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Abstract. The estimation of density based on positive dependent samples has been studied re-
cently with consistency and asymptotic normality results being obtained. In what concerns the
characterization on decrease rates the results have been scarce. The article proves an exponential
decrease rate for the kernel estimator of the density with an uniform version, over compact sets.
The conditions assumed impose convenient decrease rates on the covariance structure of the sample.
Some examples supposing exponential but also polynomial decrease rates on the covariances that
fulfill our assumptions are presented in the last section.

1. Introduction

Estimation of the density of random variables has been a classical statistical problem. Results
establishing the properties of the proposed estimators were, naturally, first derived based on inde-
pendent data. This independence assumption was eventually replaced by some kind of control on
the dependence structure of the sample upon which the estimation is carried. Typically, control
of the dependence structure was achieved through some mixing conditions. There were various
estimation methods proposed, among which we will be interested in the nonparametric kernel es-
timator. For this type of estimator and for strong mixing samples, the asymptotic properties are
well established, including convergence rates. For an account of results and literature we refer the
reader to Bosq [4]. The dependence structure that will be considered in this article is associa-
tion, a concept introduced by Esary, Proschan and Walkup [12] that has attracted some attention
from statisticians during recent years. The consistency of the kernel estimator under associated
sampling was proved by Bagai and Prakasa Rao [2] which returned to the problem in Bagai and
Prakasa Rao [3] proving a uniform consistency result. In these references no convergence rates were
obtained. Independently, Roussas [15] also proved a consistency result for the kernel estimator
under associated sampling but giving also a convergence rate characterization. Namely, in Roussas
[15], it was proved a uniform polynomial convergence rate under some regularity conditions. An
extension of the consistency of the estimator, without rates, was proved in Oliveira [13] without
absolute continuity of the joint distributions. Estimation of distribution functions under associated
sampling, a similar problem to the one described above, has been studied, using kernels, by Cai and
Roussas [5, 6] and Azevedo and Oliveira [1], proving consistency and asymptotic normality, and,
using histograms, by Henriques and Oliveira [9, 10], proving consistency, asymptotic normality and
some convergence rates.

The main result in this article is an exponential rate for the pointwise convergence and also
for the uniform convergence on compacts, with an extra condition on the kernel function for the
later case. This study was motivated by similar results announced by Dewan and Prakasa Rao [8].
However, the method of proof used by these authors forced them to suppose a quite fast convergence
rate on the covariances of the variables. Unfortunately, for associated variables this rate is far to
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fast, so it is, in fact, unattainable. So, the characterization of an exponential rate for associated
sampling remained open. The method of proof used in this article is inspired by the blocking
technique used in Ioannides and Roussas [11] and the approximation to independence as used in
Dewan and Prakasa Rao [8]. In the final section we will present some examples of covariance
structures that fulfill the assumptions used in this article. Note that, in previous articles dealing
with exponential inequalities for associated variables (Ioannides and Roussas [11], Henriques and
Oliveira [10]) the examples exhibited always assumed a geometric decrease rate on the covariance
structure. Moreover, in Henriques and Oliveira [10] it was even showed that, if the covariances
decreased only at a polynomial rate the assumptions made there could not be fulfilled. Here, for
the kernel estimator of the density we will provide an example of polynomial decrease rate on the
covariance structure that still verifies the conditions under which the general results hold. The
possibility of providing such an example is due to the fact that the bandwidth selection appears on
the exponential rate in a convenient way.

2. Definitions and assumptions

Let X1, X2, . . . be random variables with the same distribution as X for which there exists a
density function f . Let K be a fixed probability density and hn a sequence on nonnegative real
numbers converging to zero. The kernel estimator of the density function f is, as usual, defined as

f̂n(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
,

which is well known to be asymptotically unbiased, if there exists a bounded and continuous version
of the density. Moreover, the convergence of IE[f̂n(x)] to f(x) is, under these assumptions on f ,
uniform on compact sets.

The random variables X1, X2, . . . will be supposed associated, which means, as defined in Esary,
Proschan and Walkup [12], that for every n ∈ IN and f, g :IRn −→ IR coordinatewise increasing

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

)
≥ 0,

whenever this covariance exists.
A technical problem arises when dealing with f̂n(x) for associated variables. In fact, association

is only preserved under monotone transformations, which means that, in general, the variables
K
(

x−X1
hn

)
,K
(

x−X2
hn

)
, . . . are not associated. This problem is resolved, as usual, by supposing the

kernel K to be of bounded variation.
For easier future reference, we introduce now a set of assumptions.
(A1) X1, X2, . . . are strictly stationary and associated random variables with common bounded

and continuous density function f ; let B0 = supx∈IR |f(x)|;
(A2) The kernel function K is a probability density of bounded variation such that

∫
K2(u)du <

∞; further, if K = K1 −K2 where K1 and K2 are nondecreasing functions, the derivatives
K ′

1 and K ′
2 exist and are integrable.

Under (A1), we have that

sup
u,v∈IR

∣∣FX1,Xj (u, v)− FX1(u)FX1(v)
∣∣ ≤ B2 Cov1/3(X1, Xj) (2.1)

where FX1,Xj and FX1 represent the distribution functions of (X1, Xj) and X1, respectively, and
B2 = max(4/π2, 90B0) (see Lemma 2.6 in Roussas [16] for details). This inequality provides an
upper bound for the covariances between the variables Kq

(
x−Xj

hn

)
, q = 1, 2, j = 1, 2, . . ..
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Lemma 2.1. Suppose the variables X1, X2, . . . satisfy (A1) and the kernel function satisfy (A2).
Then

Cov
(

Kq

(
x−X1

hn

)
, Kq

(
x−Xj

hn

))
≤ B2 Cov1/3 (X1, Xj)

(∫
K ′

q(u) du

)2

, q = 1, 2.

Proof. Just notice that

Cov
(

Kq

(
x−X1

hn

)
, Kq

(
x−Xj

hn

))
=

=
1
h2

n

∫
K ′

q

(
x− u

hn

)
K ′

q

(
x− v

hn

) ∣∣FX1,Xj (u, v)− FX1(u)FX1(v)
∣∣ dudv

and apply (2.1). �

The next result is the basis of the development used to establish the exponential inequality.
It appears under the present form in Dewan and Parkasa Rao [8] and is a version for generating
functions of Newman’s [14] inequality for characteristic functions.

Lemma 2.2. Let X1, . . . , Xn be associated random variables bounded by a constant M . Then, for
every θ > 0, ∣∣∣∣∣IE (eθ

∑n
i=1 Xi

)
−

n∏
i=1

IE
(
eθXi

)∣∣∣∣∣ ≤ θ2enθM
∑

1≤i<j≤n

Cov(Xi, Xj) .

This inequality for generating functions was used by Dewan and Prakasa Rao [8] to control
the distance between the joint distribution of the variables and what one would find in case of
independence. The way they manipulated the upper bound conducted them to the assumption
1
n

∑n
j=1 Cov(X1, Xj) = O(e−θn), θ > 3/2. Now, if the random variables are associated, all the

covariances Cov(X1, Xn) are nonnegative so, at best, the sum defines a convergent series and the
rate of convergence to zero of the expression considered by Dewan and Prakasa Rao [8] is n−1. That
is, the exponential decrease rate needed to control the difference between the joint distribution and
the independent case is unattainable. This remark was at the origin of the present article which
started as an effort to use the same type of independence approximation procedure. The control of
this approximation is inspired in the blocking technique mentioned above, a quite different approach
from what was used in Dewan and Prakasa Rao [8].

Before proceeding to some more precise notations connected with the method of proof, we quote
a general lemma useful in course of proof.

Lemma 2.3 (Devroye [7]). Let X be a centered random variable. If there exist a, b ∈ IR such that
P(a ≤ X ≤ b) = 1, then, for every λ > 0,

IE(eλX) ≤ exp
(

λ2(b− a)2

8

)
.

Now we introduce the notation that will be used in the sequel. Given (A2) define

f̂n,1(x) =
1

nhn

n∑
j=1

K1

(
x−Xj

hn

)
, f̂n,2(x) =

1
nhn

n∑
j=1

K2

(
x−Xj

hn

)
,

so that f̂n(x) = f̂n,1(x)− f̂n,2(x). For each n ∈ IN , j = 1, . . . , n, and q = 1, 2, let

Tn,q,j =
1
hn

(
Kq

(
x−Xj

hn

)
−IE Kq

(
x−Xj

hn

))
. (2.2)

Note that these variables are associated if the X1, X2, . . . are associated, as they are nonincreasing
transformations of these variables.
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Given a natural number p < n
2 , let r be the greatest natural number less or equal to n

2p and
define, for each j = 1, . . . , 2r, and q = 1, 2

Yn,q,j =
jp∑

l=(j−1)p+1

Tn,q,l . (2.3)

Note that, if the kernel K satisfies (A2), the functions K1 and K2 may be chosen bounded so that
each variable Yn,q,j is bounded by 2p‖Kq‖∞

hn
, where ‖·‖∞ represents the supremum norm.

Finally define, for q = 1, 2,

Zod
n,q = Yn,q,1 + Yn,q,3 + · · ·+ Yn,q,2r−1,

(2.4)
Zev

n,q = Yn,q,2 + Yn,q,4 + · · ·+ Yn,q,2r.

With these definitions, if n = 2pr we have f̂n,q(x)− IE[f̂n,q(x)] = 1
n(Zev

n,q + Zod
n,q).

3. Some preliminary results

In this section we prove two preparatory lemmas that pave the way to the proof of the main
result.

Lemma 3.1. Let X1, X2, . . . be random variables and suppose that (A2) is satisfied. If Yn,q,j , q =
1, 2, j = 1, . . . , 2r are defined by (2.3) then, for every λ > 0,

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)
≤ exp

(
λ2p‖Kq ‖2

∞
nh2

n

)
, q = 1, 2,

r∏
j=1

IE
(
e

λ
n

Yn,q,2j

)
≤ exp

(
λ2p‖Kq ‖2

∞
nh2

n

)
, q = 1, 2.

Proof. As noted before, each variable Yn,q,j is bounded by 2p‖Kq‖∞
hn

, so we may apply Lemma 2.3 to
get the result. �

The next lemma provides the link towards the control of both terms IE
(
e

λ
n

Zod
n,q

)
and IE

(
e

λ
n

Zev
n,q

)
.

Lemma 3.2. Suppose (A1) and (A2) are satisfied. With the definitions made before, for every
λ > 0,∣∣∣∣∣∣IE

(
e

λ
n

Zod
n,q

)
−

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)∣∣∣∣∣∣ ≤ λ2

2n
exp

(
λ‖Kq ‖∞

hn

) (2r−1)p∑
j=p+2

Cov(Tn,q,1, Tn,q,j), q = 1, 2,

(3.1)
and analogously for the term corresponding to Zev

n,q.

Proof. As Zod
n,q =

∑r
j=1 Yn,q,2j−1, we may apply Lemma 2.2 to find∣∣∣∣∣∣IE

(
e

λ
n

Zod
n,q

)
−

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)∣∣∣∣∣∣ ≤ λ2

n2
exp

(
λ

n
r

2p‖Kq ‖∞
hn

) ∑
1≤j<j′≤r

Cov(Yn,q,2j−1, Yn,q,2j′−1).
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Now, as 2pr ≤ n, the exponential is bounded above by exp
(

λ‖Kq‖∞
hn

)
. As for the term with the

covariances, we first use the stationarity to rewrite it as∑
1≤j<j′≤r

Cov(Yn,q,2j−1, Yn,q,2j′−1) =
r−1∑
j=1

(r − j) Cov(Yn,q,1, Yn,q,2j+1). (3.2)

Using again the stationarity of the variables to develop the covariances in the right of this last
expression, we find

Cov(Yn,q,1, Yn,q,2j+1) =

=
p−1∑
l=0

(p− l) Cov(Tn,q,1, Tn,q,2jp+l+1) +
p−1∑
l=1

(p− l) Cov(Tn,q,l+1, Tn,q,2jp+1) ≤

≤ p

(2j+1)p∑
l=(2j−1)p+2

Cov(Tn,q,1, Tn,q,l).

Inserting this into (3.2), we find∑
1≤j<j′≤r

Cov(Yn,q,2j−1, Yn,q,2j′−1) ≤
r−1∑
j=1

rp

(2j+1)p∑
l=(2j−1)p+2

Cov(Tn,q,1, Tn,q,l) ≤ rp

(2r−1)p∑
l=p+2

Cov(Tn,q,1, Tn,q,l)

due to the nonnegativity of all the covariances, as the variables Tn,q,j , j ≥ 1, are associated. To
conclude the proof, just remind again that rp

n ≤ 1
2 . �

4. Main results

We are now in position to prove the exponential rate for the estimator. On the sequel we let
the integers p and r referred above depend on n, thus obtaining sequences pn and rn such that

n
2pnrn

−→ 1. We will need to choose these sequences conveniently to prove our results.

Lemma 4.1. Suppose (A1) and (A2) are satisfied. Further assume that

nh4
n

p2
n

exp
(

nhn

pn

) ∞∑
j=pn+2

Cov(Tn,q,1, Tn,q,j) ≤ C0 < ∞. (4.1)

Then, for every ε ∈
(
0,min(‖K1 ‖∞, ‖K1 ‖2

∞, ‖K2 ‖∞, ‖K2 ‖2
∞)
)
,

P
(

1
n

∣∣∣Zod
n,q

∣∣∣ > ε

)
≤ (1 + C0) exp

(
− ε2nh2

n

4pn‖Kq ‖∞

)
, q = 1, 2,

and analogously for Zev
n,q.

Proof. Applying Markov’s inequality we find that, for every λ > 0,

P
(

1
n

∣∣∣Zod
n,q

∣∣∣ > ε

)
≤

≤ IE
(
e

λ
n

Zod
n,q

)
e−λε ≤

∣∣∣∣∣∣IE
(
e

λ
n

Zod
n,q

)
−

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)∣∣∣∣∣∣+
r∏

j=1

∣∣∣IE (eλ
n

Yn,q,2j−1

)∣∣∣
 e−λε ≤

≤ exp

(
λ2pn‖Kq ‖2

∞
nh2

n

− λε

)
+ e−λε

∣∣∣∣∣∣IE
(
e

λ
n

Zod
n,q

)
−

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)∣∣∣∣∣∣ ,
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using Lemma 3.1. An optimization of the exponent in the first term of this last upper bound leads
to λ = εnh2

n

2pn‖Kq‖2∞
. From Lemma 3.2 it follows, using (4.1), that∣∣∣∣∣∣IE

(
e

λ
n

Zod
n,q

)
−

r∏
j=1

IE
(
e

λ
n

Yn,q,2j−1

)∣∣∣∣∣∣ ≤ C0.

That is, we have derived the upper bound,

P
(

1
n

∣∣∣Zod
n,q

∣∣∣ > ε

)
≤ exp

(
− ε2nh2

n

4pn‖Kq ‖2
∞

)
+C0 exp

(
− ε2nh2

n

2pn‖Kq ‖2
∞

)
≤ (1+C0) exp

(
− ε2nh2

n

4pn‖Kq ‖2
∞

)
.

�

In order to state the main result we have to deal with the terms in f̂n,q(x) that are not in
1
n(Zod

n,q + Zev
n,q). But these are, as expected, negligible. For easier reference, define Rn,q = f̂n,q(x)−

IE[f̂n,q(x)]− 1
n(Zod

n,q + Zev
n,q), q = 1, 2.

Lemma 4.2. Suppose (A1), (A2) are satisfied and

nh2
n

pn
−→ +∞. (4.2)

Then, for n large enough and every ε > 0, P(|Rn,q| > ε) = 0, q = 1, 2.

Proof. Write Rn,q = 1
n

∑n
j=2rnpn+1 Tn,q,j . As the functions Kq, q = 1, 2, are bounded, it follows

that Rn,q is bounded by 2n−2pnrn

nhn
‖Kq ‖∞ ≤ 4pn‖Kq‖∞

nhn
according to the construction of the sequences

pn and rn. As hn −→ 0 it follows from (4.2) that eventually this upper bound becomes less than ε,
so the lemma follows. �

Now, the main work has been completed. It remains to collect the various partial results in order
to obtain the exponential rate for the kernel estimator centered at its mean.

Theorem 4.3. Suppose (A1), (A2) and (4.2) are satisfied and that

nh2
n

p2
n

exp
(

nhn

pn

) ∞∑
j=pn+2

Cov1/3(X1, Xj) ≤ C1 < ∞. (4.3)

Then, for every ε ∈
(
0, 6 min(‖K1 ‖∞, ‖K1 ‖2

∞, ‖K2 ‖∞, ‖K2 ‖2
∞)
)

and n large enough,

P
(∣∣∣f̂n(x)− IE[f̂n(x)]

∣∣∣ > ε
)
≤ D exp

(
− ε2nh2

n

144Cpn

)
, (4.4)

where C = max(‖K1 ‖∞, ‖K2 ‖∞), D = 2
[
2 + B2C1

((∫
K ′

1(u)du
)2

+
(∫

K ′
1(u)du

)2
)]

.

Proof. We have

f̂n(x)− IE[f̂n(x)] =

=
(
f̂n,1(x)− IE[f̂n,1(x)]

)
+
(
f̂n,2(x)− IE[f̂n,2(x)]

)
=

=
1
n

(
Zod

n,1 + Zev
n,1

)
+

1
n

(
Zod

n,2 + Zev
n,2

)
+ Rn,1 + Rn,2.
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According to Lemma 4.2, for n large enough, P
(
|Rn,1| > ε

6

)
= P

(
|Rn,2| > ε

6

)
= 0, so we need to

concentrate only on the first terms. In order to apply Lemma 4.1 we must check that (4.1) is
verified. For this purpose notice that, according to Lemma 2.1,

Cov(Tn,q,1, Tn,q,j) =
1
h2

n

Cov
(

Kq

(
x−X1

hn

)
,Kq

(
x−Xj

hn

))
≤ 1

h2
n

B2

(∫
K ′

q(u)du

)2

Cov1/3(X1, Xj).

As K ′
1 and K ′

2 are assumed integrable, it follows that (4.3) implies (4.1). Applying then Lemma 4.1,
we find, for q = 1, 2,

P
(

1
n

∣∣∣Zod
n,q

∣∣∣ > ε

6

)
≤

(
1 + B2C1

(∫
K ′

q(u)du

)2
)

exp
(
− ε2nh2

n

144pn‖Kq ‖∞

)
,

and analogously for Zev
n,q, from where the result follows. �

Strengthening the conditions on the kernel we may use a decomposition of a compact interval
to derive an uniform exponential rate for the centered estimator. Let, on what follows, [a, b] be a
fixed interval and decompose [a, b] = ∪sn

j=1[zn,j − tn, zn,j + tn] into sn intervals of length 2tn. Then,
obviously,

sup
x∈[a,b]

∣∣∣f̂n(x)− IE[f̂n(x)]
∣∣∣ ≤

≤ max
1≤j≤sn

∣∣∣f̂n(zn,j)− IE[f̂n(zn,j)]
∣∣∣+

+ max
1≤j≤sn

sup
x∈[zn,j−tn,zn,j+tn]

∣∣∣f̂n(x)− f̂n(zn,j)− IE[f̂n(x)− f̂n(zn,j)]
∣∣∣ .

If we suppose the kernel K to be Lipschitzian, it follows that there exists a constant θ > 0 such
that ∣∣∣f̂n(x)− f̂n(zn,j)− IE[f̂n(x)− f̂n(zn,j)]

∣∣∣ ≤ 2
θ |x− zn,j |

h2
n

≤ 2θtn
h2

n

.

A correct choice of the sequence of radii will verify tn
h2

n
−→ 0. Supposing this condition satisfied it

follows then that

P

(
sup

x∈[a,b]

∣∣∣f̂n(x)− IE[f̂n(x)]
∣∣∣ > ε

)

≤ P
(

max
1≤j≤sn

∣∣∣f̂n(zn,j)− IE[f̂n(zn,j)]
∣∣∣ > ε− 2θtn

h2
n

)
≤

≤ sn max
1≤j≤sn

P
(∣∣∣f̂n(zn,j)− IE[f̂n(zn,j)]

∣∣∣ > ε

2

)
.

Thus, under the assumptions of Theorem 4.3, as the upper bound derived is independent of x, for
K Lipschitzian and sequences sn, tn such that b− a = 2sntn and tn

h2
n
−→ 0, it follows

P

(
sup

x∈[a,b]

∣∣∣f̂n(x)− IE[f̂n(x)]
∣∣∣ > ε

)
≤ Dsn exp

(
− ε2nh2

n

576Cpn

)
, (4.5)

where C and D are defined in Theorem 4.3.

Theorem 4.4. Suppose (A1), (A2), (4.3) are satisfied, the kernel K is Lipschtzian and pn =
nh3

n −→ +∞. Then, for every ε ∈
(
0, 6 min(‖K1 ‖∞, ‖K1 ‖2

∞, ‖K2 ‖∞, ‖K2 ‖2
∞)
)
, n large enough
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and each interval [a, b],

P

(
sup

x∈[a,b]

∣∣∣f̂n(x)− IE[f̂n(x)]
∣∣∣ > ε

)
≤ D

b− a

2
h−3

n exp
(
− ε2

576Chn

)
. (4.6)

where C and D are defined as in Theorem 4.3.

Proof. Choose tn = h3
n to which corresponds sn = b−a

2h3
n

and use (4.5). It is easy to check that (4.2)
holds and that this choice for the sequence tn verifies all the assumptions made. �

Note that there are other possible choices for the sequences. Making these explicit would mean
some more precise expressions for hn and pn. These will be referred in the next section.

5. Some examples

In the preceding we derived some sufficient conditions in order to prove an exponential rate
for the kernel estimator for the density. We will now verify that these conditions are not void
by constructing examples of covariance structures and choices of the sequences hn and pn (which
determines rn) that verify the two assumptions that involve these quantities: (4.2) and (4.3).

Let us first suppose that the covariances Cov(X1, Xn) decrease geometrically. This is the situation
where examples have been given for the validity of some other exponential inequalities (see Ioannides
and Roussas [11] and Henriques and Oliveira [10]). Suppose that Cov(X1, Xn) = ρn for some
ρ ∈ (0, 1). Then

∞∑
j=pn+2

Cov1/3(X1, Xj) =
ρ

pn+2
3

1− ρ1/3
,

so that (4.3) becomes

nh2
n

p2
n(1− ρ1/3)

exp
(

nhn

pn
+

pn + 2
3

log ρ

)
≤ C1. (5.1)

Theorem 5.1. Suppose (A1), (A2), (4.2) are satisfied and Cov(X1, Xn) = ρn for some ρ ∈ (0, 1).
If supn∈IN

nhn
p2

n
≤ M < ∞ and ρ ∈ (0, e−3M ), then inequality (4.4) holds.

Proof. The exponent in (5.1) should be bounded, which is equivalent to log ρ ≤ 3A
pn
− 3nhn

p2
n

, for

some A ∈ IR. As pn −→ +∞ and nhn
p2

n
is bounded, it is enough that log ρ ≤ −3M . Finally, note

that nh2
n

p2
n
≤ Mhn −→ 0, so it is bounded. �

It is straightforward to check that for some usual forms for hn and pn the assumptions of the
previous theorem are achieved.

Corollary 5.2. The assumptions of Theorem 5.1 are satisfied in each of the following situations
a) pn = nδ, hn = n−β, β ∈ (0, 1/3), δ ∈ (1−β

2 , 1− 2β);
b) pn = h−δ

n , δ > 1, nh2+δ
n −→ +∞ and supn∈IN nh1+2δ

n < +∞;
c) pn = nhα

n, α > 2, infn∈IN nh2α−1
n > 0; in this case, if hn = n−β we must require β ∈

(0, 1
2α−1).

Notice that the last choice mentioned in Corollary 5.2 includes the case where a uniform expo-
nential rate holds, as mentioned in Theorem 4.4. The first two choices indicated in this Corollary
also enable the proof of an uniform exponential bound as it is easily verified from (4.5), the starting
point for the result in Theorem 4.4. The exponential rates derived in each case mentioned in Corol-
lary 5.2 are of order n3β exp

(
−n1−(2β+δ)

)
, h−2δ

n exp
(
−nh2+δ

n

)
, taking tn = hδ

n, and h−3
n exp

(
−h−1

n

)
,

respectively.
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Suppose now that the covariances decrease at a polynomial rate, that is, Cov(X1, Xn) = n−a,
for some a > 3. Then

∞∑
j=pn+2

Cov1/3(X1, Xj) ∼ (pn + 2)
3−a
3 .

Inserting this into (4.3) we find a term that behaves like

nh2
n

p2
n

exp
(

nhn

pn
− a1 log pn

)
,

where a1 = a−3
3 as log(pn+2)

log pn
∼ 1. If this term is to be bounded, we may have, for some A > 0,

hn ≤
Apn

n
+ a1

pn

n
log pn. (5.2)

Theorem 5.3. Suppose (A1), (A2), (4.2) are satisfied, Cov(X1, Xn) = n−a, for some a > 3,
pn

n −→ 0, and supn∈IN
nhn

pn log pn
≤ M < ∞. Then, if a1 > M , (4.4) holds.

Proof. From the assumptions made it follows easily that hn ≤ M pn

n log pn, so (5.2) holds. On the

other hand, under these assumptions nh2
n

p2
n
≤ Ahn

pn
+ a1

hn
pn

log pn −→ 0, so nh2
n

p2
n

is bounded. �

As usual, we may be more precise about the choices of the sequences. No comment about the
verification will be included as it is a quite straightforward task.

Corollary 5.4. Suppose (A1), (A2) are satisfied and Cov(X1, Xn) = n−a, for some a > 3. Suppose
that one of the following conditions are satisfied

a) pn = nδ, δ ∈ (0, 1), n1−δh2
n −→ +∞ and a1 > 0 is such that hn < a1δn

δ−1 log n;
b) pn = nh3

n, hn > 1
(M log n)1/2 and a1 > M .

Then (4.4) holds.

In this case of polynomial decrease of the covariances we may obtain an uniform exponential rate
using the second choice of the sequences mentioned in the previous corollary. In fact, this choice
verifies the assumptions of Theorem 4.4, so (4.6) holds.

References

[1] C. Azevedo and P. E. Oliveira, Kernel-type estimation of bivariate distribution function for associated random
variables, New Trends in Probability and Statistics, Vol. 5, Proceedings of the 6th Tartu Conference, VSP, 17–25,
2000.

[2] I. Bagai and B. L. S. Prakasa Rao, Estimation of the survival function for stationary associated processes, Statist.
Probab. Lett. 12 (1991), 385–291.

[3] I. Bagai and B. L. S. Prakasa Rao, Kernel-type density and failure rate estimation for associated sequences,
Ann. Inst. Statist. Math. 47 (1995), 253–266.

[4] D. Bosq, Nonparametric statistics for stochastic processes, Lecture Notes in Statistics 110, Springer, 1996.
[5] Z. Cai and G. G. Roussas, Efficient Estimation of a Distribution Function under Quadrant Dependence, Scand.

J. Statist. 25 (1998), 211–224.
[6] Z. Cai and G. G. Roussas, Weak convergence for smooth estimator of a distribution function under negative

association, Stochastic Anal. Appl. 17 (1999), 145–168.
[7] L. Devroye, Exponential inequalities in nonparametric estimation, In: Nonparametric Functional Estimation and

Related Topics, G. Roussas, ed., Kluwer Academic Publishers, Dordrecht, 1991, 31–44.
[8] I. Dewan and B. L. S. Prakasa Rao, A general method of density estimation for associated random variables, J.

Nonparametr. Statist. 10 (1999), 405–420.
[9] C. Henriques and P. E. Oliveira, Estimation of a two-dimensional distribution function under association, J.

Statist. Planning Inf., to appear.
[10] C. Henriques and P. E. Oliveira, Convergence rates for the estimation of two-dimensional distribution functions

under association and estimation of the covariance of the limit empirical process, Preprint, Pré-Publicações do
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