphisms and Orbit Spaces

Proposition 3: Let Y be an NLE-set in R and = € Y such that (z,2+¢)N
(R\Y)#0and (z —e,2) N(R\Y)# D foralle >0. Let f: R— Rbea
continuous self-map with respect to 7y-. Then for any y € f~'(z) N (R\Y)
there is an n > 0 such that f|(y —n,y + n) is constant.

Proof: Let ¢ > 0. Then V. := (x — e,z +¢)NY € Ty and {z} is the
component of z in V.. Let y € f~'(z) N (R\Y). By continuity of f there is
an O € Ty such that f(O) C V. and y € O. Hence there are O;,0 € T such
that y € O; U (0O,NY) C O. Since y is not in Y we conclude O; # (). Hence
y € Op C O. Hence there is an n > 0 such that (y—n, y+n) C O which implies
with f(y) = x and the connectedness argument above f((y—n,y+n)) = {z}.

D]

Corollary 2: Let Y be an NLE-set in R with empty interior. Then every
self-homeomorphism of R with respect to 7y is monotonically increasing or
decreasing and maps Y to Y and R\Y to R\ Y.

Proof: Since the interior of Y is empty the assumptions of Proposition 3
are satisfied, which implies the invariance of Y and its complement. The
monotonicity is a consequence of Proposition 1. D
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Let us denote by Hom(R, Ty) the group of self-homeomorphisms of (R, Ty).

Proposition 4: The quotient (R, Tr\g))/Hom(R, Tr\q)) is the Sierpinski
space.

Proof: We prove that there are just two orbits, one consisting of the rational
numbers, which are not open in 7(g\q), and the other one formed by the
irrational numbers, which are open in this topology.

If 1,92 € Q it is clear that there is a homeomorphism f : R — R with
respect to T(r\g) such that f(¢;) = ¢2. In fact the translation of R which
maps ¢; to ¢» will do.

If g € @ and i€ R\ Q then there is not a homeomorphism f : Ry — Ry
such that f(q) =i. This follows from Corollary 2.

It remains to show that given iy,is € R\ @ there is a homeomorphism
f+ R — R with respect to T(g\g) such that f(i;) = i. We will construct a
homeomorphism f : R — R with respect to 7 with this property such that
f(Q)=Q.

Let (x;)ien (resp. (¥i)ien) be an increasing (resp. decreasing) sequence
of rational numbers converging from below (resp. above) to i;. Similarly let
now (z;)ien, (w;)ieny be analogous sequences but converging to iy this time.

We define f: R — R by

( iQ’ lfl‘ = il
21_1‘14_1.7 lffIIE(—OO,{III]

f(x) = ﬁ (l‘ o ZCZ) + Zi ifze [l'i,$i+1],i €N
T;E—is (x — yiy1) + wir1, ifx € yin, vy, i €N

L w1 — Y1+ 7, if z € [y1, +00)

Then f is an increasing homeomorphism with the required properties. Ob-
viously we could have defined f in such a way that it would be decreasing.
D1

Similarly (R, Tg)/Hom(R,Tg) is the Sierpinski space as well.

Examples: With similar methods some other orbit spaces could be com-
puted:



a) Let A, (resp. A_) be the positive (resp. negative) rationals, B, (resp.
B_) be the positive (resp. negative) irrationals, and C' := {0}. Then, taking
Y := A_UB, we get as a basis for the quotient topology of (R, Ty )/ Hom(R, Ty )

{Q)a {A—}a {A—v B—}a {B-i-}a {A-I-a B+}v {A—a A-I-a B—a B-l—a C}}a

i.e. we have two Sierpinski 3-spaces matched at C', where by a Sierpinski
3-space we mean a space based on a set {a,b,c} for which the non-trivial
open sets are {a}, {a,b}.

b) With the notations above take Y := A_U B, UC. Then we get as a basis
for the quotient topology of (R, Ty)/Hom(R, Ty)

{@, {A*}a {A,, B*}a {B+}7 {A+a B+}a {Aﬂ B+a C}}

which contains two three point locally Sierpinski spaces (see below, §5)
matched at C' again.

c) With the notations above take Y := A_ and set D := (0,00). Then we
get as a basis for the quotient topology of (R, 7y)/Hom/(R, Ty)

{0,{4-},{A-,B_},{D},{A_, B_,C, D}}

matching a Sierpinski space and a Sierpinski 3-space at C.

d) Extend the Cantor set by reflections and similarities to all of R, leading
to a set of the same type with the analogous self-similarities like they are
exhibited by the original candidate in [0,1]. This set C' contains two types
of points. The first type consists of local extrema in C' which are endpoints
of open intervals in the complement of C'. Call the set of these points Cj.
Furthermore there is a second type of points which are not local extrema.
Call this non-empty set C; = C'\ Cy. There are self-similarities of C' mapping
a given point of Cy to another given point of Cy. The same applies to C}.
Calling D := R\ C and setting Y := C; we get as a basis for the quotient
topology of (R, Ty)/Hom(R, Ty)

{(ba {Cl}a {D}a {Cla OU; D}}

4. The Michael Line

This section is introduced just for the sake of completeness.
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The Michael line (R, Tyr) is the topological space with R as base set and
the unions AUA’, with A open in R and A’ a subset of the irrational numbers,
as open sets.

It follows that if f: R — R is an injective, continuous map with respect
to Ty then f(Q) C Q. Also if f: R — R is continuous with respect to 7
and f(Q) C Q then f: R — R is also continuous with respect to T;.

Proposition 5: (R, Ty;)/Hom(R, Ty) is the Sierpinski space.

Proof: By one of the remarks above there is no homeomorphism mapping a
rational to an irrational or vice versa.
If i1,42, € R\ @ then we can take as homeomorphism with respect to Ty,
the map f: R — R given by f(i1) = i, f(iz) = i1, f(z) = =, for x # iy, is.
If 1, q2, € @ take the translation of R that maps ¢; to ¢». D

If we replace R\ @ by @ in the definition of the Michael line then a statement
similar to the one we have just proved still holds. A map like the one in the
proof of Proposition 4 could be used to establish it.

5. Locally Sierpinski Spaces

A topological space X is locally Sierpinski (1. S. in short) if, for z € X, there
is an open neighbourhood homeomorphic to the Sierpinski space [1].

Examples of connected 1. S. spaces are obtained as follows. Let X be a
set with, at least, two points. Fix p € X and define a set to be open if it is
either the empty set or contains p.

L. S. spaces can be characterized as locally (path-)connected spaces whose
(path-)components are subspaces of the same type as X [2].

A more general question than the one we answered above is to know which
. S. spaces can be obtained as the quotient of any of the mentioned spaces
by a group of homeomorphisms. We do not have the answer but we point
out that 1. S. spaces other than the Sierpinski space can be obtained. For
example, if GG is the group of homeomorphisms of f : R — R with respect to
To such that f(Z) = Z (vesp. f(Z) = Z and f(Z + 3) = Z + 3) then the
orbit space is an 1. S. space with 3 (resp. 4) points.

This question for the Sorgenfrey line was dealt with in [2].
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