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Abstract

We study optimality properties of the smooth function tr
(
Θ−1QΘN − 2MΘ−1

)
, viewed

as a function of Θ, with Θ belonging to certain quadratic matrix Lie groups which are gen-

eralizations of the orthogonal group. Some optimization matrix problems are formulated in

terms of this function. Computational issues based on continuous algorithms are discussed.

Keywords: Lie group, Lie algebra, Riemannian metric, gradient vector field, gradient

flow, complete integrability.

Introduction

The theory of completely integrable Hamiltonian systems has had a great development in recent

years. In [1], Bloch showed that some of those systems are closely related to gradient flows of

smooth functions. In this paper we study optimality properties of the smooth function

tr
(
Θ−1QΘN − 2MΘ−1

)
,

viewed as a function of Θ, with Θ belonging to the Lie group of P−orthogonal matrices G. For

a convenient choice of the matrix P , Cardoso and Silva Leite ([4]) proved that the Lie group of

P−orthogonal matrices is isomorphic to one of the classical Lie groups O(p, q), where p, q ∈ IN0

and p + q = n, or Sp(n, IR) (the symplectic group).

It is well known (see [7]) that, for an appropriate choice of a Riemannian metric on G, the

gradient flow equation of the smooth function η : G −→ IR is the system of ordinary nonlinear
∗Work supported in part by ISR and research network contract FMRXCT-970137.
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differential equations

Θ̇ = ∇η (Θ) . (1)

The gradient flow equation can be viewed, not only, as a great geometric mathematical tool,

but also, as a simulation tool that can be used in engineering to solve some standard problems

on applied mathematics. In fact, there are explicit algebraic methods available to solve various

computational problems that are relatively easy to implement on a digital computer. However,

we present here the continuous time varying system (1), whose limiting solution solve the specific

computational problem. Working with various discretizations of the continuous time system (1),

it opens the possibility of finding new and perhaps faster algorithms to solve a given problem than

a purely algebraic approach would allow.

Actually, the gradient flow equation (1) evolves on the Lie group G and provides a stable

algorithm that converges to an equilibrium point of (1).

For the particular case when P = I, Brockett [2, 3] already proved that the gradient flow can

be used to solve certain computational problems, like diagonalize symmetric matrices, sort lists of

real numbers and solve some linear programming problems. Bloch [1] also showed that the Toda

lattice problem and the total least squares problem could be recast as gradient flows.

An interesting result given here makes contact with the work of Munthe-Kaas et al [9] and

provides a way of finding, for P 2 = ±I, the P−orthogonal matrix that is nearest to a given

nonsingular matrix, by using a gradient flow equation.

1 Properties of P−orthogonal Matrices

In what follows Gl(n, IR) denote the Lie algebra of all n by n matrices with real entries and

GL(n, IR) the Lie group of all n by n nonsingular matrices.

Let P be any n by n orthogonal matrix (P>= P−1) and

G = {Θ ∈ GL(n, IR) : Θ>PΘ = P} . (2)

G is an algebraic closed subgroup of GL(n, IR) and so, is itself a Lie group.

Remark 1 Since G depends on P , it would be more appropriate to denote it by GP. However, for

the sake of simplicity we stick to that notation.

Lemma 1 Θ ∈ G iff Θ> ∈ G.

Proof:

Θ ∈ G ⇐⇒ Θ>PΘ = P ⇐⇒ Θ>= PΘ−1P>
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⇐⇒ Θ = P
(
Θ−1

)>
P> ⇐⇒ ΘPΘ>= P

⇐⇒ (Θ>)>PΘ>= P ⇐⇒ Θ> ∈ G.

The Lie algebra of G is the set

L = {Ω ∈ Gl(n, IR) : Ω>P = −PΩ} , (3)

where the Lie bracket is the usual commutator of matrices ([A,B] = AB−BA, A, B ∈ Gl(n, IR)).

Lemma 2 Ω ∈ L iff Ω> ∈ L.

Proof:

Ω ∈ L ⇐⇒ Ω>P = −PΩ ⇐⇒ Ω>= −PΩP>

⇐⇒ Ω = −PΩ>P> ⇐⇒ ΩP = −PΩ>

⇐⇒ (Ω>)>P = −PΩ> ⇐⇒ Ω> ∈ L.

Let us now characterize the tangent space of G at Θ.

Since G is a Lie group, the left translation

LΘ: G −→ G

∆ 7−→ Θ∆
,

defines a diffeomorphism on G and then, the tangent map of LΘ at the identity matrix, I, defines

the linear isomorphism between tangent spaces

TILΘ: TIG −→ TΘG

Ω 7−→ ΘΩ
,

and thus

TΘG = {ΘΩ : Ω ∈ L} . (4)

We could also define the tangent space to G at Θ as being the set

TΘG = {ΩΘ : Ω ∈ L} , (5)

if we had considered the right translation on G, RΘ : ∆ ∈ G 7−→ ∆Θ.

If we consider the set of matrices

J = {A ∈ Gl(n, IR) : A>P = PA} , (6)
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it is easy to see that J is not closed under the commutator and so does not have the structure of

a Lie algebra.

However, it can be shown that J has the structure of a Jordan algebra under the product

{A,B} = AB + BA ([10]).

Lemma 3 A ∈ J iff A> ∈ J .

Proof:

A ∈ J ⇐⇒ A>P = PA ⇐⇒ A>= PAP>

⇐⇒ A = PA>P> ⇐⇒ AP = PA>

⇐⇒ (A>)>P = PA> ⇐⇒ A> ∈ J .

It can also be proved that

{J ,J } ⊂ J , {J ,L} ⊂ L and {L,L} ⊂ J , (7)

and that

[L,L] ⊂ L, [L,J ] ⊂ J and [J ,J ] ⊂ L. (8)

We will refer to the matrices of G as P−orthogonal, the matrices of L as P−skew-symmetric

and matrices of J as P−symmetric.

Note that if P = I, G coincides with the Lie group of orthogonal matrices (O(n)), L with

the Lie algebra of skew-symmetric matrices (so(n)) and J with the Jordan algebra of symmetric

matrices.

Let us define the P−transpose of a matrix X ∈ Gl(n, IR) as

XP = P>X>P. (9)

With this terminology we say that X is P−orthogonal if XPX = I, X is P−skew-symmetric if

XP = −X and X is P−symmetric if XP = X.

We now present some elementary properties about the P−transpose of matrices.

Lemma 4 If X, Y ∈ Gl(n, IR) then

(i) (X + Y )P = XP + YP;

(ii) (XY )P = YPXP;

(iii) [X,Y ]P = [YP, XP];
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(iv) {X, Y }P = {XP, YP}.

Proof:

(i) (X + Y )P = P>(X + Y )>P = P>X>P + P>Y>P = XP + YP;

(ii) (XY )P = P>Y>X>P = P>Y>PP>X>P = YPXP;

(iii) [X,Y ]P = (XY − Y X)P = (XY )P − (Y X)P .

The result is now an immediate consequence of (ii).

(iv) Since {X,Y }P = (XY + Y X)P , the result follows from (i) and (ii).

Lemma 5 X ∈ J (L) ⇐⇒ XP ∈ J (L).

Proof: Let us suppose that X ∈ J . The case X ∈ L is treated in a similar way.

XP ∈ J ⇐⇒ (XP)>P = PXP ⇐⇒ (P>X>P )>P = PP>X>P

⇐⇒ P>XPP = X>P ⇐⇒ P>XP = X>

⇐⇒ XP = PX> ⇐⇒ X> ∈ J

⇐⇒ X ∈ J (lemma 3).

Lemma 6 If Θ ∈ G and X ∈ Gl(n, IR) then,
(
Θ−1XΘ

)P = Θ−1XPΘ.

Proof: According to (9), and since Θ>PΘ = P , we have

(
Θ−1XΘ

)P
= P>Θ>X>(

Θ−1
)>

P = Θ−1P>X>PΘ = Θ−1XPΘ.

Lemma 7 If Θ ∈ G and X ∈ J (L) then Θ−1XΘ ∈ J (L).

Proof: Let us consider Θ ∈ G and X ∈ J . The case X ∈ L is analogous.

Then,
(
Θ−1XΘ

)>
P = Θ>X>(

Θ−1
)>

P = Θ>X>PΘ = Θ>PXΘ = PΘ−1XΘ.
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2 A Riemannian metric on G

In this section we assume that P is an orthogonal n by n matrix such that P 2 = ±I.

Let us consider on the Lie group GL(n, IR), the automorphism σ defined by

σ: GL(n, IR) −→ GL(n, IR)

Θ 7−→ σ(Θ) = P>
(
Θ−1

)>
P =

(
Θ−1

)P
. (10)

Since,

σ(σ(Θ)) = σ
(
P>

(
Θ−1

)>
P

)
= P>

[(
P>

(
Θ−1

)>
P

)−1
]>

P

= P>(P>Θ>P )>P = P>P>ΘPP

= Θ,

σ is an involutive automorphism on GL(n, IR).

Let us consider the subsets of GL(n, IR) defined by

Gσ =
{
Θ ∈ GL(n, IR) : σ(Θ) = Θ−1

}
, (11)

and

Gσ = {Θ ∈ GL(n, IR) : σ(Θ) = Θ} . (12)

Lemma 8 Gσ = J ∩GL(n, IR) and Gσ = G.

Proof: Attending to the definition of σ,

σ(Θ) = Θ−1 ⇐⇒ P>
(
Θ−1

)>
P = Θ−1 ⇐⇒ P>Θ>P = Θ ⇐⇒ Θ>P = PΘ ⇐⇒ Θ ∈ GL(n, IR)∩J ,

and

σ(Θ) = Θ ⇐⇒ P>
(
Θ−1

)>
P = Θ ⇐⇒ P>Θ>P = Θ−1 ⇐⇒ Θ>PΘ = P ⇐⇒ Θ ∈ G.

Although the set Gσ does not have a group structure, it can be shown that it is a symmetric

space (see Munthe-Kaas M. et al [9]).

We can also define similar sets on the Lie algebra of GL(n, IR) if we consider the tangent map

of σ

TIσ: Gl(n, IR) −→ Gl(n, IR)

X 7−→ TIσ(X) =
d

dt

∣∣∣∣
t=0

σ
(
etX

)
= −P>X>P = −XP

. (13)

Since σ is an involutive automorphism on GL(n, IR), TIσ is also an involutive automorphism

on Gl(n, IR). If λ is an eigenvalue of TIσ associated to the nonzero eigenvector X, then,

X = TIσ (TIσ(X)) = TIσ(λX) = λ2X,
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and thus

λ = ±1.

Let us consider the vector subspaces of Gl(n, IR)

Tσ = {X ∈ Gl(n, IR) : TIσ(X) = X} ,

Pσ = {X ∈ Gl(n, IR) : TIσ(X) = −X} ,

(14)

corresponding to the eigenvalues 1 and −1, respectively.

Lemma 9 Tσ = L and Pσ = J .

Proof: Follows immediately from the definition of the tangent map TIσ.

Associated to the involutive automorphism TIσ we have the direct sum decomposition of

Gl(n, IR) (see [9])

Gl(n, IR) = L ⊕ J ,

and thus, we can write any element X of Gl(n, IR) as

X =
X −XP

2
+

X + XP

2
,

where X −XP ∈ L and X + XP ∈ J . Moreover, this decomposition is unique and is nothing else

than the canonical decomposition of a matrix into its P−skew-symmetric and P−symmetric part

(Silva Leite F. and Peter E. Crouch [10]).

The involutive automorphism on Gl(n, IR), (13), enables us to define a canonical inner product

on a semisimple Lie subalgebra of Gl(n, IR).

The Killing form, also known as the Cartan inner product, is the symmetric bilinear form

defined by

K: Gl(n, IR)× Gl(n, IR) −→ IR

(X, Y ) 7−→ K(X, Y ) = tr(adX adY ),

where adX represents the adjoint action on Gl(n, IR) defined by adX(Y ) = [X, Y ].

Given a linear subspace G of Gl(n, IR), the orthogonal complement of G relatively to K is the

subspace

G⊥ = {Y ∈ Gl(n, IR) : K(X, Y ) = 0, ∀X ∈ G} .

If G is a semisimple Lie subalgebra of Gl(n, IR) then K is nondegenerate on G, which means that,

if X ∈ G is such that K(X,Y ) = 0, ∀Y ∈ G, then X = 0.

Theorem 1 Let G be a semisimple Lie subalgebra of Gl(n, IR) invariant under the involutive au-

tomorphism (13) and consider the Cartan decomposition

G = (L ∩ G)⊕ (J ∩ G) . (15)
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Then the bilinear form

〈X, Y 〉P = K (X, P>Y>P ) = K (X, YP) , X, Y ∈ G, (16)

is an inner product on G and the subspaces L ∩ G and J ∩ G are orthogonal with respect to this

inner product.

Proof: Since G is semisimple, the Killing form is nondegenerate in G. Furthermore, automorphisms

of G leave the Killing form invariant so, since (13) is involutive, the bilinear form (16) is symmetric.

According to (15), given an arbitrary Z ∈ G, it can be uniquely written as

Z = X + Y,

with X ∈ L ∩ G and Y ∈ J ∩ G.

Thus,

〈Z, Z〉P = K
(
X + Y, (X + Y )P

)

= K (X, XP) + K(X,YP) + K(Y, XP) + K(Y, YP)

= −K (X,X) + K(X,Y )−K(Y, X) + K(Y, Y )

= −K(X,X) + K(Y, Y ).

But (15) is a Cartan decomposition of G, thus the Killing form K is negative semidefinite on L∩G
and positive semidefinite on J ∩ G, which means that 〈Z, Z〉P ≥ 0 and is equal to zero if and only

if Z = 0.

Let us now prove that the subspaces L ∩ G and J ∩ G are orthogonal with respect to (16).

If X ∈ L ∩ G and Y ∈ J ∩ G then,

〈X,Y 〉P = K (X, P>Y>P ) = K (P>X>P, Y )

= −K (P>PX, Y ) = −K (X,P>PY )

= −K (X,P>Y>P ) = −〈X, Y 〉P .

By computing explicitly the Killing form on the semisimple Lie algebra G (see Helgason [6]),

the inner product (16) is given, to within a scale factor, by

〈X, Y 〉P = tr (XP>Y>P ) = tr
(
XP Y

)
, X, Y ∈ G. (17)

From now on we will denote by L and J the sets L ∩ G and J ∩ G, respectively. We keep the

terminology G to denote a Lie group of P−orthogonal matrices having L as Lie algebra.
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Remark 2 We note that when P = I, 〈·, ·〉P is the Frobenius inner product.

Since we can endowed any subspace of G with the inner product (17), the restriction of (17)

to the Lie algebra L carries out a Riemannian structure to the Lie group G, if we define in the

tangent space of G at Θ, TΘG, the inner product

¿ ΘΩ1,ΘΩ2 À= 〈Ω1, Ω2〉P, Ω1, Ω2 ∈ L. (18)

Remark 3 If we consider the extension of the inner product (17) to the Lie algebra Gl(n, IR), the

positive definiteness condition gets lost. However, it defines a pseudo-Riemannian metric on the

manifold of nonsingular matrices GL(n, IR). The restriction of that bilinear form to the Lie algebra

L of a closed Lie subgroup of GL(n, IR) gives a pseudo-Riemannian structure to that subgroup.

Remark 4 The results presented in this section were obtained under the assumption that P must

be an orthogonal matrix satisfying P 2 = ±I. This last condition may seems to be a significant

restriction. However, in a recent work, Cardoso J. R. and F. Silva Leite [4] proved that if P is

either symmetric, or skew-symmetric the Lie group G is isomorphic to one of them. More precisely,

if P is a symmetric matrix having p positive eigenvalues and q negative eigenvalues, the Lie group

G is isomorphic to the orthogonal Lie group

O(p, q) = {Θ ∈ GL(n, IR) : Θ>DΘ = D} ,

where

D =


 Ip 0

0 −Iq


 ,

with p, q ∈ IN0 and p + q = n, and if P is skew-symmetric, with n = 2m even, G is isomorphic to

the symplectic group

Sp(n, IR) = {Θ ∈ GL(n, IR) : Θ>JΘ = J} ,

where

J =


 0 Im

−Im 0


 ,

and Id stands for the d by d identity matrix.

3 The Generalized Brockett Function

Let us consider the function η, defined on the Lie group of P−orthogonal matrices G (P>= P−1),

η: G −→ IR

Θ 7−→ η(Θ) = tr
(
Θ−1QΘN − 2MΘ−1

) , (19)
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where Q, M and N are given n by n matrices and tr denotes, as usual, the trace function.

We will refer to this function as the generalized Brockett function, since it is the generalization

of the Brockett function ([3]) for the Lie group of P−orthogonal matrices.

In order to find the stationary points of η, let us compute the tangent map of η at Θ.

Since
γ: I ⊂ IR −→ G

t 7−→ γ(t) = ΘetΩ
,

defines a smooth curve on G that passes through Θ at t = 0 and whose velocity vector at the same

instant is given by ΘΩ ∈ TΘG, the tangent map of η at Θ can be defined as

TΘη: TΘG −→ IR

ΘΩ 7−→ TΘη(ΘΩ) =
d

dt

∣∣∣∣
t=0

(η ◦ γ) (t)
.

Then,

d

dt

∣∣∣∣
t=0

(η ◦ γ) (t) =
d

dt

∣∣∣∣
t=0

tr
((

ΘetΩ
)−1

QΘetΩN − 2M
(
ΘetΩ

)−1
)

=
d

dt

∣∣∣∣
t=0

tr
(
e−tΩΘ−1QΘetΩN − 2Me−tΩΘ−1

)

= tr
(−ΩΘ−1QΘN + Θ−1QΘΩN + 2MΩΘ−1

)

= tr
(−Θ−1QΘNΩ + NΘ−1QΘΩ + 2Θ−1MΩ

)

= tr
(([

N, Θ−1QΘ
]
+ 2Θ−1M

)
Ω

)
.

Theorem 2 Θ is a stationary point (or a critical point) of η if and only if

tr
(([

N, Θ−1QΘ
]
+ 2Θ−1M

)
Ω

)
= 0, ∀Ω ∈ L. (20)

Corollary 1 If M = 0 and N, Q ∈ J or N, Q ∈ L then, Θ is a stationary point of η iff

[
N, Θ−1QΘ

]
= 0.

Proof: We had already prove in lemma (7), that if Q ∈ J (L) then Θ−1QΘ ∈ J (L). But,

according to (8), [L,L] ⊂ L and [J ,J ] ⊂ L.

So, in cases Q, N ∈ J or Q, N ∈ L,

[
N, Θ−1QΘ

] ∈ L,

and

tr
([

N, Θ−1QΘ
]
Ω

)
= 0, ∀Ω ∈ L ⇐⇒ [

N, Θ−1QΘ
]

= 0.
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Remark 5 Note that when M = 0, if N ∈ L and Q ∈ J , or, N ∈ J and Q ∈ L, every Θ ∈ G is

a stationary point of η, since in these cases TΘη ≡ 0.

If we restrict ourselves to the Lie group G referred on the previous section, for the particular

case when P 2 = ±I, we note that G is a compact Lie group, with respect to the Riemannian metric

¿ ΘΩ1, ΘΩ2 À= 〈Ω1, Ω2〉P = tr (ΩP

1Ω2) , Ω1, Ω2 ∈ L. (21)

From the compactness of the Lie group G, it makes sense to consider the following minimization

problem:

(P1) min
Θ∈G

η(Θ).

The Riemannian metric (21) enables us to give another characterization of the stationary points

of η.

Theorem 3 If P 2 = ±I, Θ ∈ G is a stationary point of η if and only if

[
N, Θ−1QΘ

]
+ 2Θ−1M ∈ J . (22)

Proof: From lemmas 4, 6 and since Θ ∈ G, condition (20) may be rewritten as

tr
(([

Θ−1QPΘ, NP
]
+ 2MPΘ

)P
Ω

)
= 0, ∀Ω ∈ L. (23)

The definition of the Riemannian metric (21), the direct decomposition

Gl(n, IR) = L ⊕ J ,

together with condition (23), implies that Θ is a stationary point of η if and only if

[
Θ−1QPΘ, NP

]
+ 2MPΘ ∈ J ,

or, equivalently, due to lemma 5, if and only if

([
Θ−1QPΘ, NP

]
+ 2MPΘ

)P
=

[
N, Θ−1QΘ

]
+ 2Θ−1M ∈ J .

Corollary 2 If P 2 = ±I,
[
N, Θ−1QΘ

]
= 0 (in particular if N = 0 or Q = 0), Θ is a stationary

point of η iff Θ−1M ∈ J .

Proof: Follows immediately from theorem 3.

Let us analyze separately some particular cases of the problem (P1).
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3.1 P 2 = ±I, N = 0 (or Q = 0) and M nonsingular

In this case the generalized Brockett function takes the simplified form

η(Θ) = −2 tr
(
MΘ−1

)
. (24)

According to corollary 2, if Θ is a stationary point of η, then

Θ−1M ∈ J ⇐⇒ (
Θ−1M

)>
P = PΘ−1M

⇐⇒ M>(
Θ−1

)>
P = Θ>PM

⇐⇒ M>PΘ = Θ>PM. (25)

Note that, if P 2 = I,

(25) ⇐⇒ M>PΘ is symmetric,

and if P 2 = −I,

(25) ⇐⇒ M>PΘ is skew − symmetric.

The next theorem gives us an explicit form for the stationary points of the function η given by

(24).

Theorem 4 If P 2 = ±I, the critical points of η(Θ) = −2 tr
(
MΘ−1

)
are given explicitly by

Θ−1M =
√

MPM, (26)

where
√

MPM is any square root of MPM which belongs to J .

Proof: Attending to (25) and the properties of the elements of G, we have

M>PΘ = Θ>PM ⇐⇒ M>PΘ = PΘ−1M

⇐⇒ P>M>P = Θ−1MΘ−1.

Since P>M>P is nonsingular, Θ−1 ∈ G and Θ−1M ∈ J , P>M>P = Θ−1MΘ−1 is the generalized

polar decomposition of P>M>P (see [4]). So,

Θ−1M =
√

P>M>P (P>M>P )P =
√

P>M>PM =
√

MPM.

It also happens that when M is invertible the matrix MPM has a unique square root whose

spectrum lies in the open right half complex pane (see [4]). This, together with theorem 4 are now

enough to characterize the minimum.

12



Theorem 5 The function η(Θ) = −2 tr
(
MΘ−1

)
, with M invertible, is minimized when

Θ−1M = (MPM)
1
2 , (27)

where (MPM)
1
2 is the unique square root of MPM that belongs to J and has all the eigenvalues

with positive real part.

By using the Riemannian metric defined on G by (21), we can pass from the linear term of

the Taylor series expansion of a smooth function defined on G, to a vector field on G named the

gradient vector field.

Definition 1 (Helmke and Moore [7])

Given a smooth function f : G −→ IR, defined on the Lie group G, the gradient vector field of f

relative to the Riemannian metric ¿ ·, · À on G, is the unique vector field of G, ∇f :G −→ TG,

which satisfies

TΘf(ΘΩ) =¿ ∇f(Θ), ΘΩ À, ∀Ω ∈ L,

where TΘf stands for the tangent map of f at Θ.

We have already seen at the beginning of section 3 that in this case

TΘη(ΘΩ) = 2 tr
(
Θ−1MΩ

)
.

According to definition 1, the gradient vector field of η, ∇η, relative to the Riemannian metric

(21), is the unique vector field of G satisfying

¿ ∇η(Θ),ΘΩ À= 2 tr
(
Θ−1MΩ

)
, ∀Ω ∈ L. (28)

Now, since ∇η(Θ) ∈ TΘG, we can write

∇η(Θ) = ΘX,

with X ∈ L.

So, condition (28) is equivalent to

tr (XPΩ) = 2 tr
(
Θ−1MΩ

)
, ∀Ω ∈ L, (29)

and thus,

〈2MPΘ−X, Ω〉P = 0, ∀Ω ∈ L ⇐⇒ 2MPΘ−X ∈ J . (30)

But,

2MPΘ−X ∈ J ⇐⇒ (2MPΘ−X)>P = P (2MPΘ−X)
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⇐⇒ 2Θ>(MP)>P −X>P = 2PMPΘ− PX

⇐⇒ 2Θ>(P>M>P )>P + PX = 2PMPΘ− PX

⇐⇒ PX = PMPΘ−Θ>P>MPP

⇐⇒ X = MPΘ− P>P>Θ−1MPP

⇐⇒ X = MPΘ−Θ−1M, (P 2 = ±I)

and then we get

∇η(Θ) = Θ
(
MPΘ−Θ−1M

)
.

Thus, the gradient flow equation associated to η, relatively to the Riemannian metric (21) is

given by

Θ̇ = ΘMPΘ−M. (31)

Note that the equilibrium points of the previous dynamical system are exactly the stationary

points of the function η given by (24).

One of the questions that arises naturally at this moment is concerned about the integrability of

the nonlinear ordinary differential equation (31). We are going to prove that for the particular case

when M ∈ J (L), that is when MP = M (MP = −M), the gradient flow equation (31) is completely

integrable and we give here its explicit solution for every initial condition Θ(0) = Θ0 ∈ G. Finally,

we present an explicit solution of a linearization of (31), for an arbitrary nonsingular matrix M .

Definition 2 The Cayley transform of a matrix Θ, not having −1 as an eigenvalue, is given by

Y = (I −Θ) (I + Θ)−1
. (32)

Theorem 6 The Cayley transform (32) defines a bijection between elements of G and elements

of L (not having −1 as an eigenvalue).

Proof: Since (I −Θ) (I + Θ) = (I + Θ) (I −Θ), we can also write

Y = (I + Θ)−1 (I −Θ) . (33)

Let us begin to prove that the spectrum of Y doesn’t contain −1.

If there was a nonzero vector v such that Y v = −v, attending to (33),

Y v = −v ⇐⇒ (I + Θ)−1 (I −Θ) v = −v ⇐⇒ v −Θv = −v −Θv ⇐⇒ v = 0,

which is a contradiction.

14



Then, the matrix I + Y is invertible and,

Y = (I −Θ) (I + Θ)−1 ⇐⇒ Y (I + Θ) = I −Θ

⇐⇒ (I + Y )Θ = I − Y

⇐⇒ Θ = (I + Y )−1 (I − Y ) . (34)

It remains to prove that Y ∈ L iff Θ ∈ G.

Y ∈ L ⇐⇒ Y>P = −PY

⇐⇒
(
(I + Θ)−1

)>
(I −Θ)>P = −P (I −Θ) (I + Θ)−1

⇐⇒ (I −Θ>) P (I + Θ) = − (I + Θ>)P (I −Θ)

⇐⇒ P −Θ>P + PΘ−Θ>PΘ = −P −Θ>P + PΘ + Θ>PΘ

⇐⇒ Θ>PΘ = P

⇐⇒ Θ ∈ G.

Lemma 10 (Veselov and Dynnikov [11])

If M ∈ J (MP = M), the Cayley transform (32) linearizes the flow (31):

Ẏ = {Y, M} = Y M + MY. (35)

Proof: From (33), we can also write (34) as

Θ = (I − Y ) (I + Y )−1
. (36)

Furthermore,

I + Θ = I + (I + Y )−1 (I − Y )

= (I + Y )−1 (I + Y + I − Y )

= 2 (I + Y )−1
,

and thus

(I + Θ)−1 =
1
2

(I + Y ) . (37)

Differentiating equation (32), we derive

Ẏ = −Θ̇ (I + Θ)−1 − (I −Θ) (I + Θ)−1 Θ̇ (I + Θ)−1

= −
(
I + (I −Θ) (I + Θ)−1

)
Θ̇ (I + Θ)−1
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= −1
2

(I + Y ) (ΘMΘ−M) (I + Y ) (by (32), (31) and (37))

= −1
2

(I + Y )
(
(I + Y )−1 (I − Y )M (I − Y ) (I + Y )−1 −M

)
(I + Y ) (by (34) and (36))

= −1
2

((I − Y ) M (I − Y )− (I + Y ) M (I + Y ))

= Y M + MY.

Remark 6 Note that, since Θ ∈ G, from theorem 6 we conclude that Y ∈ L and thus, equation

(35) evolves on the Lie algebra L if and only if M ∈ J (see condition (7)).

Theorem 7 (Veselov and Dynnikov [11])

If M ∈ J , equation (31) can be solved explicitly for every initial condition Θ(0) = Θ0 ∈ G. The

solution has the form

Θ(t) = (− sinh(tM) + cosh(tM)Θ0) (cosh(tM)− sinh(tM)Θ0)
−1

.

Proof: The explicit solution of the linear differential equation (35) for the initial point

Y0 = (I −Θ0) (I + Θ0)
−1 is given by

Y (t) = exp(tM)Y0 exp(tM), (38)

where exp(·) denotes the exponential map on the Lie algebra Gl(n, IR).

Since

Θ(t) = (I − Y (t)) (I + Y (t))−1
,

by making use of (38), we derive

I − Y (t) = exp(−tM) exp(tM)− exp(tM) (I −Θ0) (I + Θ0)
−1 exp(tM)

= (exp(−tM) (I + Θ0)− exp(tM) (I −Θ0)) (I + Θ0)
−1 exp(tM)

= (exp(−tM) + exp(−tM)Θ0 − exp(tM) + exp(tM)Θ0) (I + Θ0)
−1 exp(tM)

= 2 (− sinh(tM) + cosh(tM)Θ0) (I + Θ0)
−1 exp(tM),

and analogously

I + Y (t) = 2 (cosh(tM)− sinh(tM)Θ0) (I + Θ0)
−1 exp(tM).

Thus,

Θ(t) = 2 (− sinh(tM) + cosh(tM)Θ0) (I + Θ0)
−1 exp(tM)

1
2

exp(−tM) (I + Θ0) (cosh(tM)− sinh(tM)Θ0)
−1

= (− sinh(tM) + cosh(tM)Θ0) (cosh(tM)− sinh(tM)Θ0)
−1

.
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In order to present the explicit solution of equation (31) for the case when M ∈ L, we need to

imbed this equation in the complex Lie group

G? = {X ∈ GL(n, IC) : X?PX = P} , (39)

where X? denotes the transpose conjugate of X.

The corresponding Lie algebra and Jordan algebra are represented, respectively, by L? and J ?

and are given by

L? = {Ω ∈ Gl(n, IC) : Ω?P = −PΩ} , (40)

J ? = {A ∈ Gl(n, IC) : A?P = PA} . (41)

Lemma 11 If Θ ∈ G then iΘ ∈ G?.

Proof: Since Θ ∈ G, Θ has real entries and satisfies Θ>PΘ = P .

So,

(iΘ)?P (iΘ) = −iΘ>PiΘ = Θ>PΘ = P.

Lemma 12 If A ∈ L (J ) then iA ∈ J ? (L?).

Proof: Let us suppose that A ∈ L. The other case is proved in an analogue way.

Then, A>P = −PA, and

(iA)?
P = −iA>P = P (iA) ,

which implies that iA ∈ J ?.

We now introduce a very useful change of variable which recast equation (31) as one which

evolves in G?.

Let

X = iΘ. (42)

Differentiating both sides of equation (42) in order to t, and making use of (31), we derive

Ẋ = iΘ̇ = i (−ΘMΘ−M)

= i (XMX −M)

= X(iM)X − (iM). (43)

Theorem 8 If M ∈ L (MP = −M), the explicit solution of equation (31) for the initial condition

Θ(0) = Θ0 has the form

Θ(t) = (− sin(tM) + cos(tM)Θ0) (cos(tM) + sin(tM)Θ0)
−1

. (44)
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Proof: According to theorem 7, the explicit solution of the differential equation (43) for the initial

condition iΘ0 = X0 ∈ G? is

X(t) = (− sinh(itM) + cosh(itM)X0) (cosh(itM)− sinh(itM)X0)
−1

Hence, according to (42), we obtain

Θ(t) = −i (− sinh(itM) + i cosh(itM)Θ0) (cosh(itM)− i sinh(itM)Θ0)
−1

= (− sin(tM) + cos(tM)Θ0) (cos(tM) + sin(tM)Θ0)
−1

.

By setting Θ = XY −1, equation (31) is equivalent to the system of linear differential equations

 Ẋ

Ẏ


 =


 0 −M

−MP 0





 X

Y


 . (45)

For the initial condition
[

X0 Y0

]>
, the solution of (3.1) is


 X

Y


 = exp (tA)


 X0

Y0


 ,

where

A = −

 0 M

MP 0


 ,

and exp(tA) = I +
+∞∑
n=1

An

n!
tn.

By computing the successive powers of A, we get

 X

Y


 =




cosh
(
t
√

MMP

)
−

(√
MMP

)−1

sinh
(
t
√

MMP

)
M

−MP sinh
(
t
√

MMP

) (√
MMP

)−1

cosh
(
t
√

MPM
)





 X0

Y0


 .

3.2 P 2 = ±I, M = 0 and N, Q ∈ J (or N, Q ∈ L)

In this case, the generalized Brockett function takes the form

η(Θ) = tr
(
Θ−1QΘN

)
. (46)

Attending to (23), Θ ∈ G is a stationary point of (46) iff

[
Θ−1QPΘ, NP

]
= 0,

which is equivalent to
[
N, Θ−1QΘ

]
= 0.
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Lemma 13 If P 2 = ±I and N, Q ∈ J (or N, Q ∈ L), then

[
N, Θ−1QΘ

]
= 0 ⇐⇒ NΘ−1QΘ ∈ J .

Proof: Let us suppose that N, Q ∈ J . (The proof is similar if N, Q ∈ L.)

By definition of J , if A ∈ J then

A = P>A>P.

So,

[
N, Θ−1QΘ

]
= 0 ⇐⇒ NΘ−1QΘ = Θ−1QΘN ⇐⇒ PN>PΘ−1QΘ = Θ−1PQ>PΘN

⇐⇒ PN>Θ>PQΘ = PΘT Q>PΘN ⇐⇒ N>Θ>Q>PΘ = ΘT PQΘN

⇐⇒ N>Θ>Q>
(
Θ−1

)>
P = PΘ−1QΘN ⇐⇒ (

Θ−1QΘN
)>

P = PΘ−1QΘN

⇐⇒ Θ−1QΘN ∈ J .

Theorem 9 The gradient flow equation of η(Θ) = tr
(
Θ−1QΘN

)
, relatively to the Riemannian

metric (21), is given, by

Θ̇ = Θ
[
N, Θ−1QΘ

]P
. (47)

Proof: In fact, the tangent map of η(Θ) = tr
(
Θ−1QΘN

)
at Θ, is, according to theorem 2, given

by

TΘη(ΘΩ) = tr
([

N, Θ−1QΘ
]
Ω

)

= tr
([

Θ−1QPΘ, NP
]P

Ω
)

, ∀Ω ∈ L.

On the other hand, the gradient vector field of η, ∇η, relatively to the Riemannian metric (21),

is the unique vector field of G satisfying

¿ ∇η(Θ), ΘΩ À= tr
([

Θ−1QPΘ, NP
]P

Ω
)

, ∀Ω ∈ L.

Now, since [J ,J ] ⊂ L and [L,L] ⊂ L,

[
N, Θ−1QΘ

] ∈ L,

then

∇η(Θ) = Θ
[
Θ−1QPΘ, NP

]

= Θ
[
N, Θ−1QΘ

]P
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The gradient flow equation is then given by

Θ̇ = ∇η(Θ),

and the result follows.

The dynamical system (47) evolves on the Lie group of P−orthogonal matrices and the equi-

librium points are exactly the stationary points of the function η.

We will see that with a useful change of variables, equation (47), which evolves on the Lie

group G, can be rewrite as a equation, actually a double bracket equation, evolving on the space

of P−symmetric (P−skew-symmetric) matrices.

Let

H = Θ−1QPΘ. (48)

If we differentiate both sides of equation (48) with respect to t we get

Ḣ = ˙(Θ−1)QPΘ + Θ−1QPΘ̇

= −Θ−1Θ̇Θ−1QPΘ + Θ−1QPΘ̇

= −Θ−1Θ
[
N, Θ−1QΘ

]P
Θ−1QPΘ + Θ−1QPΘ

[
N, Θ−1QΘ

]P

=
[
Θ−1QPΘ, NP

]
Θ−1QPΘ + Θ−1QPΘ

[
Θ−1QPΘ, NP

]

= − [H,NP] H + H [H,NP]

= [H, [H, NP]] .

So, as expected, we reduce equation (47) to the isospectral flow given by the double Lie bracket

equation

Ḣ = [H, [H, NP]] . (49)

Remark 7 From lemmas 5 and 7, we note that H ∈ J (L) ⇐⇒ Q ∈ J (L), and thus, according

to (8), if N, Q ∈ J (L), equation (49) evolves on the space of P−symmetric (P−skew-symmetric)

matrices.

Interesting standard computational problems can be solved using this double bracket equation

and are given in Brockett [3], for the particular case when P = I and N and Q are symmetric

matrices with unrepeated eigenvalues. Equation (49) can be used, between other things, to sort

lists of real numbers, to diagonalize symmetric matrices and to solve some linear programming

problems.

Bloch [1] also relate this gradient flow equation with completely integrable Hamiltonian systems,

like the Toda flow on tridiagonal matrices, when studied from a “Lax pair” point of view, and the

total least squares problem (the problem of fitting planes to a given data set of points).
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Furthermore, working with various discretizations of equation (49), it provides a way to obtain

even more stable and perhaps faster algorithms that converge to the solution of the desired problem.

To finish this section, we want to notify that we could compute the gradient flow equation for

the generalized Brockett function without any particularization of matrices N , Q or M .

Following the spirit of Brockett’s work [2], we present a result that enables us to write the

desired gradient flow equation, relatively to the Riemannian metric (21).

Theorem 10 Consider G (or any Lie subgroup of G) as a Riemannian manifold endowed with

the Riemannian metric (21). The gradient flow on G corresponding to the generalized Brockett

function

η(Θ) = tr
(
Θ−1QΘN − 2MΘ−1

)

may be expressible as

Θ̇ = Θ
dimL∑

i=1

tr
(([

N, Θ−1QΘ
]
+ 2Θ−1M

)
Ωi

)
Ωi, (50)

where {Ω1, . . . , ΩdimL} is any orthonormal basis for L.

Proof: Attending to (23) and the definition of the gradient flow equation, we must have

tr
(([

Θ−1QPΘ, NP
]
+ 2MPΘ

)P
Ω

)
=¿ ∇η(Θ),ΘΩ À, ∀Ω ∈ L,

or equivalently,

〈[Θ−1QPΘ, NP
]
+ 2MPΘ,Ω〉P = 〈X, Ω〉P, ∀Ω ∈ L, (51)

where ∇η(Θ) = ΘX, and X ∈ L.

Since {Ω1, . . . , ΩdimL} is an orthonormal basis for L, we can write

X =
dimL∑

i=1

αiΩi, αi ∈ IR,

and equation (51) may be rewritten as

〈[Θ−1QPΘ, NP
]
+ 2MPΘ, Ωj〉P =

dimL∑

i=1

αi〈Ωi,Ωj〉P, j = 1, . . . , dimL. (52)

Then,

αi = 〈[Θ−1QPΘ, NP
]
+ 2MPΘ,Ωi〉P,

and the result follows.

The purpose of exhibit the gradient flow of the generalized Brockett function for the particular

cases of matrices Q, N and M studied on the previous two subsections was to present simplified

forms of equation (50) that have a great numerical interest.
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They could be used to solve certain computational problems and with the various discretizations

of those continuous time equations we can obtain new algorithms that converge to the solution of

the required problem.

4 Optimization matrix problems

In this section we present some optimization matrix problems that can be solved by using the

generalized Brockett function presented in the previous section.

The nondegenerate symmetric bilinear form (17) defined in section 2 can be extended to the

Lie algebra Gl(n, IR) as

〈X,Y 〉P = tr (XPY ) , X, Y ∈ Gl(n, IR). (53)

According to remark 3, the bilinear form (53) carries out a pseudo-Riemannian structure to

the manifold of nonsingular matrices GL(n, IR) that can be used to find the P−orthogonal matrix

that is closest to a given nonsingular matrix, in a certain sense.

Let M be a nonsingular n by n matrix, and consider the following optimization problem

(P2) min
Θ∈G

〈M −Θ,M −Θ〉P .

Attending to the definition of the bilinear form (17), we have

〈M −Θ,M −Θ〉P = tr (P>(M>−Θ>)P (M −Θ))

= tr (P>M>PM − P>Θ>PM − P>M>PΘ + P>Θ>PΘ)

= 〈M,M〉P − tr
(
Θ−1P>PM + Θ>P>MP

)
+ n

= 〈M,M〉P − 2 tr
(
Θ−1M

)
+ n.

Thus,

(P2) ⇐⇒ min
Θ∈G

−2 tr
(
Θ−1M

)
.

Note that the right hand side is nothing else than the generalized Brockett function for the

particular case when N = 0 or Q = 0, and was already studied in subsection 3.1.

Attending to theorem 7, the solution of this optimization problem is given by

Θ−1M = (MPM)
1
2 ,

where (MPM)
1
2 denotes the unique square root of MPM that belongs to J and has all the eigen-

values with positive real parts.

If we consider the generalized polar decomposition of the matrix M ,

M = RΛ,
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where R ∈ G and Λ ∈ J (σ(Λ) ⊂ IC+), the solution of (P2) is

Θ = RΛ (P>Λ>R>PRΛ)−
1
2

= RΛ (P>Λ>PΛ)−
1
2

= RΛ
(
P>PΛ2

)− 1
2

= RΛΛ−1

= R,

which generalizes the well known result that the orthogonal matrix that is nearest to a given

nonsingular matrix is the orthogonal part of its polar decomposition.

Another interesting optimization problem is presented in what follows.

Let us consider the smooth action of the Lie group G on Gl(n, IR):

φ: G× Gl(n, IR) −→ Gl(n, IR)

(Θ, A) 7−→ ΘAΘ−1
.

In fact,

φ(I,A) = A,

and

φ (Θ1, φ(Θ2, A)) = φ
(
Θ1,Θ2AΘ−1

2

)
= Θ1Θ2A (Θ1Θ2)

−1 = φ(Θ1Θ2, A), Θ1, Θ2 ∈ G.

Given a P−symmetric n×n matrix Q, the set of the matrices that are P−orthogonally similar

to Q,

M(Q) =
{
Θ−1QΘ : Θ ∈ G

}
, (54)

is an orbit under the group action φ and therefore is a smooth manifold of Gl(n, IR).

If N is an arbitrary P−symmetric matrix , we can consider the following matrix function

fN : M(Q) −→ IR

X 7−→ fN (X) = 〈N −X, N −X〉P
.

Our objective is to find the P−symmetric matrix similar to Q, that is closest to the P−symmetric

matrix N , relatively to (53).

We can formulate our problem like this:

(P3) min
X∈M(Q)

〈N −X, N −X〉P .

Making use of (53), we can write

〈N −X, N −X〉P = tr ((N −X)P(N −X))
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= tr (P>(N>−X>)P (N −X))

= 〈N, N〉P − tr (P>X>PN + P>N>PX) + 〈X, X〉P
= 〈N, N〉P − tr (P>PXN + P>PNX) + 〈X, X〉P
= 〈N, N〉P − 2 tr (XN) + 〈X,X〉P.

Since X ∈M(Q), it has the same spectrum as Q so, 〈X, X〉P is constant. Thus,

(P3) ⇐⇒ min
X∈M(Q)

tr (−2XN) ⇐⇒ min
Θ∈G

− tr
(
Θ−1QΘN

)
,

where tr
(
Θ−1QΘN

)
is the generalized Brockett function with M = 0 and was analyzed in subsec-

tion 3.2.

Remark 8 A similar problem to (P3) can be formulated if we consider both the matrices Q and

N P−skew-symmetric. In that case, our problem becomes

(P4) min
Θ∈G

tr
(
Θ−1QΘN

)
.
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