Actions of the symmetric group on sets generated by Yamanouchi words

Olga Azenhas, ${ }^{1}$ Ricardo Mamede ${ }^{2}$
Departamento de Matemática, Universidade de Coimbra
3001-454 Coimbra, Portugal

Abstract

In this paper we consider words in a finite totally ordered alphabet which, restricted to a two consecutive letters subalphabet, are either Yamanouchi or dual Yamanouchi. We introduce coordinates or indexing sets of words and we show that there is a monoid isomorphism between words and classes of sequences of finite sets in \mathbb{N}. Considering words in a two consecutive letters subalphabet, we define maps acting on pairs of indexing sets which, by fixing a longest self-dual Yamanouchi subword, transform a Yamanouchi into a dual Yamanouchi word, and reciprocally. The pairs of indexing sets of Yamanouchi and dual Yamanouchi words are, respectively, comparable under an ordering and its dual in the power-set of $\{1, \ldots, n\}$. This family of transformations is induced by the witnesses of the comparable pairs. When minimal and maximal witnesses are considered, we recover those operators which satisfy the conditions of the symmetric group, defined by A. Lascoux and M. P. Schutzenberger in [10], [12]. Starting with given indexing sets of a Yamanouchi word, in a three-letters alphabet, we generate, under the action of these transformations, a set of indexing sets which gives rise to an action of the symmetric group \mathcal{S}_{3}. This group action of \mathcal{S}_{3} is equivalent to an explicit decomposition of the given indexing sets of a Yamanouchi word in a three-letters alphabet. For transformations induced by minimal and maximal witnesses, we use this decomposition to define, recursively, an action of the symmetric group $\mathcal{S}_{t}, t \geq 3$, on a set generated by indexing sets of all Yamanouchi words in a t-letters alphabet. This group action coincides with the one described by A. Lascoux and M. P. Schutzenberger in [10] and [12], when restricted to the words under consideration.

The action of the symmetric group \mathcal{S}_{3}, on words or Young tableaux, has a natural matrix translation afforded by the obvious permutation action on a sequence of matrices over a local principal ideal domain with maximal ideal (p). Moreover, such a permutation action gives rise, directly, to the mentioned decomposition of the indexing sets of a Yamanouchi word in a three-letters alphabet. This is the content of a subsequent paper.

[^0]
1 Introduction

Let M be the set of all re-arrangements of a sequence of t fixed integers in $\{1, \ldots, n\}$. We consider those Young tableaux \mathcal{T} of weight $\left(m_{1}, \ldots, m_{t}\right)$ in M arising from a sequence of products of matrices over a local principal ideal domain with maximal ideal (p),

$$
\left(\Delta_{a}, \Delta_{a} U\left(p I_{m_{1}} \oplus I_{n-m_{1}}\right), \Delta_{a} U \prod_{k=1}^{2}\left(p I_{m_{k}} \oplus I_{n-m_{k}}\right), \ldots, \Delta_{a} U \prod_{k=1}^{t}\left(p I_{m_{k}} \oplus I_{n-m_{k}}\right)\right)
$$

where Δ_{a} is an $n \times n$ diagonal matrix with invariant partition a, and U is an $n \times n$ unimodular matrix. When $\left(m_{1}, \ldots, m_{t}\right)$ is by decreasing order, \mathcal{T} is a Littlewood-Richardson tableau [1],[2], [7]. Now, for each partition a and $n \times n$ unimodular matrix U, let $T_{(a, M)}(U)$ be the set of all sequences of matrices as above, with (m_{1}, \ldots, m_{t}) running over M. The symmetric group \mathcal{S}_{t} acts on M and on $T_{(a, M)}(U)$ in the obvious way. The action of the symmetric group on those sequences of matrices is equivalent to an action of the symmetric group on the set of Young tableaux realized by those sequences of matrices in $T_{(a, M)}(U)$. When $t=3$, the action of \mathcal{S}_{3}, on $T_{(a, M)}(U)$, is described by an explicit decomposition of the indexing sets of the Littlewood-Richardson tableau in this set which generates the remaining indexing sets of the Young tableaux in $T_{(a, M)}(U)$. The indexing sets of those Young tableaux, generated in $T_{(a, M)}(U)$, are such that the corresponding words, restricted to a two consecutive letters subalphabet, are either Yamanouchi or dual Yamanouchi. This is analyzed in another paper.
A. Lascoux and M. P. Schutzenberger, [10], [12], have described an action of the symmetric group on Young tableaux by defining operators $\sigma_{k}, k=1, \ldots, t-1$, acting on words in a tottaly ordered alphabet $\{1, \ldots, t\}$. Generically, the action of the operator σ_{k}, on a word w, may be described as follows: first extract from w a subword w^{\prime} that contains the letters k and $k+1$ only. Second, in the word w^{\prime} remove a longest self-dual Yamanouchi subword, in the two-letters subalphabet $\{k, k+1\}$. As a result, we obtain a subword of the type $k^{r}(k+1)^{s}$. Then, we replace it with the word $k^{s}(k+1)^{r}$ and, after this, we recover all the removed letters of w, including the ones different from k and $k+1$. In [10] and [12], the determination of a longest self-dual Yamanouchi subword, in a two-letters subalphabet $\{k, k+1\}$, is done by bracketing, consecutively, in w^{\prime} every factor $k+1 k$. The letters which are bracketed constitute a desired self-dual Yamanouchi word. The proof that the operators σ_{k} satisfy the relations of the symmetric group is done by using properties of the plactic monoid.

In this paper, the motivation for our analysis is the decomposition of the indexing sets of a Littlewood-Richardson tableau achieved in the matrix problem, described above, in the cases $t=2$ [3], (already used in [5]), and $t=3$. Introducing the notion of indexing sets of a word, and establishing a monoid isomorphism between words and classes of sequences of finite sets in \mathbb{N}, we rediscover this decomposition in theorem 4.4. We define a lattice on the power-set of $\{1, \ldots, n\}$, and consider its dual induced by the reverse order in
$\{1, \ldots, n\}$. In this lattice and its dual, comparable pairs (A, B) are, respectively, indexing sets of Yamanouchi words and their duals, in a two-letters subalphabet. We give operations on comparable pairs of sets, afforded by their witnesses, such that the corresponding Yamanouchi word is mapped into a dual word, and reciprocally. Translating to words these operations, we describe procedures on indexing sets which are equivalent to put brackets on the letters of a word, in a two-letters subalphabet.Under the action of these operations, and starting with indexing sets of a Yamanouchi word, in a three-letters alphabet, we generate a set of indexing sets which (see definition 4.2 and theorem 4.2)is equivalent to a decomposition of the given indexing sets. This defines an action of the symmetric group \mathcal{S}_{3}. The witnesses of a comparable pair (A, B) are ordered by their images. The minimal and maximal witnesses of each comparable pair and its dual, respectively, afford operators Θ^{*} on the pairs of indexing sets of all Yamanouchi words w and their duals, in a two-letters alphabet. It turns out that $\Theta^{*}(w)=\sigma_{1}(w)$. Considering words in a t-letters alphabet which, restricted to a two consecutive letters subalphabet, are either Yamanouchi or dual Yamanouchi, we put $\Theta_{k}^{*}=\Theta_{\mid\{k, k+1\}}^{*}$, for $k=1, \ldots, t-1$. It is proven that Θ_{k}^{*}, $k=1, \ldots, t-1$, satisfy the conditions of the symmetric group.

The paper is organized as follows. In the section 2 , the power-set of $\{1, \ldots, n\}$ is equipped with the structure of lattice, and is defined its dual induced by the reverse order in $\{1, \ldots, n\}$. We introduce the notion of witness of a comparable pair (A, B), and give procedures to calculate minimal and maximal witnesses of such pairs. A series of results are proved in order to support the last section.

In section 3, we define indexing sets of words and Young tableaux, and transfer to words the operations on indexing sets, defined in section 2. In particular, we recover the operators σ_{k} described in the platic monoid.

In section 4 , we define actions of the symmetric group \mathcal{S}_{3} on sets generated by indexing sets of Yamanouchi words, in a tree-letters alpahabet. The generation of these sets is equivalent to a decomposition of the given indexing sets of a Yamanouchi word. When the operators $\Theta_{k}^{*}, k=1,2$, are used to decompose the given indexing sets, we obtain the action of symmetric group \mathcal{S}_{3}, described by A. Lascoux and M. P. Schutzenberger in [10], [12]. It is shown, recursively, that the operators $\Theta_{k}^{*}, k=1, \ldots, t-1$, may be used to decompose indexing sets of a Yamanouchi word in a t-letters alpahbet, and that they satisfy the conditions of the symmetric group \mathcal{S}_{t}.

2 The lattice of the power-set of $[n]$ and its dual induced by the reverse order

2.1 The lattice $\mathcal{P}[n]$

Let \mathbb{N} be the set of non-negative integers with the usual order $" \geq "$. Given $n \in \mathbb{N},[n]$ denotes the set $\{1, \ldots, n\}$, and $2^{[n]}$ the power-set of $[n]$.

Definition 2.1 Let $A, B \subseteq[n]$. We write $A \geq B$ if there exists an injection $i: B \rightarrow A$ such that $b \leq i(b)$, for all $b \in B$. We call such an injection a witness for $A \geq B$.

The relation \geq defined by $A \geq B$ is a partial order on $2^{[n]}$, and we denote it by $\mathcal{P}[n]$, that is, given $(A, B) \in 2^{[n]} \times 2^{[n]},(A, B) \in \mathcal{P}[n]$ iff $A \geq B$. This relation can be characterized in a number of ways as seen in the following proposition.

Given a finite set A, let $|A|$ denote the cardinality of A.
Proposition 2.1 Given $A, B \subseteq[n]$, the following statements are equivalent:
(a) There exists an injection $i: B \rightarrow A$ such that $b \leq i(b)$, for all $b \in B$.
(b)If $a=\left(a_{1}, a_{2}, \ldots, a_{|A|}, 0, \ldots\right)$ and $b=\left(b_{1}, \ldots, b_{|B|}, 0, \ldots\right)$ are the decreasing rearrangement of the elements of A and B as embedded into $\mathbb{N}^{\mathbb{N}}$, then $a \geq b$ in the componentwise order.
(c)For any $k \in \mathbb{N}$, it holds $|\{a \in A: a \geq k\}| \geq|\{b \in B: b \geq k\}|$.
(d) There exists an injection $i: B \rightarrow A$ as in (a), and satisfying additionally $A \cap B \subseteq$ $i(B)$. In particular, $i_{\mid A \cap B}=i d_{\left.\right|_{A \cap B}}$. (id stands for the identity map.)

Proof: It is a routine exercise to show that $(a) \Rightarrow(c) \Rightarrow(b) \Rightarrow(a)$.
$(a) \Rightarrow(d)$ Suppose condition (a) holds. Since we have already proved the equivalence of conditions (a) and (c), we have $|\{a \in A: a \geq k\}| \geq|\{b \in B: b \geq k\}|$, for all $k \in \mathbb{N}$. Then, we must have $|\{a \in A \backslash B: a \geq k\}| \geq|\{b \in B \backslash A: b \geq k\}|, k \in \mathbb{N}$. Thus, there exists an injection $j: B \backslash A \rightarrow A \backslash B$ such that $j(b) \geq b, b \in B \backslash A$. Define $\bar{j}: B \rightarrow A$ by $\bar{j}(b)=b$ if $b \in A \cap B$, and $\bar{j}(b)=j(b)$ if $b \notin A \cap B$. Clearly, \bar{j} is a witness for $A \geq B$ and $\bar{j}_{\mid A \cap B}=i d_{\mid A \cap B}$.
$(d) \Rightarrow(a)$ Trivial.
Note that (b) characterizes $\mathcal{P}[n]$ as the component ordering. For simplicity, we shall write $A=\left\{a_{1}>\ldots>a_{|A|}\right\}$ to mean $A=\left\{a_{1}, \ldots, a_{|A|}\right\}$ with $a_{1}>\ldots>a_{|A|}$.
Proposition 2.2 $\mathcal{P}[n]$ is a lattice in which the family of all subsets of a given cardinality forms a sublattice. The family of all finite subsets of $\mathbb{N}, \bigcup_{n \in \mathbb{N}} \mathcal{P}[n]$, is a lattice.
Proof: It is a direct consequence of proposition 2.1, (b), and the observation that the family of all integral sequences with finite support defines a lattice with respect to the componentwise order: if $a=\left(a_{i}\right)_{i=1}^{\infty}$ and $b=\left(b_{i}\right)_{i=1}^{\infty}$ are two such sequences, we define $a \wedge b=\left(\min \left\{a_{i}, b_{i}\right\}\right)$ and $a \vee b=\left(\max \left\{a_{i}, b_{i}\right\}\right)$.

Next proposition stresses the property that $\mathcal{P}[n]$ is an extension of any lattice of the family of all subsets of a given cardinality.
Proposition 2.3 Given $A, B \subseteq[n]$, the following statements are equivalent:
(a) $A \geq B$.
(b) There exits $X \subseteq A$ such that $|X|=|B|$ and $X \geq B$.
(c) There exits $X \subseteq A$ such that $|X|=|B|, A \cap B \subseteq X$ and $X \geq B$.
(d) $A \backslash Z \geq B \backslash Z$, with $Z \subseteq A \cap B$.

Proof: It is a direct consequence of proposition 2.1, (a) and (d) .
Proposition 2.4 $\mathcal{P}[n]$ has the following properties
(a) If $B \subseteq A$ then $A \geq B$.
(b) Let $A \geq B$ and $C \geq D$ such that $A \cap C=\emptyset$ and $B \cap D=\emptyset$. Then $A \cup C \geq B \cup D$.
(c) If $A \geq B$ and $B=B_{1} \cup B_{2}$, with $|A|=|B|$ and $B_{1} \cap B_{2}=\emptyset$, there exist $A_{1}, A_{2} \subseteq A$ such that $A_{1} \cup A_{2}=A, A_{1} \cap A_{2}=A_{1} \cap B_{2}=A_{2} \cap B_{1}=\emptyset$ and $A_{i} \geq B_{i}, i=1,2$.

Proof: (a) and (b) are a direct consequence of proposition 2.3.
(c) Let $i: B \rightarrow A$ be a witness of $A \geq B$ such that $i_{\mid A \cap B}=i d_{\mid A \cap B}$. Define $A_{i}:=i\left(B_{i}\right)$, $i=1,2$.

Let $A \geq B$ and i, j witnesses of $A \geq B$. We write $i \geq j$ if $i(B) \geq j(B)$. Given $A \geq B$, the relation \geq defined by $i \geq j$ is a partial order on the set of witnesses of $A \geq B$.

Considering proposition 2.3 and since $\mathcal{P}[n]$ is a lattice, given $A \geq B$ we may define the least upper bound of B in 2^{A}.

Definition 2.2 Let $A \geq B$. We write

$$
\min _{B} A=\min \{X \subseteq A:|X|=|B| \text { and } X \geq B\}
$$

as the least upper bound of B contained in A.
Note that $\min _{B} A=\min \{i(B): i$ is a witness of $A \geq B\} ; Y \in \mathcal{P}(A), Y \geq B$ only if $Y \geq \min _{B} A$; and $A \cap B \subseteq \min _{B} A$. In particular, if $|A|=|B|, \min _{B} A=A$, and if $B \subseteq A$, $\min _{B} A=B$.

Definition 2.3 Let i be a witness of $A \geq B$. We say that i is a minimal witness of $A \geq B$ if $i(B)=\min _{B} A$.

In the sublattice of all subsets of $[n]$ of a given cardinality every witness is minimal.
Given $A \geq B, \min _{B} A$ may be computed in several ways, and, therefore, this leads to different minimal witnesses. The next algorithm exhibits a minimal witness of $A \geq B$.

Theorem 2.5 Let $A \geq B$ with $B=\left\{b_{1}>\ldots>b_{m}\right\}$. Let

$$
\begin{align*}
y_{m} & =\min \left\{a \in A: a \geq b_{m}\right\}, \text { and } \tag{1}\\
y_{m-i} & =\min \left\{a \in A \backslash\left\{y_{m}, \ldots, y_{m-i+1}\right\}: a \geq b_{m-i}\right\}, \text { for } i=1, \ldots, m-1 \tag{2}
\end{align*}
$$

Then, $\min _{B} A=\left\{y_{1}>\ldots>y_{m}\right\}$.

Proof: By induction on m. If $m=1, \min _{B} A=\left\{y_{1}\right\}$. Let $m>1$ and $\left(z_{1}^{j}, \ldots, z_{m}^{j}, 0, \ldots\right)$, for $j=1, \ldots, k$, the decreasing rearrangement of all subsets of A of cardinal m such that $\left(z_{1}^{j}, \ldots, z_{m}^{j}, 0, \ldots\right) \geq\left(b_{1}, \ldots, b_{m}, 0, \ldots\right)$. Let $\left(x_{1}, \ldots, x_{m}, 0, \ldots\right)=\wedge_{j=1}^{k}\left(z_{1}^{j}, \ldots, z_{m}^{j}, 0, \ldots\right)$ be the decreasing rearrangement of $\min _{B} A$. Clearly $\left\{y_{1}, \ldots, y_{m}\right\} \subseteq A$ and $\left(y_{1}, \ldots, y_{m}, 0, \ldots\right) \geq$ $\left(b_{1}, \ldots, b_{m}, 0, \ldots\right)$. Therefore, $y_{i} \geq x_{i}, i=1, \ldots, m$. On the other hand, by (1), $y_{m}=$ $\min _{\left\{b_{m}\right\}} A \leq x_{m}$. Hence $y_{m}=x_{m}=\min _{\left\{b_{m}\right\}} A$. Now, notice that if $\left(q_{1}, \ldots, q_{m-1}, 0, \ldots\right)$ is the decreasing rearrangement of a subset of cardinal $m-1$ of $A \backslash\left\{y_{m}\right\}$ such that $\left(q_{1}, \ldots, q_{m-1}, 0, \ldots\right) \geq\left(b_{1}, \ldots, b_{m-1}, 0, \ldots\right)$, then the array $\left(q_{1}, \ldots, q_{m-1}, y_{m}, 0, \ldots\right)$ is the decreasing rearrangement of a subset of A of cardinal m such that $\left(q_{1}, \ldots, q_{m-1}, y_{m}, 0, \ldots\right) \geq$ $\left(b_{1}, \ldots, b_{m-1}, b_{m}, 0, \ldots\right)$. Therefore, $\left(z_{1}^{j}, \ldots, z_{m-1}^{j}, 0, \ldots\right), j=1, \ldots, k$, are the decreasing rearrangement of all subsets of cardinal $m-1$ of $A \backslash\left\{y_{m}\right\}$ such that $\left(z_{1}^{j}, \ldots, z_{m-1}^{j}, 0, \ldots\right) \geq$ $\left(b_{1}, \ldots, b_{m-1}, 0, \ldots\right)$. Hence, $\left(x_{1}, \ldots, x_{m-1}, \ldots\right)=\wedge_{j=1}^{k}\left(z_{1}^{j}, \ldots, z_{m-1}^{j}, 0, \ldots\right)$ is the decreasing rearrangement of $\min _{\left(B \backslash\left\{b_{m}\right\}\right)}\left(A \backslash\left\{y_{m}\right\}\right)$, and

$$
\begin{equation*}
\min _{B} A=\min _{\left\{b_{m}\right\}} A \cup \min _{\left(B \backslash\left\{b_{m}\right\}\right)}\left(A \backslash\left\{y_{m}\right\}\right) . \tag{3}
\end{equation*}
$$

By induction and from (2), we have $\min _{\left(B \backslash\left\{b_{m}\right\}\right)}\left(A \backslash\left\{y_{m}\right\}\right)=\left\{y_{1}, \ldots, y_{m-1}\right\}$, and consequently, by (3), $\min _{B} A=\left\{y_{1}, \ldots, y_{m}\right\}$.

Corollary 2.6 Let $A^{\prime} \geq B$ with $\left|A^{\prime}\right|=|B|, A^{\prime}=\left\{a_{1}>\ldots>a_{m}\right\}$ and $B=\left\{b_{1}>\ldots>b_{m}\right\}$. Let $A, F \subseteq\{1, \ldots, n\}$ with $A^{\prime} \subseteq A$. Then
(I) the following conditions are equivalent
(a) $A^{\prime}=\min _{B}\left(A^{\prime} \cup F\right)$.
(b) $F \subseteq\left\{a \in\{1, \ldots, n\}: \exists i \in\{0,1, \ldots, m\}, b_{i}>a>a_{i+1}\right\}$.
(We convention $b_{0}:=+\infty$ and $a_{m+1}:=-\infty$.)
(II) if $A^{\prime}=\min _{B} A$, it holds
(a) $\min _{B} A=\min _{\left\{b_{m}, \ldots, b_{i+1}\right\}} A \cup \min _{\left\{b_{i}, \ldots, b_{1}\right\}}\left(A \backslash\left\{a_{m}, \ldots, a_{i+1}\right\}\right)$, for $1 \leq i \leq m$.
(b) $\min _{B} A=\min _{\left\{b_{m}, \ldots, b_{i+1}\right\}} A \cup \min _{\left\{b_{i}, \ldots, b_{1}\right\}} A$, if there exists $i \in\{1, \ldots, m-1\}$ such that $b_{i}>a_{i+1}$.

Proof: Straightforward from (1) and (2).
Corollary 2.7 Let A, B and $C \subseteq[n]$ such that $A \geq B$. Let $G, A^{\prime} \subseteq A$ such that $A^{\prime} \cap G=\emptyset$ and $A^{\prime} \geq B$ with $\left|A^{\prime}\right|=|B|, B=\left\{b_{1}>\ldots>b_{m}\right\}$ and $A^{\prime}=\left\{a_{1}>\ldots>a_{m}\right\}$. Then
(a) if $g \in G$ only if $b_{i}>g>a_{i+1}$, for some $i \in\{0,1, \ldots, m\}$, it holds

$$
\min _{B} A=\min _{B}(A \backslash G) .
$$

(b) $\min _{B}(A \cup C)=\min _{B}\left[\left(\min _{B} A\right) \cup C\right]$.

Proof: (a) Let $\min _{B} A=Y$ with $Y=\left\{y_{1}>\ldots>y_{m}\right\}$. Then, $a_{i} \geq y_{i} \geq b_{i}$ for each $i \in\{1, \ldots, m\}$, and $g \in G$ only if $b_{i}>g>a_{i+1} \geq y_{i+1}$. By corollary 2.6, $\min _{B} A=$ $\min _{B} Y=\min _{B}(Y \cup(A \backslash G))$.
(b) Consequence of (a).

The significance of the next two theorems will be clear in the last section.
Theorem 2.8 Let $A, B, C \subseteq[n]$ such that $A \geq B$ and $A \cap C=\emptyset$. Let $A^{\prime}=\min _{B} A$. Then, $\min _{B}(A \cup C)=X \cup Y$ with $X \subseteq A^{\prime}, Y \subseteq C$, and $A^{\prime}=X \cup Z$ such that $Z \geq Y$.

Proof: By induction on $|C|$. Let $|C|=1$ and $C=\{c\}$. Let $B=\left\{b_{1}>\ldots>b_{m}\right\}$ and $A^{\prime}=\left\{a_{1}>\ldots>a_{m}\right\}$. By previous corollary, if $b_{k}>c>a_{k+1}$, for some $k \in\{0,1, \ldots, m\}$, then $Y=\emptyset=Z$. Otherwise, $a_{k}>c>a_{k+1}$ and $a_{k}>c \geq b_{k}$, for some $k \in\{1, \ldots, m\}$. Since $A^{\prime} \cap\{c\}=\left\{a_{1}>\ldots>a_{k}>c>a_{k+1}>\ldots>a_{m}\right\}$ and using corollary 2.6, (II), we may write

$$
\begin{aligned}
& \min _{B}(A \cup\{c\})=\min _{B}\left(A^{\prime} \cup\{c\}\right) \\
& =\left\{a_{m}, \ldots, a_{k+1}\right\} \cup \min _{\left\{b_{k}\right\}}\left[\left(A \backslash\left\{a_{m}, \ldots, a_{k+1}\right\}\right) \cup\{c\}\right] \\
& \cup \min _{\left\{b_{k-1}, \ldots, b_{1}\right\}}\left[A \backslash\left\{a_{m}, \ldots, a_{k+1}\right\}\right], \text { and } \\
& \min _{B} A=\left\{a_{m}, \ldots, a_{k+1}\right\} \cup \min _{\left\{b_{k}\right\}}\left[A \backslash\left\{a_{m}, \ldots, a_{k+1}\right\}\right] \\
& \cup \min _{\left\{b_{k-1}, \ldots, b_{1}\right\}}\left[A \backslash\left\{a_{m}, \ldots, a_{k+1}, a_{k}\right\}\right],
\end{aligned}
$$

where $\min _{\left\{b_{k-1}, \ldots, b_{1}\right\}}\left(A \backslash\left\{a_{m}, \ldots, a_{k+1}\right\}\right)=\left\{a_{k}, \ldots, a_{f+1}, a_{f-1}, \ldots, a_{1}\right\}$, with $1 \leq f \leq k$.
Define $X:=A^{\prime} \backslash\left\{a_{f}\right\}$, with $1 \leq f \leq k, Y:=C, Z:=\left\{a_{f}\right\}$. Thus, $A^{\prime}=X \cup Z$ and $\min _{B}(A \cup C)=X \cup Y$ with $Z>Y$.

Let $|C|>1$ and $C=C^{\prime} \cup\{c\}$. By induction $\min _{B}\left(A \cup C^{\prime}\right)=X^{\prime} \cup Y^{\prime}$ with $X^{\prime} \subseteq A^{\prime}, Y^{\prime} \subseteq$ C^{\prime}, and $A^{\prime}=X^{\prime} \cup Z^{\prime}$ such that $Z^{\prime} \geq Y^{\prime}$. Now, either $\min _{B}(A \cup C)=X^{\prime} \cup Y^{\prime}$ with $X^{\prime} \subseteq A^{\prime}$, $Y^{\prime} \subseteq C$, and $A^{\prime}=X^{\prime} \cup Z^{\prime}$ such that $Z^{\prime} \geq Y^{\prime}$, or $\min _{B}(A \cup C)=\left[\left(X^{\prime} \cup Y^{\prime}\right) \backslash\{x\}\right] \cup\{c\}$, with $x \in X^{\prime} \cup Y^{\prime}$ and $x>c$. In the last case, either we get $\min _{B}(A \cup C)=X^{\prime} \cup Y$ with $Y=\left(Y^{\prime} \backslash\{x\}\right) \cup\{c\}$, and $A^{\prime}=X^{\prime} \cup Z$ with $Z=Z^{\prime}$, or we get $\min _{B}(A \cup C)=\left(X^{\prime} \backslash\{x\}\right) \cup Y$ with $Y=Y^{\prime} \cup\{c\}$, and $A^{\prime}=\left(X^{\prime} \backslash\{x\}\right) \cup Z$ with $Z=Z^{\prime} \cup\{x\}$.

Lemma 2.9 Let $A, B \subseteq[n]$ where $B=\left\{b_{1}>\ldots>b_{m}\right\}$ and $\min _{B} A=\left\{a_{1}>\ldots>a_{m}\right\}$. Let $Y=\left\{y_{1}>\ldots>y_{s}\right\}$ such that $\exists i_{k} \in\{1, \ldots, m\}, b_{i_{k}}>y_{k}>a_{i_{k}+1}$, for $k=1, \ldots, s$. Let $X=B \backslash\left\{b_{i_{1}}, \ldots, b_{i_{s}}\right\}$. Then, $\min _{B} A=\min _{(X \cup Y)}\left\{a_{1}, \ldots, a_{m}\right\}$.

Proof: Straightforward from theorem 2.5 and corollary 2.6, (II), (b).
Theorem 2.10 Let G, F_{2}, F_{3} be subsets of $[n]$ such that $G \geq F_{2} \geq F_{3}$. Let $D \subseteq[n]$ such that $D \cap G=D \cap F_{2}=\emptyset$, and $\min _{F_{2}}(G \cup D)=G$. Let $F^{\prime}=\min _{F_{3}} F_{2}$. Then, if $\min _{F_{3}}\left(F_{2} \cup D\right)=F$, we have $\min _{F} G=\min _{F^{\prime}} G$.

Proof: Let $F_{2}=\left\{a_{1}>\ldots>a_{t}\right\}, F^{\prime}=\left\{a_{s_{1}}>\ldots>a_{s_{m}}\right\}$ where $\left\{s_{1}>\ldots>s_{m}\right\} \subseteq$ $\{1, \ldots, t\}$, and $F_{3}=\left\{b_{1}>\ldots>b_{m}\right\}$. Using corollary 2.7 and theorem 2.8, we may write

$$
\min _{F_{3}}\left(F_{2} \cup D\right)=\min _{F_{3}}\left(F^{\prime} \cup D\right)=X \cup Y,
$$

with $X \subseteq F^{\prime}$ and $Y \subseteq D$. Now, corollary 2.6 implies $y \in Y$ only if

$$
\begin{gather*}
\exists i \in\{1, \ldots, m\}: \quad a_{s_{i}}>y>a_{s_{i+1}}, \quad a_{s_{i}}>y \geq b_{i}, \text { and } \\
a_{s_{i}}>\alpha \geq b_{i} \Rightarrow \alpha \neq F_{2} . \tag{4}
\end{gather*}
$$

On the other hand, since $\min _{F_{2}}(G \cup D)=G$, putting $G=\left\{g_{1}>\ldots>g_{t}\right\}$, we have, from corollary 2.6,

$$
y \in Y \Rightarrow \exists j \in\{1, \ldots, t\}: a_{j}>y>g_{j+1} .
$$

Hence $j \in\left\{s_{1}, \ldots, s_{m}\right\}$. Otherwise, $a_{s_{i}}>a_{j}>y \geq b_{i}$, with $a_{j} \in F_{2}$. A contradiction with (4). Hence, from previous lemma, $\min _{X \cup Y} G=\min _{F} G$.

Next we show that the result of the algorithm given in theorem 2.5 does not depend on the order in which the elements of B are considered. In particular, next algorithm leads to minimal witnesses of $A \geq B$ with different properties which shall be important in the sequel.

Theorem 2.11 Let $A \geq B$ and $B=\left\{b_{1}>\ldots>b_{m}\right\}$. Let $\sigma \in \mathcal{S}_{m}$ and

$$
\begin{aligned}
z_{m} & =\min \left\{a \in A: a \geq b_{\sigma(m)}\right\} \\
z_{m-i} & =\min \left\{a \in A \backslash\left\{z_{m}, \ldots, z_{m-i+1}\right\}: a \geq b_{\sigma(m-i)}\right\}, i=1, \ldots, m-1
\end{aligned}
$$

Then, $\min _{B} A=\left\{z_{1}, \ldots, z_{m}\right\}$.
Proof: By induction on m. If $m=1$, it is trivial, $\min _{\left\{b_{1}\right\}} A=\left\{z_{1}\right\}$. Let $m>1$ and $\min _{B} A=\left\{y_{1}>\ldots>y_{m}\right\}$.

Let $\sigma(m)=j$, for some $j \in\{1, \ldots, m\}$, and $\min _{\left\{b_{j}\right\}} A=\left\{z_{m}\right\}$. Then, by theorem 2.5, since $\left\{y_{j}\right\}=\min _{\left\{b_{j}\right\}}\left(A \backslash\left\{y_{m}, \ldots, y_{j+1}\right\}\right)$, either $z_{m}=y_{j}$ or $y_{j}>z_{m}>b_{j}$. In the last case, by corollary 2.6,(I), $z_{m}=y_{k}$ with $k>j$ and $y_{m}, \ldots, y_{k+1}<b_{j}$ and $y_{k-1}, \ldots, y_{j}, \ldots, y_{1}>b_{j}$. From (1) and (2), we conclude that $A \backslash\left\{y_{k}\right\} \geq B \backslash\left\{b_{j}\right\}$ and $\min _{\left\{b_{m}, \ldots, b_{k}, \ldots, b_{j+1}\right\}}\left(A \backslash\left\{y_{k}\right\}\right)=$ $\left\{y_{m}, \ldots, y_{k+1}, y_{k-1}, \ldots, y_{j}\right\}$, and by corollary 2.6 , (II),

$$
\min _{\left(B \backslash\left\{b_{j}\right\}\right)}\left(A \backslash\left\{y_{k}\right\}\right)=\min _{\left\{b_{m}, \ldots, b_{j+1}\right\}}\left(A \backslash\left\{y_{k}\right\}\right) \cup \min _{\left\{b_{j-1}, \ldots, b_{1}\right\}}\left[A \backslash\left\{y_{j}, \ldots, y_{m}\right\}\right]
$$

and, therefore, $\min _{\left(B \backslash\left\{b_{\sigma(m)}\right\}\right)}\left(A \backslash\left\{y_{k}\right\}\right)=\left\{y_{m}, \ldots, y_{1}\right\} \backslash\left\{y_{k}\right\}$. That is, since $\left\{z_{m}\right\}=$ $\min _{\left\{b_{\sigma(m)\}}\right.} A$,

$$
\min _{B} A=\min _{\left\{b_{\sigma(m)}\right\}} A \cup \min _{\left(B \backslash\left\{b_{\sigma(m)}\right\}\right)}\left(A \backslash\left\{y_{k}\right\}\right) .
$$

By induction, $\min _{\left(B \backslash\left\{b_{\sigma(m)}\right\}\right)}\left(A \backslash\left\{y_{k}\right\}\right)=\left\{z_{m-1}, \ldots, z_{1}\right\}$. So, the claim follows.
Remark 1 For each $\sigma \in \mathcal{S}_{m}$, this theorem defines the minimal witness $z_{\sigma}: B \longrightarrow A$ such that $z_{\sigma}\left(b_{\sigma(m-i)}\right)=z_{m-i}$, for $i=0,1, \ldots, m-1$. When $\sigma=i d$ we have the minimal witness given by theorem 2.5. In particular, if $\sigma \in \mathcal{S}_{m}$ is such that $A \cap B=\left\{b_{\sigma(m)}, \ldots, b_{\sigma(t)}\right\}$, then $\min _{B} A=(A \cap B) \cup \min _{(B \backslash A)}(A \backslash B)$.

Corollary 2.12 Let $A \geq B$ and $C \subseteq B$. Let $\min _{C} A=A^{\prime}$. Then,

$$
\min _{B} A=\min _{C} A \cup \min _{(B \backslash C)}\left(A \backslash A^{\prime}\right) .
$$

In particular, $A \backslash A^{\prime} \geq B \backslash C$ and $A \cap C \subseteq A^{\prime}$.
Proof: If $C=\emptyset, \min _{C} A=\emptyset$ and it is done. Otherwise, let $B=\left\{b_{1}>\ldots>b_{m}\right\}, m>1$, and $C=\left\{b_{j_{1}}>\ldots>b_{j_{r}}\right\}, r \geq 1$. Let $\sigma \in \mathcal{S}_{m}$ such that $\sigma(m-i+1)=j_{i}$, for $i=1, \ldots, r$. The result now follows from theorem 2.11.

Note that $\min _{(B \backslash C)}\left(A \backslash A^{\prime}\right)=\min _{B} A \backslash \min _{C} A$, with $A^{\prime}=\min _{B} A$.
As a consequence of choosing a particular $\sigma \in \mathcal{S}_{m}$ in the previous theorem and corollary, we have the following algorithms which will have a significant translation to words in the next section:

Algorithm I: Given $A \geq B$ and $B=\left\{b_{1}>\ldots>b_{m}\right\}$, let $\{k, j, \ldots, l\}:=\{i \in$ $\left.\{1, \ldots, m\}: \exists x \in A, b_{i-1}>x \geq b_{i}\right\}$ and $V_{0}:=\left\{b_{k}, b_{j}, \ldots, b_{l}\right\} \subseteq B$. For $\alpha \in\{k, j, \ldots, l\}$, define

$$
\begin{equation*}
z_{\alpha}:=\min \left\{x \in A: b_{\alpha-1}>x \geq b_{\alpha}\right\}, \tag{5}
\end{equation*}
$$

and put $Z_{0}:=\left\{z_{k}, z_{j}, \ldots, z_{l}\right\} \subseteq A$. Let $A_{1}:=A \backslash Z_{0}$ and $B_{1}:=B \backslash V_{0}$. Then repeat the procedure with $A_{1} \geq B_{1}$ defining $V_{1}:=\left\{b_{l}, b_{p}, \ldots, b_{q}\right\} \subseteq B_{1}, z_{\alpha}:=\min \left\{x \in A_{1}\right.$: $\left.b_{\alpha-1}>x \geq b_{\alpha}\right\}$, for $\alpha \in\{l, p, \ldots, q\}$, and $Z_{1}:=\left\{z_{l}, z_{p}, \ldots, z_{q}\right\} \subseteq A_{1}$. There remains $A_{2}:=A_{1} \backslash Z_{1}$ and $B_{2}:=B_{1} \backslash V_{1}$. Continue this procedure with $A_{2} \geq B_{2}$ until it stops, giving sets $A_{k}:=A_{k-1} \backslash Z_{k-1}$ and $B_{k}:=B_{k-1} \backslash V_{k-1}=\emptyset$. Then, $A=Z_{0} \cup \ldots \cup Z_{k-1} \cup A_{k}$, $B=V_{0} \cup \ldots \cup V_{k-1}$, and

$$
\begin{aligned}
\min _{B} A & =\min _{V_{0}} A \cup \min _{V_{1}} A_{1} \cup \ldots \cup \min _{V_{k-1}} A_{k-1} \\
& =Z_{0} \cup Z_{1} \cup \ldots \cup Z_{k-1} .
\end{aligned}
$$

(We convention $b_{0}:=+\infty$.)
This defines the minimal witness $z^{I}: B \longrightarrow A$ such that $z^{I}=z_{0}^{I} \cup \ldots \cup z_{k-1}^{I}$ with $z_{i}^{I}: V_{i} \longrightarrow A_{i}, i=0,1, \ldots k-1$, given according to (5).

Algorithm II: Given $A \geq B$ and $A=\left\{a_{1}>\ldots>a_{n}\right\}$, let $\{f, g, \ldots, h\}:=\{i \in$ $\left.\{1, \ldots, n\}: \exists y \in B, a_{i} \geq y>a_{i+1}\right\}$ and $Q_{0}:=\left\{a_{f}, a_{g}, \ldots, a_{h}\right\} \subseteq A$. For $\alpha \in\{f, g, \ldots, h\}$, define

$$
\begin{equation*}
u_{\alpha}:=\max \left\{y \in B: a_{\alpha} \geq y>a_{\alpha+1}\right\}, \tag{6}
\end{equation*}
$$

and put $U_{0}:=\left\{u_{f}, u_{g}, \ldots, u_{h}\right\} \subseteq B$. Let $B_{1}:=B \backslash U_{0}$ and $A_{1}:=A \backslash Q_{0}$. Then repeat the procedure with $A_{1} \geq B_{1}$ defining $Q_{1}:=\left\{a_{l}, a_{p}, \ldots, a_{q}\right\} \subseteq A_{1}, u_{\alpha}:=\max \left\{y \in B_{1}\right.$: $\left.b_{\alpha-1} \geq y>b_{\alpha}\right\}$, for $\alpha \in\{l, p, \ldots, q\}$, and $U_{1}:=\left\{u_{l}, u_{p}, \ldots, u_{q}\right\} \subseteq B_{1}$. There remains $B_{2}:=B_{1} \backslash U_{1}$ and $A_{2}:=A_{1} \backslash Q_{1}$. Continue this procedure with $A_{2} \geq B_{2}$ until it stops,
giving sets $A_{k}:=A_{k-1} \backslash Q_{k-1}$ and $B_{k}:=B_{k-1} \backslash U_{k-1}=\emptyset$. Then, $A=Q_{0} \cup \ldots \cup Q_{k-1} \cup A_{k}$, $B=U_{0} \cup \ldots \cup U_{k-1}$, and

$$
\min _{B} A=Q_{0} \cup Q_{1} \cup \ldots \cup Q_{k-1} .
$$

(We convention $a_{n+1}:=-\infty$.)
This defines the minimal witness $z^{I I}: B \longrightarrow A$ such that $z^{I I}=z_{0}^{I I} \cup \ldots \cup z_{k-1}^{I I}$ with $z_{i}^{I I}: U_{i} \longrightarrow A_{i}, i=0,1, \ldots k-1$, given according to (6).

The next result will be used in the last section.
Lemma 2.13 Let F, C and D subsets of $[n]$ such that $C \geq D$. Assume $C=\left\{g_{1}>\right.$ $\left.\ldots>g_{r}\right\}$ and $D=\left\{s_{1}>\ldots>s_{r}\right\}$. Let $n \geq t \geq x \geq 1$ such that $x, t \notin C \cup D$, $\min _{\{x\}}(\{t\} \cup F)=\{t\}$ and $s_{u}>x>g_{u+1}$ for some $u \in\{0,1, \ldots, r\}$. Then,

$$
\min _{(D \cup\{x\})}(F \cup C \cup\{t\})=\{t\} \cup \min _{D}(F \cup C) .
$$

Proof: Suppose that $g_{u-l}>t>g_{u-l+1}$, for some $l \in\{0,1, \ldots, u\}$. Then, by corollary corollary 2.6, (II),

$$
\begin{align*}
& \min _{(D \cup\{x\})}(F \cup C \cup\{t\}) \\
& =\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(F \cup C \cup\{t\}) \cup \min _{\left(\left\{s_{u}, \ldots, s_{1}\right\} \cup\{x\}\right)}(F \cup C \cup\{t\}) \\
& =\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(F \cup C) \cup \min _{\left(\left\{s_{u}, \ldots, s_{1}\right\} \cup\{x\}\right)}(F \cup C \cup\{t\}) . \tag{7}
\end{align*}
$$

Now, by corollary 2.6, (II), since

$$
\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(F \cup C \cup\{t\})=\left\{g_{u}, \ldots, g_{u-l+1}\right\}=\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(F \cup C),
$$

it holds,

$$
\begin{align*}
& \min _{\left(\left\{s_{u}, \ldots, s_{1}\right\} \cup\{x\}\right)}(F \cup C \cup\{t\}) \\
& =\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(F \cup C) \cup \min _{\left(\{x\} \cup\left\{s_{u-l}, \ldots, s_{1}\right\}\right)}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup\{t\}\right] . \tag{8}
\end{align*}
$$

Again, by corollary 3 , since $\min _{\{x\}}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup\{t\}\right]=\{t\}$, we have

$$
\begin{align*}
& \min _{\left(\{x\} \cup\left\{s_{u-l}, \ldots, s_{1}\right\}\right)}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup\{t\}\right] \\
& =\{t\} \cup \min _{\left\{s_{u-l}, \ldots, s_{1}\right\}}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right)\right] . \tag{9}
\end{align*}
$$

Therefore, by (7), (8), and (9),

$$
\begin{aligned}
& \min _{(D \cup\{x\})}(C \cup\{t\}) \\
& =\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(F \cup C) \cup \min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(F \cup C) \cup\{t\} \\
& \cup \min _{\left\{s_{u-l}, \ldots, s_{1}\right\}}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right)\right] \\
& =\{t\} \cup \min _{D}(F \cup C) .
\end{aligned}
$$

Notice that, $\min _{D}(F \cup C)=\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(F \cup C) \cup \min _{\left\{s_{u-l}, \ldots, s_{1}\right\}}(F \cup C)$, and

$$
\begin{align*}
& \min _{\left\{s_{u}, \ldots, s_{1}\right\}}(F \cup C)=\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(F \cup C) \\
& \cup \min _{\left\{s_{u-l}, \ldots, s_{1}\right\}}\left[F \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right)\right] . \tag{10}
\end{align*}
$$

Theorem 2.14 Let $A, B, C, D, F \subseteq[n]$ with $|A|=|B|,|C|=|D|, A \cap C=B \cap D=\emptyset$. Assume $C=\left\{g_{1}>\ldots>g_{r}\right\}$ and $D=\left\{s_{1}>\ldots>s_{r}\right\}$ and suppose $A \geq B$ and $C \geq D$ are such that $\min _{B}(A \cup F)=A$ and $x \in B$ only if $s_{i}>x>g_{i+1}$, for some $i \in\{0,1, \ldots, r\}$. Then,

$$
\min _{(B \cup D)}(A \cup C \cup F)=A \cup \min _{D}(C \cup F) .
$$

Proof: Let $A=\left\{t_{1}>\ldots>t_{k}\right\}$ and $B=\left\{x_{1}>\ldots>x_{k}\right\}$. The proof will be handled by induction on $k=|A|$. The previous lemma proves the case $k=1$.

Let $k>1$, and suppose that $s_{u}>x_{k}>g_{u+1}$ for some $u \in\{0,1, \ldots, r\}$, and $g_{u-l}>t_{k}>$ g_{u-l+1}, with $l \in\{1, \ldots, u\}$.

By corollary 2.6, (II), we may write

$$
\begin{equation*}
\min _{(B \cup D)}(A \cup C \cup F)=\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(A \cup C \cup F) \cup \min _{\left(B \cup\left\{s_{u}, \ldots, s_{1}\right\}\right)}(A \cup C \cup F) . \tag{11}
\end{equation*}
$$

But

$$
\begin{align*}
& \min _{\left(B \cup\left\{s_{u}, \ldots, s_{1}\right\}\right)}(A \cup C \cup F)=\min _{\left(\left\{s_{u}, \ldots, s_{u-l+1}\right\} \cup\left\{x_{k}\right\}\right)}(A \cup C \cup F) \\
& \cup \min _{\left[\left(B \backslash\left\{x_{k}\right\}\right) \cup\left\{s_{u-l}, \ldots, s_{1}\right\}\right]}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup F\right] . \tag{12}
\end{align*}
$$

Since, $\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}(A \cup C \cup F)=\min _{\left\{s_{r}, \ldots, s_{u+1}\right\}}\left(\left(A \backslash\left\{t_{k}\right\}\right) \cup C \cup F\right)$, it follows, from (11) and (12),

$$
\begin{align*}
& \min _{B \cup D}(A \cup C \cup F) \\
& =\min _{\left(\left(D \backslash\left\{s_{u}, \ldots, s_{u-l+1}\right\}\right) \cup\left(B \backslash\left\{x_{k}\right\}\right)\right)}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup F\right] \\
& \cup \min _{\left(\left\{s_{u}, \ldots, s_{u-l+1}\right\} \cup\left\{x_{k}\right\}\right)}[(A \cup C \cup F] . \tag{13}
\end{align*}
$$

On the other hand, attending to $k=1$, we have

$$
\begin{align*}
& \min _{\left\{\left\{s_{u}, \ldots, s_{u-l+1}\right\} \cup\left\{x_{k}\right\}\right.}[(A \cup C \cup F] \\
& =\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}(A \cup C \cup F) \cup \min _{\left\{x_{k}\right\}}\left[A \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup F\right] \\
& =\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup C \cup F\right] \cup\left\{t_{k}\right\} . \tag{14}
\end{align*}
$$

Hence, from (13) and (14),

$$
\begin{aligned}
& \min _{(B \cup D)}(A \cup C \cup F)=\min _{\left\{s_{u}, \ldots, s_{u-l+1}\right\}}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup C \cup F\right] \\
& \cup \min _{\left[\left(D \backslash\left\{s_{u}, \ldots, s_{u-l+1}\right\}\right) \cup\left(B \backslash\left\{x_{k}\right\}\right)\right]}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup\left(C \backslash\left\{g_{u}, \ldots, g_{u-l+1}\right\}\right) \cup F\right] \cup\left\{t_{k}\right\} \\
& =\min _{\left(D \cup\left(B \backslash\left\{x_{k}\right\}\right)\right)}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup C \cup F\right] \cup\left\{t_{k}\right\} .
\end{aligned}
$$

By induction,

$$
\begin{aligned}
& \min _{(B \cup D)}(A \cup C \cup F)=\min _{\left[\left(D \cup\left(B \backslash\left\{x_{k}\right\}\right)\right]\right.}\left[\left(A \backslash\left\{t_{k}\right\}\right) \cup C \cup F\right] \cup\left\{t_{k}\right\} \\
& =\left(A \backslash\left\{t_{k}\right\}\right) \cup \min _{D}(C \cup F) \cup\left\{t_{k}\right\} \stackrel{A}{=} \min _{D}(C \cup F) .
\end{aligned}
$$

2.2 The dual lattice of $\mathcal{P}[n]$ induced by the reverse order

Considering proposition 2.3, we start with the following
Definition 2.4 Let $A, B \subseteq[n]$. We write $A \geq_{o p} B$ if $A \geq X$, for some $X \subseteq B$ with $|X|=|A|$.

The relation $\geq_{o p}$ is a partial order on $2^{[n]}$, and we denote it by $\mathcal{P}^{o p}[n]$. Clearly, $\mathcal{P}^{o p}[n]$ is also a lattice in which the family of all subsets of a given cardinality is a sublattice. Furthermore, $\bigcup_{n \in \mathbb{N}} \mathcal{P}^{o p}[n]$, the family of all finite subsets of \mathbb{N} is a lattice with the relation defined by $A \geq_{o p} B$.

Note that if $A \geq_{o p} B$ then $|A| \leq|B|$. On the other hand, if $|A|=|B|, A \geq B$ iff $A \geq_{o p} B$. This means that the sublattice of the family of all subsets of a given cardinality of $\mathcal{P}[n]$ and $\mathcal{P}^{o p}[n]$ respectively, are isomorphic under the identity map.

The relation $\geq_{o p}$ has also many characterizations: $A \geq_{o p} B$ iff there exists an injection $j: A \longrightarrow B$ with $a \geq j(a)$, for all $a \in A$. Such an injection j is called a witness of $A \geq_{o p} B$.

Let $A \geq_{o p} B$ and i, j witnesses of $A \geq_{o p} B$. We write $i \geq j$ if $i(A) \geq j(A)$. Given $A \geq_{o p} B$, the relation \geq defined by $i \geq j$ is a partial order on the set of all witnesses of $A \geq_{o p} B$.

Since $\mathcal{P}^{o p}[n]$ is a lattice, given $A \geq_{o p} B$ we may define the greatest lower bound of A in 2^{B}. We write

$$
\max _{A} B:=\max \{X \subseteq B:|X|=|A| \text { and } A \geq X\}
$$

as the greatest lower bound of A contained in B. Note that $\max _{A} B=\max \{i(A)$: i is a witness of $\left.A \geq_{o p} B\right\}$ and $A \cap B \subseteq \max _{A} B$. In particular, if $|A|=|B|, \max _{A} B=B$.

Let i be a witness of $A \geq_{o p} B$. We say that i is a maximal witness of $A \geq_{o p} B$ if $i(A)=\max _{A} B$. In the sublattice of all subsets of $[n]$ of a given cardinality every witness is both minimal and maximal.

Let us denote by $\mathbb{N}_{o p}$ as the set \mathbb{N} with the reverse order, $\geq_{o p}$, that is, $x \geq_{o p} y \Longleftrightarrow x \leq y$. Given $n \in \mathbb{N}$, if $o p$ denotes the reverse permutation of $[n]$, $o p(k)=n-k+1$, then one may also look at the sublattice $[n]_{o p}$, as the set $[n]$ with the order induced by the antiautomorphism op in the poset $([n], \geq)$, that is, $x \geq_{o p} y \Longleftrightarrow o p(x) \leq o p(y)$. The map $o p$ is an involution in $2^{[n]}$ and it is an anti-automorphism on the sublattice of $\mathcal{P}[n]$ defined by the family of all subsets of a given cardinality, that is, $A \geq B$ iff $o p(B) \geq o p(A)$.

Now, we will look at the relation $\geq_{o p}$ in $2^{[n]}$ either as a partial order in $2^{[n]}$, with respect to the reverse order in $[n]$, or the order induced in $2^{[n]}$ by the involution op.
Proposition 2.15 Given $A, B \subseteq[n]$, the following assertions are equivalent
(a) $A \geq_{o p} B$.
(b) If $a=\left(\tilde{a}_{1}, \tilde{a}_{2}, \ldots, \tilde{a}_{|A|}, n+1, \ldots\right)$ and $b=\left(\tilde{b}_{1}, \ldots, \tilde{b}_{|B|}, n+1, \ldots\right)$ are the decreasing rearrangement of the elements of A and B, with respect to the reverse order, as embedded into $\mathbb{N}_{o p}^{\mathbb{N}}$, then $b \geq a$ in the component reverse ordering order, that is, $\tilde{b}_{i} \geq_{o p} \tilde{a}_{i}$ in $\mathbb{N}_{o p}$, for all i.
(c) $o p(B) \geq o p(A)$.

Proof: $(a) \Longrightarrow(b)$ If $A \geq X$ with $X \subseteq B$, then putting $A=\left\{a_{1}>\ldots>a_{|A|}\right\}$ and $B=\left\{b_{1}>\ldots>b_{|A|}>\ldots>b_{|B|}\right\}$, we get $a_{|A|} \geq b_{|B|}, \ldots, a_{1} \geq b_{|B|-|A|+1}$. That is, $\tilde{b}_{i} \geq_{o p} \tilde{a}_{i}$ with $\tilde{a}_{i}=a_{|A|-i+1}$ and $\tilde{b}_{i}=b_{|B|-i+1}$.
$(b) \Longrightarrow(c)$ If (b) then there is an injection $j: A \longrightarrow B$ such that $j(a) \geq_{o p} a$, for all $a \in A$, that is, $o p(j(a)) \geq o p(a)$, for all $a \in A$. This means that $o p(B) \geq o p(A)$.
$(a) \Longleftrightarrow(c) A \geq X$, with $X \subseteq B$ and $|X|=|A|$ iff $o p(X) \geq o p(A)$, with $o p(X) \subseteq o p(B)$.

Since $A \geq B$ iff $o p(B) \geq_{o p} o p(A)$, the operation $o p$ is an anti-automorphism between the posets $\mathcal{P}[n]$ and $\mathcal{P}^{o p}[n]$. We have $o p(A \wedge B)=o p(A) \vee o p(B)$ and $o p(A \vee B)=o p(A) \wedge o p(B)$. Thus, $\mathcal{P}^{o p}[n]$ is the dual lattice of $\mathcal{P}[n]$ induced by the reverse order in $[n]$.

Let $A \geq_{o p} B$. Note that \tilde{i} is a witness of $o p(B) \geq o p(A)$ iff there exists an injection $j: A \longrightarrow B$ with $a \geq j(a)$ and such that op. $\tilde{i} . o p=j$. That is, j is a witness of $A \geq_{o p} B$ iff $o p . j . o p$ is a witness $o p(B) \geq o p(A)$. Hence, $o p(Y)=\min _{(o p(A))} o p(B)$ iff $Y=\max _{A} B$. In other words, j is a maximal witness of $A \geq_{o p} B$ iff opjop is a minimal witness of $o p(B) \geq o p(A)$.

Let $A \geq_{o p} B$ and $A=\left\{a_{1}>\ldots>a_{m}\right\}$. By the principle of duality [8], we have the following dual statements.

The dual of theorem 2.5: $\max _{A} B=\left\{x_{1}, \ldots, x_{m}\right\}$ where

$$
\begin{align*}
x_{1} & =\max \left\{b \in B: a_{1} \geq b\right\}, \text { and } \\
x_{i} & =\max \left\{b \in B \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}: a_{i} \geq b\right\}, \text { for } i=1, \ldots, m-1 . \tag{15}
\end{align*}
$$

The dual of Algorithm I : let $\{k, j, \ldots, l\}:=\left\{i \in\{1, \ldots, m\}: \exists y \in B, a_{i} \geq y>a_{i+1}\right\}$ and $U_{0}:=\left\{a_{k}, a_{j}, \ldots, a_{l}\right\} \subseteq A$. For $\alpha \in\{k, j, \ldots, l\}$, define

$$
z_{\alpha}:=\max \left\{y \in B: a_{\alpha-1} \geq y>a_{\alpha}\right\}
$$

and put $Z_{0}:=\left\{z_{k}, z_{j}, \ldots, z_{l}\right\} \subseteq B$. Let $A_{1}:=A \backslash U_{0}$ and $B_{1}:=B \backslash Z_{0}$. Then, repeat the procedure with $A_{1} \geq_{o p} B_{1}$ until it stops, giving sets $A_{k}:=A_{k-1} \backslash V_{k-1}=\emptyset$, and $B_{k}:=B_{k-1} \backslash Z_{k-1}$, and we get

$$
\begin{align*}
\max _{A} B & =\max _{U_{0}} B \cup \max _{U_{1}} B_{1} \cup \ldots \cup \max _{U_{k-1}} B_{k-1} \\
& =Z_{0} \cup Z_{1} \cup \ldots \cup Z_{k-1} . \tag{16}
\end{align*}
$$

The dual of Algorithm II is: let $B=\left\{b_{1}>\ldots>b_{n}\right\}$ and $\{k, j, \ldots, l\}:=\{i \in$ $\left.\{1, \ldots, n\}: \exists x \in A, b_{i-1}>x \geq b_{i}\right\}$ and $V_{0}:=\left\{b_{k}, b_{j}, \ldots, b_{l}\right\} \subseteq B$. For $\alpha \in\{k, j, \ldots, l\}$, define

$$
q_{\alpha}:=\min \left\{x \in A: b_{\alpha-1}>x \geq b_{\alpha}\right\},
$$

and put $Q_{0}:=\left\{q_{k}, q_{j}, \ldots, q_{l}\right\} \subseteq A$. Let $A_{1}:=A \backslash Q_{0}$ and $B_{1}:=B \backslash V_{0}$. Then, repeat the procedure with $A_{1} \geq_{o p} B_{1}$ until it stops, giving sets $A_{k}:=A_{k-1} \backslash Q_{k-1}=\emptyset$, and $B_{k}:=B_{k-1} \backslash V_{k-1}$, and we get

$$
\begin{align*}
\max _{A} B & =\max _{Q_{0}} B \cup \max _{Q_{1}} B_{1} \cup \ldots \cup \max _{Q_{k-1}} B_{k-1} \\
& =V_{0} \cup V_{1} \cup \ldots \cup V_{k-1} . \tag{17}
\end{align*}
$$

These procedures describe maximal witnesses of $A \geq_{o p} B$.
If $A \geq B$ is a chain in $\mathcal{P}[n]$ then $o p(B) \geq_{o p} o p(A)$ is a chain in $\mathcal{P}^{o p}[n]$. Clearly, $A \geq B \longrightarrow o p(B) \geq_{o p} o p(A)$ defines a bijection between chains of length 2 in the lattice $\mathcal{P}[n]$, and chains in the dual lattice $\mathcal{P}^{o p}[n]$. On the other hand, $A \geq B$ iff $X \geq B$ for some $X \subseteq A$ with $|X|=|B|$, and $F \geq_{o p} G$ iff $F \geq Y$, for some $Y \subseteq G$ with $|Y|=|F|$. Our aim now is to set a bijection between chains in $\mathcal{P}[n]$ and chains in $\mathcal{P}^{o p}[n]$ avoiding the lattice anti-automorphism op but instead stressing the ideas of the last characterization.

According to proposition 2.3 , for each $F_{1} \geq F_{2}$, we may choose $G_{1}, G_{2} \subseteq[n]$, such that

$$
\begin{equation*}
\left|G_{1}\right|=\left|F_{2}\right|, \quad G_{1} \subseteq F_{1}, \quad G_{1} \geq F_{2}, \quad F_{1} \cap F_{2} \subseteq G_{1}, \text { and } G_{2}=F_{2} \cup\left(F_{1} \backslash G_{1}\right) \tag{18}
\end{equation*}
$$

Clearly $G_{1} \geq_{o p} G_{2}$, and if $\left|F_{1}\right|=\left|F_{2}\right|, G_{i}=F_{i}, i=1,2$.
That is, given $F_{1} \geq F_{2}$, there is a witness s with $F_{1} \cap F_{2} \subseteq s\left(F_{2}\right)$, such that $\left(F_{1}, F_{2}\right)$ and $\left(s\left(F_{2}\right), F_{2} \cup\left(F_{1} \backslash s\left(F_{2}\right)\right)\right.$ satisfy (18). Clearly, an injection $g: s\left(F_{2}\right) \longrightarrow F_{2} \cup\left(F_{1} \backslash s\left(F_{2}\right)\right)$ such that $g s=i d$ is a witness of $s\left(F_{2}\right) \geq_{o p} F_{2} \cup\left(F_{1} \backslash s\left(F_{2}\right)\right)$. If s_{*} is a minimal witness and $g s_{*}=i d$ then g is a maximal witness.

On the other hand, given $G_{1} \geq_{o p} G_{2}$, there exist $F_{1} \geq F_{2}$ and a witness s with $F_{1} \cap F_{2} \subseteq$ $s\left(F_{2}\right)$, such that $\left(G_{1}, G_{2}\right)=\left(s\left(F_{2}\right),\left(F_{1} \backslash s\left(F_{2}\right)\right) \cup F_{2}\right)$. For, if j is a witness of $G_{1} \geq_{o p} G_{2}$ with $G_{1} \cap G_{2} \subseteq j\left(G_{1}\right)$, then an injection $g: j\left(G_{1}\right) \longrightarrow\left(G_{2} \backslash j\left(G_{1}\right)\right) \cup G_{1}$ such that $j g=i d$ will do the claim. If j^{*} is a maximal witness and $j^{*} g=i d$ then g is a minimal witness.

Let $\mathbf{H}:=\left\{\left(F_{1}, F_{2}\right): F_{1} \geq F_{2}\right\}$ be the set of comparable elements in $\mathcal{P}[n]$, and let $\mathbf{H}^{o p}:=\left\{\left(G_{1}, G_{2}\right): G_{1} \geq_{o p} G_{2}\right\}$ be the set of comparable elements in $\mathcal{P}^{o p}[n]$.

For each $F_{1} \geq F_{2}$ in \mathbf{H}, let s be a witness of $F_{1} \geq F_{2}$ such that $F_{1} \cap F_{2} \subseteq s\left(F_{2}\right)$, and define the map

$$
\begin{equation*}
\mathbf{s}: \mathbf{H} \longrightarrow \mathbf{H}^{o p} \tag{19}
\end{equation*}
$$

where $\mathbf{s}\left(F_{1}, F_{2}\right)=\left(s\left(F_{2}\right), F_{2} \cup\left(F_{1} \backslash s\left(F_{2}\right)\right)\right.$.
In particular, for each $F_{1} \geq F_{2}$, we may choose a minimal witness s_{*}, that is, $s\left(F_{1}\right)=$ $\min _{F_{2}} F_{1}$. According to (19), any collection of minimal witnesses of \mathbf{H} induces a same bijection $\mathbf{s}_{*}: \mathbf{H} \longrightarrow \mathbf{H}^{o p}$. Any collection of maximal witnesses of $\mathbf{H}^{o p}$ induces a same bijection $\mathbf{s}^{*}: \mathbf{H}^{o p} \longrightarrow \mathbf{H}$ such that $\mathbf{s}_{*}{ }^{-1}=\mathbf{s}^{*}$. The map \mathbf{s} in (19) is a bijection iff $\mathbf{s}=\mathbf{s}_{*}$.

Let $\Theta^{*}:=\mathbf{s}_{*} \cup \mathbf{s}_{*}{ }^{-1}$, that is, $\Theta^{*}{ }_{\mid \mathbf{H}}=\mathbf{s}_{*}$ and $\Theta^{*}{ }_{\mid \mathbf{H}^{o p}}=\mathbf{s}_{*}^{-1}$. Therefore, $\Theta^{*}: \mathbf{H} \cup \mathbf{H}^{o p} \longrightarrow$ $\mathbf{H} \cup \mathbf{H}^{o p}$ is an involution which fixes the elements of $\mathbf{H} \cap \mathbf{H}^{o p}$, that is, the pairs $\left(F_{1}, F_{2}\right)$ such that $\left|F_{1}\right|=\left|F_{2}\right|$.

3 Words, indexing sets and Young tableaux

3.1 Words and indexing sets

Let $t \in \mathbb{N}$ and $M([t])$ be the free monoid of all words in the totally ordered alphabet $[t]$. Let $[\mathbb{N}]_{t}$ be the set of all t-sequences of finite subsets of \mathbb{N}. The elements of $[\mathbb{N}]_{t}$ may be represented by words in a grid as with matrices: the first coordinate, the row index, increases as one goes downwards, and the second coordinate, the column index, increases as one goes from left to right. Each sequence $\left(J_{1}, \ldots, J_{t}\right)$ of finite subsets of \mathbb{N} gives rise to a word $w\left(J_{1}, \ldots, J_{t}\right)$ in $M([t])$ called the word generated by $\left(J_{1}, \ldots, J_{t}\right)$, obtained reading the grid from top to down, along each row, from right to left, by assigning a label i to each dot in column i, for $i=1, \ldots, t$. The empty word Λ is generated by $(\emptyset, \ldots, \emptyset)$.

For instance, let $J_{1}=\{2,3,6,9\}, J_{2}=\{4,5\}$, and $J_{3}=\{1,7,8\}$, then $w\left(J_{1}, J_{2}, J_{3}\right)=$ 311221331. Also, if $F_{1}=\{1,2,4,6\}, F_{2}=\{3,4\}$, and $F_{3}=\{1,5,6\}$, we have $w\left(F_{1}\right.$, $\left.F_{2}, F_{3}\right)=311221331$.

We identify the elements of $[\mathbb{N}]_{t}$ which generate the same word,

$$
\left(J_{1}, \ldots, J_{t}\right) \sim\left(J_{1}^{\prime}, \ldots, J_{t}^{\prime}\right) \text { if } w\left(J_{1}, \ldots, J_{t}\right)=w\left(J_{1}^{\prime}, \ldots, J_{t}^{\prime}\right)
$$

The relation " \sim " is an equivalence relation in $[\mathbb{N}]_{t}$, and we write $M\left([\mathbb{N}]_{t}\right):=[\mathbb{N}]_{t} / \sim$.
Given $m \geq 0$ and a finite set $F=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{N}$, we write $m+F:=\left\{m+x_{1}\right.$, $\left.\ldots, m+x_{n}\right\}$. Clearly, $F \sim m+F$, for any $m \geq 0$. (We have $m+\emptyset=\emptyset$.)
$M\left([\mathbb{N}]_{t}\right)$ is a monoid with the operation \cup defined as

$$
\left[\left(J_{1}, \ldots, J_{t}\right)\right] \cup\left[\left(F_{1}, \ldots, F_{t}\right)\right]=\left[\left(J_{1} \cup\left(m+F_{1}\right), \ldots, J_{t} \cup\left(m+F_{t}\right)\right)\right]
$$

such that $J_{i} \subseteq[m]$, for $i=1, \ldots, t$.
As usual we denote the length of a word w by $|w|$. Let w be a word in $M([t])$, we write $|w|_{k}, k \in[t]$, to mean the multiplicity of the letter k in the word w.

Proposition 3.1 $M\left([\mathbb{N}]_{t}\right)$ and $M([t])$ are isomorphic monoids.
Proof: The map $\phi: M\left([\mathbb{N}]_{t}\right) \longrightarrow M([t])$ defined by $\phi\left(\left[\left(J_{1}, \ldots, J_{t}\right)\right]\right)=w\left(J_{1}, \ldots, J_{t}\right)$ is a monoid isomorphism. Let w in $M([t])$ and define $J_{k}=\{i \in\{1, \ldots,|w|\}: i-$ $t h$ letter of w is $k\}$, for $k=1, \ldots, t$. Then, $w\left(J_{1}, \ldots, J_{t}\right)=w$. That is, every word w in $M([t])$ arises from $M\left([\mathbb{N}]_{t}\right)$, and ϕ is a bijection. Clearly, $\phi\left(\left[\left(J_{1}, \ldots, J_{t}\right)\right] \cup\left[\left(F_{1}, \ldots, F_{t}\right)\right]\right)=$ $w\left(J_{1}, \ldots, J_{t}\right) w\left(F_{1}, \ldots, F_{t}\right)$.

For instance, the word $w=311221331$ is generated by $J_{1}=\{2,3,6,9\}, J_{2}=\{4,5\}$, and $J_{3}=\{1,7,8\}$.

Given $w \in M([t])$ and $\left(J_{1}, \ldots, J_{t}\right) \in[\mathbb{N}]_{t}$ such that $w=w\left(J_{1}, \ldots, J_{t}\right)$, we call $\left(J_{1}\right.$, $\left.\ldots, J_{t}\right)$ the indexing sets of w, and $\left[\left(J_{1}, \ldots, J_{t}\right)\right]$ the class of indexing sets of w.

A word w in $M([t])$ is a Yamanouchi word if any right factor v of w satisfies $|v|_{1} \geq$ $|v|_{2} \geq \ldots \geq|v|_{t}$. Recalling proposition 2.1, this is equivalent to say that if $\left(J_{1}, \ldots, J_{t}\right)$ are indexing sets of w, then every pair $\left(J_{i}, J_{i+1}\right), i=1, \ldots, t-1$, satisfy condition (c) of that proposition. Henceforth, $w\left(J_{1}, \ldots, J_{t}\right)$ is a Yamanouchi word in the alphabet $[t]$ iff $J_{1} \geq \ldots \geq J_{t}$.

The dual word of $w=x_{1} \ldots x_{k} \in M([t])$ is $w_{o p}:=o p\left(x_{k}\right) \ldots o p\left(x_{1}\right)$ a word in the dual alphabet $o p([t])$, with $o p(i)=t-i+1$. Clearly, $w\left(J_{1}, \ldots, J_{t}\right)=w$ iff $w\left(o p\left(J_{t}\right)\right.$, $\left.\ldots, o p\left(J_{1}\right)\right)=w_{o p}$. Hence, $w\left(J_{1}, \ldots, J_{t}\right)$ is a dual Yamanouchi word iff $J_{1} \geq_{o p} \ldots \geq_{o p} J_{t}$. The map $w \longrightarrow w_{o p}$ determines an anti-isomorphism in $M([t]):\left(w_{1} w_{2}\right)_{o p}=\left(w_{2}\right)_{o p}\left(w_{1}\right)_{o p}$. Now we search for a bijection between Yamanouchi words and their dual avoiding this anti-automorphism.

Given $w \in M([t]), w^{\prime}$ is a subword of w iff $\left(J_{1}, \ldots, J_{t}\right)$ are indexing sets of w then $w^{\prime}=w\left(F_{1}, \ldots, F_{t}\right)$, for some $F_{i} \subseteq J_{i}, i=1, \ldots, t$.

Definition 3.1 Let w be a word in the two letters alphabet $\{i, i+1\}$. A subword w^{\prime} of w is called a basis of w if (A, B) are given indexing sets of w, there exist $X \subseteq A$ and $Y \subseteq B$ such that
(i) $|X|=|Y|, X \geq Y$ and $w(X, Y)=w^{\prime}$,
(ii) $w(A \backslash X, B \backslash Y)=i^{r}(i+1)^{s}$, where $r=|A|-|X|$ and $s=B-|Y|$.

A basis is a self-dual Yamanouchi word of longest length. When w is a Yamanouchi (dual Yamanouchi) word any basis is of type $w(X, B)(w(A, Y)),(r=0) s=0$. We identify a basis of a word, in a two letters alphabet, with its class of indexing sets. So, we say that (X, Y) is a basis of (A, B). In particular, if the word is either Yamanouchi or dual Yamanouchi every basis may be determined by a witness, and every witness determines a basis of a word.

As a basis is a self-dual Yamanouchi word, the calculation of a basis may be done either using the procedures to determine minimal witnesses for Yamanouchi words, for instance theorem 2.5, or for dual Yamanouchi words, as the dual of theorem 2.5, or those which are common to both, like algorithms I and II.

For example, let $w=112121122122112$ with indexing sets $A=\{1,2,4,6,7,10,13,14\}$ and $B=\{3,5,8,9,11,12,15\}$:
(a) (Applying the dual of theorem 2.5.) Extract from the word a subword w^{\prime} containing letters i and $i+1$ only. Remove the right most subword $i+1 i$ of w^{\prime} : put a bracket in the right most letter i, and then a bracket in the right most letter $i+1$, to the left of the just brackted i. The remaining letters, the ones which are not brackted, constitute a subword v_{1} of w^{\prime}. Then remove the right most subword $i+1 i$ of v_{1}. There remains a subword v_{2}. Continue this procedure until it stops, giving a word v_{q} of type $v_{q}=i^{r}(i+1)^{s}$, with $|w|_{i}-q=r$ and $|w|_{i+1}-q=s$. The basis, in the subalphabet $\{i, i+1\}$, is the subword constituted by the bracketed letters. In our example, we have

$$
11(21(21) 1) 2(21)(2(21) 1) 2,
$$

$X=\{6,7,10,13,14\} \geq Y=\{3,5,9,11,12\}$,

$$
w(X, Y)=2211212211, \quad \text { and } w(A \backslash X, B \backslash Y)=11122 .
$$

Note that $\max _{B} X=Y$.
(b) (Applying theorem 2.5.) Do the procedure above with the leftmost subword $i+1 i$ of w : put a bracket in the left most letter $i+1$, and then a bracket in the left most letter i, to the right of the just brackted $i+1$. When the procedure stops we get a subword u_{q} of type $u_{q}=i^{r}(i+1)^{s}$, with $|w|_{i}-q=r$ and $|w|_{i+1}-q=s$. The basis, in the subalphabet $\{i, i+1\}$, is the subword constituted by the bracketed letters. In our example, we have

$$
11(21)(21) 1(2(21)(221) 1) 2
$$

$$
\begin{aligned}
& X^{\prime}=\{4,6,10,13,14\} \geq Y^{\prime}=\{3,5,8,9,11\}, \\
& w\left(X^{\prime}, Y^{\prime}\right)=2121221211, \text { and } w\left(A \backslash X^{\prime}, B \backslash Y^{\prime}\right)=11122 .
\end{aligned}
$$

Note that $\min _{Y^{\prime}} A=X^{\prime}$.
(c)[10], [12] (Applying either algorithms I or II.) Extract from the word a subword w^{\prime} containing letters i and $i+1$ only. Bracket every factor $i+1 i$ of w. The letters which are not bracketed constitute a subword w_{1} of w. Then bracket every factor $i+1 i$ of w_{1}. There remains a subword w_{2}. Continue this procedure until it stops, giving a word w_{k} of type $w_{k}=i^{r}(i+1)^{s}$. The basis, in the subalphabet $\{i, i+1\}$, is the subword constituted by the bracketed letters. In our example, we have

$$
11(21)(21) 12(21)(2(21) 1) 2,
$$

$X^{\prime \prime}=\{4,6,10,13,14\} \geq Y^{\prime \prime}=\{3,5,9,11,12\}$,

$$
w\left(X^{\prime \prime}, Y^{\prime \prime}\right)=2121212211, \quad \text { and } w\left(A \backslash X^{\prime \prime}, B \backslash Y^{\prime \prime}\right)=11122 .
$$

Note that $\min _{Y^{\prime \prime}} A=X^{\prime \prime}, \max _{B} X^{\prime \prime}=Y^{\prime \prime}$, and $X^{\prime \prime}=X^{\prime}$ and $Y^{\prime \prime}=Y$.
If w is a Yamanouchi (dual Yamanouchi), $X=X^{\prime}=X^{\prime \prime} \subseteq A$ and $Y=Y^{\prime}=Y^{\prime \prime}=B$ (and $X=X^{\prime}=X^{\prime \prime}=A$ and $Y=Y^{\prime}=Y^{\prime \prime} \subseteq B$) and both procedures (b) and $(c)((a)$ and (c)) coincide as was shown in theorem 2.11.

The procedure (c) is the transformation given by M. P. Schutzenberger and A. Lascoux in [10] and [12], and its translation to indexing sets, in the case of Yamanouchi and dual Yamanouchi words in a two-letters alphabet, is given either by algorithm I or II, as well as their dual algorithms, respectively. Moreover, given a Yamanouchi (dual Yamanouchi) word $w=w(A, B)$, the procedure (c) on w is equivalent to putting brackets in the subword $w\left(\min _{B} A, B\right)\left(w\left(A, \max _{B} A\right)\right)$. There remains a word $i^{r}\left((i+1)^{s}\right)$, with $r=|A|-|B|$ ($s=|B|-|A|$). That is, according to theorem 2.11, bracketing every factor $i+1 i$ on a Yamanouchi (dual Yamanouchi) word, as in (c), is an instance of a minimal (maximal) witness of $A \geq B\left(A \geq_{o p} B\right)$.

The next proposition gives a representative of each class $[(A, B)]$.
Proposition 3.2 Given A and B two finite subsets of \mathbb{N}, let $Y \subseteq B$ and $X \subseteq A$ such that $w(X, Y)$ is the basis of w obtained according to the procedure (c). Then, $w(A, B)=$ $w((A \backslash X) \cup Y, B)=w(A,(B \backslash Y) \cup X)$.

Proof: Let w be the word generated by (A, B), then w is a word in a two-letters alphabet [2]. Bracket every factor 21 of w. The subword constituted by the bracketed factors is generated by (X, Y). In this case, $\min _{Y} A=X$ and $\max _{B} X=Y$. The remaining word is generated by $(A \backslash X, B \backslash Y)$ and the word generated by $((A \backslash X) \cup Y, B)$ is w.

Let $\mathbf{s}_{*}: \mathbf{H} \longrightarrow \mathbf{H}^{o p}$ be the bijection induced by any collection of minimal witnesses of \mathbf{H}, defined by $\mathbf{s}_{*}(A, B)=\left(\min _{B} A, B \cup\left(A \backslash \min _{B} A\right)\right)$; and $\mathbf{s}_{*}^{-1}: \mathbf{H}^{o p} \longrightarrow \mathbf{H}$ be the bijection induced by any collection of maximal witnesses of $\mathbf{H}^{o p}, \mathbf{s}_{*}^{-1}(C, D)=(C \cup(D \backslash$ $\left.\left.\max _{C} D\right), \max _{C} D\right)$. Recall that $\min _{B} A$ and $\max _{C} D$ may be achieved by any minimal witness and maximal witness respectively. For instance, as mentioned above, the procedure (c), when restricted to Yamanouchi words and their dual, is the translation of algorithms I, II to words:

$$
\begin{aligned}
w_{1} & =w\left(V_{0}, z^{I}\left(V_{0}\right)\right)=w\left(U_{0}, z^{I I}\left(U_{0}\right)\right) \\
& \vdots \\
w_{k} & =w\left(V_{k-1}, z^{I}\left(V_{k-1}\right)\right)=w\left(U_{k-1}, z^{I I}\left(U_{k-1}\right)\right) .
\end{aligned}
$$

For $k=1, \ldots, t-1$, let σ_{k} be the involutions, defined in [10] and [12], acting on $\mathbb{Z}([t])$, the free algebra on $[t]$. Then,

$$
w\left(\mathbf{s}_{*}(A, B)\right)=\sigma_{1}(w(A, B)), \quad w\left(\mathbf{s}_{*}^{-1}(C, D)\right)=\sigma_{1}(w(C, D))
$$

In the last section, we have introduced the involution $\Theta^{*}: \mathbf{H} \cup \mathbf{H}^{o p} \longrightarrow \mathbf{H} \cup \mathbf{H}^{o p}$. Now we extend it to $\left(J_{1}, \ldots, J_{t}\right) \in[\mathbb{N}]_{t}$ such that either $J_{i} \geq J_{i+1}$ or $J_{i} \geq_{o p} J_{i+1}$, for $i=1, \ldots, t-1$, as follows

$$
\Theta_{k}^{*}=\Theta_{\left(\left(J_{k}, J_{k+1}\right)\right.}^{*} k=1, \ldots, t-1
$$

The translation of the involutions $\Theta_{k}^{*}, k=1, \ldots, t$, on indexing sets to words, are the involutions $\sigma_{k}, k=1, \ldots, t-1$, restricted to words which with respect to the subalphabet $\{k, k+1\}$ are either Yamanouchi words or dual Yamanouchi words.

Let $\Theta^{*}\left(J_{k}, J_{k+1}\right)=\left(J_{k}^{*}, J_{k+1}^{*}\right)$, then

$$
\sigma_{k}\left(w\left(J_{1}, \ldots, J_{t}\right)\right)=w\left(J_{1}, \ldots, J_{k}^{*}, J_{k+1}^{*}, \ldots, J_{t}\right)
$$

For instance, let $w=122111211$ be the two-letter word. Using the involution h_{1},

$$
w=1(2(21) 1) 1(21) 1 \longrightarrow \sigma_{1}(w)=222112212 .
$$

On the other hand, let $J_{1}=\{1,4,5,6,8,9\}$ and $J_{2}=\{2,3,7\}$ be indexing sets of the word w. We have $\min _{J_{2}} J_{1}=\{4,5,8\}$,

$$
\Theta^{*}\left(J_{1}, J_{2}\right)=(\{4,5,8\},\{1,2,3,6,7,9\})
$$

and the word generated by $\Theta^{*}\left(J_{1}, J_{2}\right)$ is $222112212=\sigma_{1}(w)$.

3.2 Young tableaux

A partition is a sequence of non negative integers, $a=\left(a_{1}, a_{2}, \ldots\right)$, all but a finite number of which are non zero, such that $a_{1} \geq a_{2} \geq \ldots$ The number $|a|:=\sum_{i} a_{i}$ is called the weight of a; the maximum value of i for which $a_{i}>0$ is called the length of a and is denoted by $l(a)$. If $l(a)=0$ we have the null partition $a=(0,0, \ldots)$. If $l(a)=k$, we shall often write $a=\left(a_{1}, \ldots, a_{k}\right)$.

Sometimes it is convenient to use the notation

$$
a=\left(a_{1}^{m_{1}}, a_{2}^{m_{2}}, \ldots, a_{k}^{m_{k}}\right)
$$

where $a_{1}>a_{2}>\ldots>a_{k}$ and $a_{i}^{m_{i}}$, with $m_{i} \geq 0$, means that a_{i} appears m_{i} times as a part of a.

We say that a is an elementary partition if there is an $m \in\{1, \ldots, n\}$ such that $a=\left(1^{m}\right)$.
Suppose $a=\left(a_{1}, \ldots, a_{k}\right)$ is a partition of length k with $|a|=n$. The Young diagram of a is an array of n boxes having k left-justified rows with row i containing a_{i} boxes for $1 \leq i \leq k$. We shall identify a partition with its Young diagram.

Given two partitions a and c, we write $a \subseteq c$ to mean $a_{i} \leq c_{i}$, for all i. Graphically, this means that the Young diagram of a is contained in the Young diagram of c.

Let a and c be partitions such that $a \subseteq c$. We define

$$
c / a:=\{(i, j) \in c:(i, j) \notin a\}
$$

called a skew-diagram. We write $|c / a|:=|c|-|a|$.
A skew-diagram is called a vertical [horizontal] m-strip, where $m>0$, if it has m boxes and at most one box in each row [column].

Let a and c be partitions such that $a \subseteq c$ and $\left(m_{1}, \ldots, m_{t}\right)$ a sequence of positive integers. A Young tableau \mathcal{T} of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$ is a sequence of partitions

$$
\mathcal{T}=\left(a^{0}, a^{1}, \ldots, a^{t}\right)
$$

such that $a=a^{0} \subseteq a^{1} \subseteq \ldots \subseteq a^{t}=c$ and, for each $k=1, \ldots, t$, the skew-diagram a^{k} / a^{k-1} is a vertical strip labelled by k with $m_{k}=\left|a^{k} / a^{k-1}\right|$.

The indexing sets J_{1}, \ldots, J_{t} of \mathcal{T} are the subsets of $\{1, \ldots, n\}$ given by

$$
J_{k}=\left\{i: a_{i}^{k}-a_{i}^{k-1} \neq 0\right\}, \quad 1 \leq k \leq t .
$$

That is, J_{k} is defined by the row indices of the boxes of c / a labelled by $k, 1 \leq k \leq t$. Notice that $\left(\left|J_{1}\right|, \ldots,\left|J_{t}\right|\right)=\left(m_{1}, \ldots, m_{t}\right)$.

The skew-diagram c / a is called the shape of the tableau \mathcal{T} and $\left(m_{1}, \ldots, m_{t}\right)$ the weight of \mathcal{T}.

For example,

x	x	x	1	4
x	x	1	3	4
x	1			
2				

is a Young tableau of type $((3,2,1),(3,1,1,2),(5,5,2,1))$, with indexing sets $J_{1}=\{1,2,3\}$, $J_{2}=\{4\}, J_{3}=\{2\}$ and $J_{4}=\{1,2\}$.

We will introduce now the notion of Littlewood-Richardson sequence, following the terminology in $[1,2,3]$.

Definition 3.2 [1] Let \mathcal{T} be a Young tableau of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$. We say that \mathcal{T} is a Littlewood-Richardson (LR for short) sequence if its indexing sets satisfy $J_{1} \geq J_{2} \geq \ldots \geq J_{t}$.

Proposition $2.1(c)$ shows that this definition is equivalent to the one given in [9].
If $a=\left(a_{1}, \ldots, a_{n}\right)$ and $c=\left(c_{1}, \ldots, c_{n}\right)$ with $a \subseteq c$ (the diagram of a is contained in the diagram of c), we put $\bar{a}:=\left(c_{1}-a_{n}, \ldots, c_{1}-a_{2}, c_{1}-a_{1}\right)$ and $\bar{c}=\left(c_{1}-c_{n}, c_{1}-c_{n-1}, \ldots, c_{1}-\right.$ $\left.c_{2}, 0\right)$. Note that \bar{a} and \bar{c} are respectively the complements of a and c in the $n \times c_{1}$ rectangle.

Given a tableau \mathcal{T} of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$ and indexing sets J_{1}, \ldots, J_{t}, its complement, denoted by $\overline{\mathcal{T}}$, is the tableau of type $\left(\bar{c},\left(m_{t}, \ldots, m_{1}\right), \bar{a}\right)$ with indexing sets $o p\left(J_{t}\right), \ldots, o p\left(J_{1}\right)$. When \mathcal{T} is an $L R$ tableau, we have $o p\left(J_{t}\right) \geq_{o p} \ldots \geq_{o p} o p\left(J_{1}\right)$.

Geometrically, $\overline{\mathcal{T}}$, the complement tableau of \mathcal{T}, is obtained by reflecting \mathcal{T} once about the horizontal axis, then once about the vertical axis and then substituting labels $i \in$ $\{1, \ldots, t\}$ by $o p(i)=t-i+1$, with $o p \in \mathcal{S}_{t}$, i.e., J_{i} by $o p\left(J_{t-i+1}\right)$, with $o p \in \mathcal{S}_{n}$, for $i=1, \ldots, t$. As usual if \mathcal{T} is of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$ we say that c / a is the skew-shape of \mathcal{T}. We define the complement of the skew-shape of \mathcal{T}, as being the skew-shape of $\overline{\mathcal{T}}$, \bar{a} / \bar{c}.

Definition 3.3 The word of a tableau \mathcal{T}, denoted by $\omega(\mathcal{T})$ on the alphabet $[t]$, is the word generated by the indexing sets of \mathcal{T}.

This definition agrees with the one given in [6]: the word of a tableau may be obtained by listing the labels from right to left in each row, starting in the top and moving to bottom. We may also characterize LR tableaux and complement tableaux, using the language of words. Clearly, \mathcal{T} is an LR tableau iff its word is a Yamanouchi word. Let \mathcal{T} be a tableau of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$ with word $x_{1} \ldots x_{r}$, and \mathcal{H} a tableau of type $\left(\bar{c},\left(m_{t}, \ldots, m_{1}\right), \bar{a}\right)$. \mathcal{H} is the complement of \mathcal{T} iff $\omega(\mathcal{H})=o p\left(x_{r}\right) \ldots o p\left(x_{1}\right)$ the dual word of \mathcal{T}.

In previous example, $\omega(\mathcal{T})=4143112$ and $\omega(\overline{\mathcal{T}})=3442141$.
There is a bijection between LR tableaux and complement LR tableaux given by the bijection between chains and dual chains, that is,

$$
J_{1} \geq \ldots \geq J_{t} \longrightarrow o p\left(J_{t}\right) \geq \ldots \geq o p\left(J_{1}\right) .
$$

Definition 3.4 We say that a tableau \mathcal{T} of type $\left(a,\left(m_{1}, \ldots, m_{t}\right), c\right)$ is an op-LR (reversing $L R$ tableau) if its indexing sets are such that $J_{1} \geq_{o p} \ldots \geq_{o p} J_{t}$.

Therefore, \mathcal{T} is an $o p$-LR tableau iff its word is the dual of a Yamanouchi word.
Hence, \mathcal{T} is an $o p$-LR tableau iff its complement is an LR tableau. This means that our definition of reversing $L R$ tableau is based on the notion of complementation. Our aim now is twice-fold: avoid duality and to interpret an $o p$-LR as a consequence of the action of the symmetric group \mathcal{S}_{t} on a family of indexing sets in order to introduce σ-LR tableaux where σ is any permutation; and exhibit a bijection between LR tableaux and σ-LR tableaux of a given type.

In [5] we have interpreted the LR reverse filling as a permutation of the LR rule and we have exhibited a bijection between op-LR tableaux and LR tableaux. In this way we have also established a bijection between LR tableaux and their conjugate.

4 Actions of the symmetric group

Let $t \geq 2$, and consider the transpositions of consecutive positive integers $s_{i}=(i i+1)$, $1 \leq i \leq t-1$. Denote the identity by s_{0}. The symmetric group $\mathcal{S}_{t}, t \geq 1$, is generated by these involutions $s_{i}, i=1, \ldots, t-1$, written $\mathcal{S}_{t}=\left\langle s_{1}, \ldots, s_{t-1}\right\rangle$, which satisfy the Moore-Coxeter relations: $s_{i}^{2}=s_{0}, s_{i} s_{j}=s_{j} s_{i}$, if $|i-j| \neq 1$, and $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$.

The elements of $\mathcal{S}_{t}, t \geq 1$, may be written as words on the alphabet $\left\{s_{1}, \ldots, s_{t-1}\right\}$, defined recursively as follows:

$$
\begin{align*}
\mathcal{S}_{1} & =\left\{s_{0}\right\}, \\
\mathcal{S}_{t} & \left.=\left\{\begin{array}{c}
\omega \\
s_{t-1} \omega \\
s_{t-2} s_{t-1} \omega \\
\vdots \\
s_{1} s_{2} \ldots s_{t-1} \omega
\end{array}\right\}, \omega \in \mathcal{S}_{t-1}\right\}, \text { if } t \geq 2 . \tag{20}
\end{align*}
$$

We call these words, canonical words of \mathcal{S}_{t}.
Definition 4.1 Let $F_{1} \geq F_{2}$ and $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right): \sigma \in<s_{1}>\right\} \subseteq \mathbf{H} \cup \mathbf{H}^{o p}$. We say that \mathbb{F} is generated by $\left(F_{1}, F_{2}\right)$, if $\left(F_{1}^{s_{0}}, F_{2}^{s_{0}}\right)=\left(F_{1}, F_{2}\right)$, and there exists a map $\mathbf{s}: \mathbf{H} \rightarrow \mathbf{H}^{\text {op }}$ such that $\mathbf{s}\left(F_{1}, F_{2}\right)=\left(F_{1}^{s_{1}}, F_{2}^{s_{1}}\right)$.

Given $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right): \sigma \in<s_{1}>\right\} \subseteq \mathbf{H} \cup \mathbf{H}^{o p}$ generated by (F_{1}, F_{2}), we may define the involutions on $\mathbb{F}, \psi_{s_{i}}\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right)=\left(F_{1}^{s_{i} \sigma}, F_{2}^{s_{i} \sigma}\right), i=0,1$, with $\sigma \in\left\{s_{0}, s_{1}\right\}$. Thus, the map $\psi: \mathcal{S}_{2} \rightarrow \mathcal{S}_{F}$ defined by $\psi\left(s_{0}\right)=\psi_{s_{0}}$ and $\psi\left(s_{1}\right)=\psi_{s_{1}}$, is an isomorphism if $\left|F_{1}\right|>\left|F_{2}\right|$, and an homomorphism if $\left|F_{1}\right|=\left|F_{2}\right|$. Therefore, ψ defines an action of the symmetric group \mathcal{S}_{2} on \mathbb{F}.

As $\Theta^{*}: \mathbf{H} \cup \mathbf{H}^{o p} \rightarrow \mathbf{H} \cup \mathbf{H}^{d}$ is an involution, if we put $\psi\left(s_{1}\right)=\Theta^{*}$ and $\psi\left(s_{0}\right)=i d, \psi$ defines an action of the symmetric group \mathcal{S}_{2} on $\mathbf{H} \cup \mathbf{H}^{o p}$.

Recall that $s_{0}, s_{1}, s_{2}, s_{2} s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{1}$ are the canonical words of \mathcal{S}_{3}.
Definition 4.2 Given $F_{1} \geq F_{2} \geq F_{3}$ and $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right) \in \mathcal{P}(n)^{3}: \sigma \in<s_{1}, s_{2}>\right\}$, with $\left(F_{1}^{s_{0}}, F_{2}^{s_{0}}, F_{3}^{s_{0}}\right)=\left(F_{1}, F_{2}, F_{3}\right)$, we say that \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$ if
(I) (a) $F_{3}^{s_{1}}=F_{3}$ and $\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}, F_{2}\right)$.
(b) $F_{1}^{s_{2}}=F_{1}$ and $\left\{\left(F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{2}>\right\}$ is generated by $\left(F_{2}, F_{3}\right)$.
(II) (a) $F_{1}^{s_{2} s_{1}}=F_{1}^{s_{1}}$ and $\left\{\left(F_{2}^{\sigma s_{1}}, F_{3}^{\sigma s_{1}}\right): \sigma \in<s_{2}>\right\}$ is generated by $\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$ and $\mathbf{s}\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)=\left(F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)$ such that $F_{2}^{s_{2} s_{1}}=X \cup Y$ with $X \subseteq F_{2}^{s_{2}}$ and $Y \subseteq$ $F_{1} \backslash F_{1}^{s_{1}}$ only if $F_{2}^{s_{2}}=X \cup Z$ with $Z \geq Y$.
(b) $F_{3}^{s_{1} s_{2}}=F_{3}^{s_{2}}$ and $\left\{\left(F_{1}^{\sigma s_{2}}, F_{2}^{\sigma s_{2}}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)$ and $\mathbf{s}\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)=\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}\right)$ such that $F_{1}^{s_{1} s_{2}} \subseteq F_{1}^{s_{1}}$ and $F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}} \geq F_{2} \backslash F_{2}^{s_{2}}$.
(III) $F_{3}^{s_{1} s_{2} s_{1}}=F_{3}^{s_{2} s_{1}}$ and $\left\{\left(F_{1}^{\sigma s_{2} s_{1}}, F_{2}^{\sigma s_{2} s_{1}}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)$ and $\mathbf{s}\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)=\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}\right)$ such that $F_{1}^{s_{1} s_{2} s_{1}}=F_{1}^{s_{1} s_{2}}$.

Proposition 4.1 Let $F_{1} \geq F_{2} \geq F_{3}$.
(a) There exists always a set \mathbb{F} generated by $\left(F_{1}, F_{2}, F_{3}\right)$.
(b) If \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$, then $F_{2}^{s_{1} s_{2}} \geq F_{2}^{s_{1}}$ and $F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}$.
(c) If \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$, then, for each $\sigma \in<s_{1}, s_{2}>$,
(i) either $F_{i}^{\sigma} \geq F_{i+1}^{\sigma}$ or $F_{i}^{\sigma} \geq_{o p} F_{i+1}^{\sigma}, 1 \leq i \leq 2$;
(ii) $F_{3} \subseteq F_{3}^{\sigma}$;
(iii) there exist $G_{i}^{\sigma} \subseteq F_{i}^{\sigma}$ for $i=1,2,3$, with $\left|G_{i}^{\sigma}\right|=\left|F_{3}\right|$ such that $G_{3}^{\sigma}=F_{3}$ and $G_{1}^{\sigma} \geq G_{2}^{\sigma} \geq F_{3}$.

Proof: Since $F_{1} \geq F_{2}$ and $F_{2} \geq F_{3}$, let $\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right): \sigma \in<s_{1}>\right\}$ be generated by $\left(F_{1}, F_{2}\right)$, and let $\left\{\left(F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{2}>\right\}$ be generated by $\left(F_{2}, F_{3}\right)$. Clearly $F_{2}^{s_{1}} \geq F_{3}^{s_{1}}$ and $F_{1}^{s_{2}} \geq F_{2}^{s_{2}}$.

We may choose a witness s of $F_{2}^{s_{1}} \geq F_{3}^{s_{1}}$ with $F_{2}^{s_{1}} \cap F_{3}^{s_{1}} \subseteq s\left(F_{3}^{s_{1}}\right)$, such that $\mathbf{s}\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)=$ $\left(F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)$ satisfies

$$
\begin{gather*}
F_{2}^{s_{2} s_{1}}=X \cup Y, \text { with } X \subseteq F_{2}^{s_{2}}, Y \subseteq F_{1} \backslash F_{1}^{s_{1}}, \text { only if } \\
F_{2}^{s_{2}}=X \cup Z, \text { with } Z \geq Y . \tag{21}
\end{gather*}
$$

For $F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right), F_{2}^{s_{2}} \subseteq F_{2}, F_{2} \cap F_{3} \subseteq F_{2}^{s_{2}}, F_{2}^{s_{2}} \geq F_{3}$, and $\left|F_{2}^{s_{2} s_{1}}\right|=\left|F_{2}^{s_{2}}\right|=\left|F_{3}\right|$. Theorem 2.8, asserts that (21) is feasible. Note that from (21), we have

$$
\begin{equation*}
F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}} \tag{22}
\end{equation*}
$$

We may choose a witness s of $F_{1}^{s_{2}} \geq F_{2}^{s_{2}}$ with $F_{1}^{s_{2}} \cap F_{2}^{s_{2}} \subseteq s\left(F_{2}^{s_{2}}\right)$, such that $\mathbf{s}\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)=$ $\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}\right)$ satisfies

$$
\begin{align*}
& F_{1}^{s_{1} s_{2}} \subseteq F_{1}^{s_{1}}, \\
& F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}} \geq F_{2} \backslash F_{2}^{s_{2}} . \tag{23}
\end{align*}
$$

For, $F_{1} \cap F_{2} \subseteq F_{1}^{s_{1}}, F_{1}^{s_{1}} \geq F_{2}$, and $F_{2}=F_{2}^{s_{2}} \cup\left(F_{3}^{s_{2}} \backslash F_{3}\right)$. Again, proposition (2.4), (c), asserts that (23) is feasible.

Notice that $F_{2}^{s_{1} s_{2}} \geq F_{3}^{s_{1} s_{2}}=F_{3}^{s_{2}}$. Note also that $F_{2}^{s_{1} s_{2}}=F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)=F_{2}^{s_{2}} \cup\left(F_{1} \backslash\right.$ $\left.F_{1}^{s_{1}}\right) \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)$ and $F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)=F_{2}^{s_{2}} \cup\left(F_{2} \backslash F_{2}^{s_{2}}\right) \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$. Henceforth, by (23), we find

$$
\begin{equation*}
F_{2}^{s_{1} s_{2}} \geq F_{2}^{s_{1}} \tag{24}
\end{equation*}
$$

Finally, we may choose a witness s of $F_{1}^{s_{2} s_{1}} \geq F_{2}^{s_{2} s_{1}}$ with $F_{1}^{s_{2} s_{1}} \cap F_{2}^{s_{2} s_{1}} \subseteq s\left(F_{2}^{s_{2} s_{1}}\right)$ such that $\mathbf{s}\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)=\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}\right)$, satisfies $F_{1}^{s_{1} s_{2} s_{1}}=F_{1}^{s_{1} s_{2}}$. ¿From (23) and recalling that $F_{1}^{s_{2} s_{1}}=F_{1}^{s_{1}}$, it is enough to show that $\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)$ and $\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2} s_{1}}\right)$ satisfy (18), that is,

$$
F_{1}^{s_{1} s_{2}} \subseteq F_{1}^{s_{1}}=F_{1}^{s_{2} s_{1}}
$$

and using (21) and (22),

$$
F_{1}^{s_{2} s_{1}} \cap F_{2}^{s_{2} s_{1}} \subseteq F_{1}^{s_{2}} \cap F_{2}^{s_{2}} \subseteq F_{1}^{s_{1} s_{2}}, \quad F_{1}^{s_{1} s_{2}} \geq F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}
$$

Conditions of definition 4.2 are, therefore, fulfilled. Hence, \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$.
(b) was obtained in (22) and (24).
(c) (i) and (ii) are consequence of (18).
(iii) Note that $F_{1}^{s_{1} s_{2}} \geq F_{2}^{s_{2}} \geq F_{3}$ and since $F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}$, it follows $F_{1}^{s_{1} s_{2}} \geq F_{2}^{s_{2} s_{1}} \geq$ F_{3}, with $\left|F_{1}^{s_{1} s_{2}}\right|=\left|F_{2}^{s_{2}}\right|=\left|F_{2}^{s_{2} s_{1}}\right|=\left|F_{3}\right|$. The sets in the first sequence are subsets of $F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}$, respectively, for $\sigma \in\left\{s_{0}, s_{1}, s_{2}, s_{1} s_{2}\right\}$, and the sets in the second sequence are subsets of $F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}$, for $\sigma \in\left\{s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$.

Theorem 4.2 Let $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\} . \mathbb{F}$ is be generated by $\left(F_{1}, F_{2}, F_{3}\right)$ iff
(a) $F_{3}^{s_{1}}=F_{3}$ and $\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}, F_{2}\right)$.
(b) $F_{1}^{s_{2}}=F_{1}$ and $\left\{\left(F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{2}>\right\}$ is generated by $\left(F_{2}, F_{3}\right)$.
(II) (a) $F_{1}^{s_{2} s_{1}}=F_{1}^{s_{1}}$ and $\left\{\left(F_{2}^{\sigma s_{1}}, F_{3}^{\sigma s_{1}}\right): \sigma \in<s_{2}>\right\}$ is generated by $\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$.
(b) $F_{3}^{s_{1} s_{2}}=F_{3}^{s_{2}}$ and $\mathbb{F}_{s_{1} s_{2}}:=\left\{\left(F_{1}^{\sigma s_{2}}, F_{2}^{\sigma s_{2}}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)$.
(III) (a) $F_{3}^{s_{1} s_{2} s_{1}}=F_{3}^{s_{2} s_{1}}$ and $\left\{\left(F_{1}^{\sigma s_{2} s_{1}}, F_{2}^{\sigma s_{2} s_{1}}\right): \sigma \in<s_{1}>\right\}$ is generated by $\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)$ and $\mathbf{s}\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)=\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}\right)$ such that $F_{1}^{s_{1} s_{2} s_{1}}=F_{1}^{s_{1} s_{2}}$.
(b) $\left\{\left(F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right) ;\left(F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}\right)\right\}$ is generated by $\left(F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)$.
(IV) $F_{2}^{s_{1} s_{2}} \geq F_{2}^{s_{1}}$ and $F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}$.

Proof: The only if part. Suppose that \mathbb{F} satisfy the conditions of definition 4.2. We have only to prove (III), (b). Note that $F_{2}^{s_{1} s_{2}} \geq F_{3}^{s_{1} s_{2}}$. We shall show that we may choose a witness s of $F_{2}^{s_{1} s_{2}} \geq F_{3}^{s_{1} s_{2}}$ with $F_{2}^{s_{1} s_{2}} \cap F_{3}^{s_{1} s_{2}} \subseteq s\left(F_{2}^{s_{1} s_{2}}\right)$ such that

$$
\mathbf{s}\left(F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)=\left(F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}\right) .
$$

In fact, recalling definition 4.2, we have $F_{1}^{s_{1} s_{2} s_{1}}=F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}=F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)$ and $F_{2}^{s_{1} s_{2} s_{1}}=F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{2} s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)$, and using (21),(23), we get

$$
F_{2}^{s_{1} s_{2} s_{1}} \subseteq F_{2}^{s_{1} s_{2}}
$$

On the other hand, from $F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}} \geq F_{2} \backslash F_{2}^{s_{2}}=F_{3}^{s_{2}} \backslash F_{3}$, and since $F_{2}^{s_{2} s_{1}} \geq F_{3}$, we have

$$
F_{2}^{s_{1} s_{2} s_{1}}=F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{2} s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \geq F_{3} \cup\left(F_{3}^{s_{2}} \backslash F_{3}\right)=F_{3}^{s_{1} s_{2}}
$$

Now, using (21), notice that $\left(F_{1} \backslash F_{1}^{s_{1}}\right) \cap F_{3}^{s_{2}} \subseteq Y$, and write $F_{2}^{s_{1} s_{2} s_{1}}=X \cup Y \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)$, with $X \subseteq F_{2}^{s_{2}}$ and $Y \subseteq F_{1} \backslash F_{1}^{s_{1}}$. Then, recalling that $F_{3}^{s_{1} s_{2}}=F_{3}^{s_{2}}$, we get

$$
\begin{aligned}
F_{2}^{s_{1} s_{2}} \cap F_{3}^{s_{1} s_{2}} & =\left(F_{2}^{\left.s_{2} \cap F_{3}^{s_{2}}\right) \cup\left(\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right) \cap F_{3}^{s_{2}}\right)}\right. \\
& =\left(F_{2}^{\left.s_{2} \cap F_{3}\right) \cup\left(\left(\left(F_{1} \backslash F_{1}^{s_{1}}\right) \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right) \cap F_{3}^{s_{2}}\right)}\right. \\
& \subseteq X \cup\left(\left(F_{1} \backslash F_{1}^{s_{1}}\right) \cap F_{3}^{s_{2}}\right) \cup\left(\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \cap F_{3}^{s_{2}}\right) \\
& \subseteq X \cup Y \cup\left(\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)=F_{2}^{s_{1} s_{2} s_{1}} .\right.
\end{aligned}
$$

Finally, recalling that $F_{2} \cap\left(F_{1} \backslash F_{1}^{s_{1}}\right)=\emptyset$, we have

$$
\begin{aligned}
F_{3}^{s_{1} s_{2} s_{1}}=F_{3}^{s_{2} s_{1}} & =F_{3} \cup\left(F_{2}^{s_{1}} \backslash F_{2}^{s_{2} s_{1}}\right) \\
& =F_{3} \cup\left(\left(F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right) \backslash F_{2}^{s_{2} s_{1}}\right) \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2} s_{1}}\right) \cup\left(\left(F_{1} \backslash F_{1}^{s_{1}}\right) \backslash F_{2}^{s_{2} s_{1}}\right),
\end{aligned}
$$

On the other hand, since $F_{2}^{s_{2}} \cap\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)=\emptyset$ and $\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \cap F_{2}^{s_{2}}=\emptyset, F_{1}^{s_{2} s_{1}}=F_{1}^{s_{1}}$, and $F_{1}^{s_{1} s_{2}} \subseteq F_{1}^{s_{1}}$, we get

$$
\begin{aligned}
F_{3}^{s_{1} s_{2} s_{1}} & =F_{3}^{s_{1} s_{2}} \cup\left(F_{2}^{s_{1} s_{2}} \backslash F_{2}^{s_{1} s_{2} s_{1}}\right) \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2}}\right) \cup\left(\left(F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)\right) \backslash\left(F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{2} s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right)\right) \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2}}\right) \cup\left(F_{2}^{s_{2}} \backslash\left(F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{2} s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right)\right) \cup \\
& \cup\left(\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right) \backslash\left(F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{2} s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right)\right) \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2}}\right) \cup\left(F_{2}^{s_{2}} \backslash F_{2}^{s_{2} s_{1}}\right) \cup\left(\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right) \backslash\left(F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right)\right) \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2} s_{1}}\right) \cup\left[\left(\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right) \backslash\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)\right) \backslash F_{2}^{s_{2} s_{1}}\right] \\
& =F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2} s_{1}}\right) \cup\left(\left(F_{1} \backslash F_{1}^{s_{1}}\right) \backslash F_{2}^{s_{2} s_{1}}\right) .
\end{aligned}
$$

Henceforth, the map s is well defined.
The if part. Suppose that $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\}$ satisfy $(I),(I I),(I I I)$ and $(I V)$ as above. To show that \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$ it remains to prove (II) of definition 4.2.

Since $\left\{\left(F_{2}^{\sigma s_{1}}, F_{3}^{\sigma s_{1}}\right): \sigma \in<s_{2}>\right\}$ is generated by $\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$, we have $F_{2}^{s_{2} s_{1}} \subseteq F_{2}^{s_{1}}=$ $F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$ and, therefore,

$$
F_{2}^{s_{2} s_{1}}=X \cup Y \text {, where } X \subseteq F_{2} \text { and } Y \subseteq F_{1} \backslash F_{1}^{s_{1}}
$$

¿From (III), (a) and (b) above, we get $F_{1}^{s_{1} s_{2}}=F_{1}^{s_{1} s_{2} s_{1}} \subseteq F_{1}^{s_{1}}$.

We may write

$$
\begin{equation*}
F_{2}^{s_{1} s_{2} s_{1}}=F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right)=X \cup Y \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right), \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}^{s_{1} s_{2}}=F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)=F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right) \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) . \tag{26}
\end{equation*}
$$

On the other hand, from (III), (b), we have the inclusion $F_{2}^{s_{1} s_{2} s_{1}} \subseteq F_{2}^{s_{1} s_{2}}$. As $X \subseteq F_{2}^{s_{2} s_{1}}$ and $F_{2}^{s_{2} s_{1}}$, we get from (25), (26), $X \subseteq F_{2}^{s_{2}}$. Let $Z:=F_{2}^{s_{2}} \backslash X$. Since $F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}$, we must have $Z \geq Y$.

Finally, from proposition 2.3, using $F_{2}^{s_{1} s_{2}} \geq F_{2}^{s_{1}}$, (26), and $F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$, we get $F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}} \geq F_{2} \backslash F_{2}^{s_{2}}$.

Therefore, the set \mathbb{F} is generated by the sequence $\left(F_{1}, F_{2}, F_{3}\right)$.
Remark 2 If in definition 4.2 we replace condition $(I I)(a)$ by

$$
F_{2}^{s_{2} s_{1}}=X \cup Y \text { with } X \subseteq F_{2}^{s_{2}} \text { and } Y \subseteq F_{1} \backslash F_{1}^{s_{1}} \text { only if } F_{1}^{s_{1} s_{2}} \geq X \cup Y
$$

then proposition 4.1 follows except condition (a), as well as theorem 4.2 except condition (IV).

Corollary 4.3 Let $F_{1} \geq F_{2} \geq F_{3}$ and $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\}$ generated by $\left(F_{1}, F_{2}, F_{3}\right)$. Let $\psi_{s_{i}}: \mathbb{F} \rightarrow \mathbb{F}$ defined by $\psi_{s_{i}}\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right)=\left(F_{1}^{s_{i} \sigma}, F_{2}^{s_{i} \sigma}, F_{3}^{s_{i} \sigma}\right), i=0,1,2$, $\sigma \in<s_{1}, s_{2}>$. Then, $\psi_{s_{i}}^{2}=i d, i=1,2$, and $\psi_{s_{1}} \psi_{s_{2}} \psi_{s_{1}}=\psi_{s_{2}} \psi_{s_{1}} \psi_{s_{2}}$. That is, the symmetric group \mathcal{S}_{3} acts on the set \mathbb{F}.

The generation of the set \mathbb{F} by $F_{1} \geq F_{2} \geq F_{3}$ is equivalent to a decomposition of $F_{1} \geq F_{2} \geq F_{3}$.

Theorem 4.4 Let $F_{1} \geq F_{2} \geq F_{3}$. The following assertions are equivalent:
(a) $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\}$ is generated by $\left(F_{1}, F_{2}, F_{3}\right)$.
(b) The sequence $F_{1} \geq F_{2} \geq F_{3}$ has a decomposition $F_{1}=\cup_{j=1}^{5} A_{1}^{j}, F_{2}=\cup_{j=3}^{5} A_{2}^{j}$, $F_{3}=A_{3}^{5} \cup A_{3}^{2}$,

$$
F_{1}, F_{2}, F_{3}=\begin{array}{ccc}
A_{1}^{1} & & \tag{27}\\
A_{1}^{2} & & A_{3}^{2} \\
A_{1}^{3} & A_{2}^{3} & \\
A_{1}^{4} & A_{2}^{4} & \\
& A_{1}^{5} & A_{2}^{5}
\end{array} A_{3}^{5}
$$

satisfying:

$$
\begin{aligned}
& \text { 1. } A_{1}^{4} \geq A_{2}^{4}>A_{1}^{2} \geq A_{3}^{2} \text {, with }\left|A_{1}^{4}\right|=\left|A_{2}^{4}\right|=\left|A_{1}^{2}\right|=\left|A_{3}^{2}\right| \text {, } \\
& A_{1}^{5} \geq A_{2}^{5} \geq A_{3}^{5} \text {, with }\left|A_{1}^{5}\right|=\left|A_{2}^{5}\right|=\left|A_{3}^{5}\right| \text {, } \\
& A_{1}^{3} \geq A_{2}^{3} \text {, with }\left|A_{1}^{3}\right|=\left|A_{2}^{3}\right| \text {. } \\
& \text { 2. } A_{1}^{i} \cap A_{1}^{j}=\emptyset \text {, if } i \neq j \text {, } \\
& A_{2}^{i} \cap A_{2}^{j}=\emptyset \text {, if } i \neq j \text {, } \\
& A_{3}^{2} \cap A_{3}^{5}=\emptyset \text {. } \\
& \text { 3. } F_{1} \cap A_{2}^{5} \subseteq A_{1}^{5} \text {, } \\
& \left(F_{1} \backslash A_{1}^{5}\right) \cap A_{2}^{4} \subseteq A_{1}^{4} \text {, } \\
& {\left[F_{1} \backslash\left(A_{1}^{5} \cup A_{1}^{4}\right)\right] \cap A_{2}^{3} \subseteq A_{1}^{3} \text {, }} \\
& {\left[F_{2} \cup\left(A_{1}^{2} \cup A_{1}^{1}\right)\right] \cap A_{3}^{2} \subseteq A_{1}^{2} \text {, and }} \\
& {\left[F_{2} \cup\left(A_{1}^{2} \cup A_{1}^{1}\right)\right] \cap A_{3}^{5} \subseteq A_{2}^{5} .}
\end{aligned}
$$

such that the sets $F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}$, with $\sigma \in\left\{s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$, are obtained from F_{1}, F_{2}, F_{3} as follows:

$$
\begin{align*}
& F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}=\begin{array}{ccc}
& & A_{1}^{1} \\
& A_{1}^{2} & A_{3}^{2} \\
& A_{1}^{3} & A_{2}^{3} \\
A_{1}^{4} & & A_{2}^{4} \\
A_{1}^{5} & A_{2}^{5} & A_{3}^{5}
\end{array}, \tag{29}
\end{align*}
$$

Proof: $(a) \Rightarrow(b)$ Let $\mathbb{F}=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right.$ be generated by the sequence $\left(F_{1}, F_{2}, F_{3}\right)$, and consider the involutions $\psi_{s_{1}}, \psi_{s_{2}}$ defined in corollary 4.3.

Since $\psi_{s_{1}}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1}^{s_{1}}, F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$ and $\psi_{s_{2}}\left(F_{1}, F_{2}, F_{3}\right)=\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}, F_{3}^{s_{2}}\right)$ we find that $F_{1}^{s_{1}} \subseteq F_{1}, F_{1} \cap F_{2} \subseteq F_{1}^{s_{1}}, F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$, and $F_{2}^{s_{2}} \subseteq F_{2}, F_{2} \cap F_{3} \subseteq F_{2}^{s_{2}}$, $F_{3}^{s_{2}}=F_{3} \cup\left(F_{2} \backslash F_{2}^{s_{2}}\right)$.

Consider now the sequence $\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)=\psi_{s_{2}}\left(F_{1}^{s_{1}}, F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$. We have $F_{2}^{s_{2} s_{1}} \subseteq$ $F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$. Note that F_{2} and $F_{1} \backslash F_{1}^{s_{1}}$ are disjoint, since $F_{1} \cap F_{2} \subseteq F_{1}^{s_{1}}$. So we may write

$$
\begin{equation*}
F_{2}^{s_{2} s_{1}}=A_{2}^{5} \cup A_{1}^{2}, \tag{31}
\end{equation*}
$$

where $A_{2}^{5} \subseteq F_{2}$ and $A_{1}^{2} \subseteq F_{1} \backslash F_{1}^{s_{1}}$. Let $A_{1}^{1}:=F_{1} \backslash\left(F_{1}^{s_{1}} \cup A_{1}^{2}\right)$.
¿From (31), since $F_{2}^{s 2 s_{1}} \geq F_{3}$ and $\left|F_{2}^{s_{2} s_{1}}\right|=\left|F_{3}\right|$, by we may factorize F_{3} as

$$
F_{3}=A_{3}^{5} \cup A_{3}^{2},
$$

where $A_{2}^{5} \geq A_{3}^{5}, A_{1}^{2} \geq A_{3}^{2},\left|A_{2}^{5}\right|=\left|A_{3}^{5}\right|,\left|A_{1}^{2}\right|=\left|A_{3}^{2}\right|$, and $A_{2}^{5} \cap A_{2}^{3}=A_{1}^{2} \cap A_{3}^{5}=\emptyset$. Recalling that $F_{2}^{s_{1}} \cap F_{3}^{s_{1}} \subseteq F_{2}^{s_{2} s_{1}}=A_{3}^{5} \cup A_{1}^{2}$, we find that $F_{2}^{s_{1}} \cap A_{3}^{5} \subseteq A_{2}^{5}$ and $F_{2}^{s_{1}} \cap A_{3}^{2} \subseteq A_{1}^{2}$.

Now, $\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}\right)=\psi_{s_{1}}\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)$. Since $F_{1}^{s_{1} s_{2} s_{1}} \geq F_{2}^{s_{2} s_{1}}=A_{2}^{5} \cup$ A_{1}^{2}, we may define $A_{1}^{5}:=\min _{A_{2}^{5}} F_{1}^{s_{1} s_{2} s_{1}}$ and $A_{1}^{4}:=F_{1}^{s_{1} s_{2} s_{1}} \backslash A_{1}^{5}$. Since $F_{1}^{s_{1} s_{2} s_{1}} \subseteq F_{1}^{s_{1}}$, define $A_{1}^{3}:=F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2} s_{1}}$. Then we obtain

$$
\begin{equation*}
F_{1}^{s_{1} s_{2} s_{1}}=A_{1}^{5} \cup A_{1}^{4}, \quad \text { and } F_{1}^{s_{1}}=A_{1}^{5} \cup A_{1}^{4} \cup A_{1}^{3}, \tag{32}
\end{equation*}
$$

where $A_{1}^{4} \geq A_{1}^{2}, A_{1}^{5} \geq A_{2}^{5},\left|A_{1}^{4}\right|=\left|A_{1}^{2}\right|,\left|A_{1}^{5}\right|=\left|A_{2}^{5}\right|$, and $F_{1}^{s_{1} s_{2} s_{1}} \cap A_{2}^{5} \subseteq A_{1}^{5}$. Note that $F_{1} \cap A_{2}^{5} \subseteq A_{1}^{5}$, since $F_{1} \cap F_{2} \subseteq F_{1}^{s_{1}}$ and $F_{1}^{s_{1}} \cap F_{2}^{s_{2} s_{1}} \subseteq F_{1}^{s_{1} s_{2} s_{1}}$. Since $F_{2}^{s_{1} s_{2} s_{1}}=$ $F_{2}^{s_{2} s_{1}} \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2} s_{1}}\right)$, we have

$$
\begin{equation*}
F_{2}^{s_{1} s_{2} s_{1}}=A_{2}^{5} \cup A_{1}^{2} \cup A_{1}^{3} . \tag{33}
\end{equation*}
$$

Consider the sequence $\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)=\psi_{s_{1}}\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}, F_{3}^{s_{2}}\right)$. We have $F_{1}^{s_{1} s_{2}} \subseteq F_{1}$, $F_{1}^{s_{1} s_{2}} \geq F_{2}^{s_{2}}$, and $F_{2}^{s_{1} s_{2}}=F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)$. Finally, consider

$$
\psi_{s_{2}}\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)=\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}\right)
$$

Thus, we have

$$
F_{1}^{s_{1} s_{2}}=F_{1}^{s_{1} s_{2} s_{1}}=A_{1}^{5} \cup A_{1}^{4} .
$$

¿From (33) and the inclusion $A_{2}^{5} \cup A_{1}^{2} \cup A_{1}^{3}=F_{2}^{s_{2} s_{1} s_{2}} \subseteq F_{2}^{s_{1} s_{2}}=F_{2}^{s_{2}} \cup A_{1}^{3} \cup A_{1}^{2} \cup A_{1}^{1}$, it follows that $A_{2}^{5} \subseteq F_{2}^{s_{2}} \cup A_{1}^{1}$. But since the sets A_{2}^{5} and A_{1}^{1} are disjoints, we have $A_{2}^{5} \subseteq F_{2}^{s_{2}}$. Let $A_{2}^{4}:=F_{2}^{s_{2}} \backslash A_{2}^{5}$ and $A_{2}^{3}:=F_{2} \backslash F_{2}^{s_{2}}$. Thus,

$$
F_{2}^{s_{2}}=A_{2}^{5} \cup A_{2}^{4} .
$$

Since $\left|F_{2}^{s_{2}}\right|=\left|F_{1}^{s_{1} s_{2}}\right|$ we have $\left|A_{1}^{4}\right|=\left|A_{2}^{4}\right|$ and $\left|A_{1}^{3}\right|=\left|A_{2}^{3}\right|$. Moreover, from the inequality $F_{1}^{s_{1} s_{2}} \geq F_{2}^{s_{2}}$ and the definition of A_{1}^{5}, we obtain $A_{1}^{4} \geq A_{2}^{4}$.
¿From the inequalities $F_{2}^{s_{2}} \geq F_{2}^{s_{2} s_{1}}$ and $F_{2}^{s_{1} s_{2}} \geq F_{2}^{s_{1}}$, we get $A_{2}^{4} \geq A_{1}^{2}$ and $A_{1}^{3} \geq A_{2}^{3}$.
$(b) \Rightarrow(a)$ Let $\mathbb{F}:=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\}$ be the set defined in (27), (28), (29) and (30). Clearly, \mathbb{F} is generated by $\left(F_{1}, F_{2}, F_{3}\right)$.

We show now that the transformations $\Theta_{k}^{*}, k=1,2$, may be used to obtain a decomposition of a sequence $F_{1} \geq F_{2} \geq F_{3}$ according to the rules of the previous theorem.

Proposition 4.5 Given $F_{1} \geq F_{2} \geq F_{3}$, there exists a set \mathbb{F}^{*} generated by $\left(F_{1}, F_{2}, F_{3}\right)$ such that, for all $\sigma \in \mathcal{S}_{3}$, and $j=1,2, \Theta_{j}^{*}\left(F_{j}^{\sigma}, F_{j+1}^{\sigma}\right)=\left(F_{j}^{s_{j} \sigma}, F_{j+1}^{s_{j} \sigma}\right)$ and $F_{p}^{s_{j} \sigma}=F_{p}^{\sigma}, p \neq j, j+1$. \mathbb{F}^{*} is uniquely determined by $F_{1} \geq F_{2} \geq F_{3}$.

We say that \mathbb{F}^{*} is the set $*$-generated by $\left(F_{1}, F_{2}, F_{3}\right)$.
Proof: We have to show that conditions (I), (II), (III) and (IV) of theorem 4.2 are feasible with \mathbf{s}_{*}. Let $\left(F_{1}^{s_{1}}, F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$, where $F_{3}^{s_{1}}=F_{3}$ and $\mathbf{s}_{*}\left(F_{1}, F_{2}\right)=\left(F_{1}^{s_{1}}, F_{2}^{s_{1}}\right)$, and $\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}, F_{3}^{s_{2}}\right)$, where $F_{1}^{s_{2}}=F_{1}$ and $\mathbf{s}_{*}\left(F_{1}, F_{2}\right)=\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)$.

Define now $\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)$, where $F_{1}^{s_{2} s_{1}}=F_{1}^{s_{1}}$ and $\left(F_{2}^{s_{2} s_{1}}, F_{3}^{s_{2} s_{1}}\right)=\mathbf{s}_{*}\left(F_{2}^{s_{1}}, F_{3}^{s_{1}}\right)$. Since $F_{2}^{s_{1}}=F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)$ and $F_{2}^{s_{2}}=\min _{F_{3}} F_{2}$, by theorem 2.8, we have

$$
\begin{equation*}
F_{2}^{s_{2} s_{1}}=\min _{F_{3}}\left[F_{2} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right]=\min _{F_{3}}\left[F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right]=X \cup Y, \tag{34}
\end{equation*}
$$

and $F_{2}^{s_{2}}=X \cup Z$, where $X \subseteq F_{2}^{s_{2}}, Y \subseteq F_{1} \backslash F_{1}^{s_{1}}$ and $Z \geq Y$.
Recalling that $F_{1}^{s_{2}}=F_{1} \geq F_{2}^{s_{2}}$, define $\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)$, such that $F_{3}^{s_{1} s_{2}}=F_{3}^{s_{2}}$ and $\left(F_{1}^{s_{1} s_{2}}, F_{2}^{s_{1} s_{2}}\right)=\mathbf{s}_{*}\left(F_{1}^{s_{2}}, F_{2}^{s_{2}}\right)$. By corollary 2.12, we have

$$
\begin{equation*}
F_{1}^{s_{1}}=\min _{F_{2}^{s_{2}}} F_{1} \cup \min _{\left(F_{2} \backslash F_{2}^{s_{2}}\right)}\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right), \tag{35}
\end{equation*}
$$

Thus, since $F_{1}^{s_{1} s_{2}}=\min _{F_{2}^{s_{2}}} F_{1}$, we must have $F_{1}^{s_{1} s_{2}} \subseteq F_{1}^{s_{1}}$. By corollary $2.6, F_{1}^{s_{1} s_{2}}=$ $\min _{F_{2}^{s_{2}}} F_{1}^{s_{1}}$, and from (35), $F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}=\min _{\left(F_{2} \backslash F_{2}^{s_{2}}\right)}\left(F_{1} \backslash F_{1}^{s_{1} s_{2}}\right)$. Hence $F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}} \geq F_{2} \backslash F_{2}^{s_{2}}$.

Finally, define $\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}, F_{3}^{s_{1} s_{2} s_{1}}\right)$, where $F_{3}^{s_{1} s_{2} s_{1}}=F_{3}^{s_{2} s_{1}}$ and $\left(F_{1}^{s_{1} s_{2} s_{1}}, F_{2}^{s_{1} s_{2} s_{1}}\right)=$ $s_{*}\left(F_{1}^{s_{2} s_{1}}, F_{2}^{s_{2} s_{1}}\right)$. Notice that $F_{1}^{s_{1} s_{2}}=\min _{F_{2}^{s_{2}}} F_{1}=\min _{X \cup Z} F_{1}^{s_{1}}$, and $F_{1}^{s_{1} s_{2} s_{1}}=\min _{F_{2}^{s_{2} s_{1}}} F_{1}^{s_{1}}$ $=\min _{X \cup Y} F_{1}^{s_{1}}$, where $Z \subseteq F_{2}^{s_{2}}, Y \subseteq F_{1} \backslash F_{1}^{s_{1}}$ and $Z \geq Y$.

Using theorem 2.10, we have $F_{1}^{s_{1} s_{2} s_{1}}=\min _{F_{2}^{s_{2} s_{1}}} F_{1}^{s_{1}}=F_{1}^{s_{1} s_{2}}$.
Note that $\mathbf{s}_{*}\left(F_{2}^{s_{1} s_{2}}, F_{3}^{s_{1} s_{2}}\right)=\left(F_{2}^{s_{2} s_{1} s_{2}}, F_{3}^{s_{2} s_{1} s_{2}}\right)$. In fact, $\min _{F_{3}^{s_{1} s_{2}}} F_{2}^{s_{1} s_{2}}=\min _{F_{3}^{s_{2}}} F_{2}^{s_{1} s_{2}}$ and

$$
\begin{equation*}
\min _{F_{3}^{s_{2}}} F_{2}^{s_{1} s_{2}}=\min _{\left[F _ { 3 } \cup \left(F_{2} \backslash F_{2}^{\left.\left.s_{2}\right)\right]}\right.\right.}\left[F_{2}^{s_{2}} \cup\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right], \tag{36}
\end{equation*}
$$

where $\min _{\left(F_{2} \backslash F_{2}^{s_{2}}\right)}\left[\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right]=F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}$.
Then, by theorem 2.14,

$$
(36)=\left(F_{1}^{s_{1}} \backslash F_{1}^{s_{1} s_{2}}\right) \cup \min _{F_{3}}\left[F_{2}^{s_{2}} \cup\left(F_{1} \backslash F_{1}^{s_{1}}\right)\right]=F_{2}^{s_{1} s_{2} s_{1}}
$$

By theorem 4.2 we conclude the proof.
Therefore, the set $\mathbb{F}^{*}:=\left\{\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right): \sigma \in<s_{1}, s_{2}>\right\}$, is generated by $\left(F_{1}, F_{2}, F_{3}\right)$, and satisfy, for all $\sigma \in \mathcal{S}_{3}$ and $j=1,2, \Theta_{j}^{*}\left(F_{j}^{\sigma}, F_{j+1}^{\sigma}\right)=\left(F_{j}^{s_{j} \sigma}, F_{j+1}^{s_{j} \sigma}\right)$ and $F_{p}^{s_{j} \sigma}=F_{p}^{\sigma}$, $p \neq j, j+1$.

Corollary 4.6 Let \mathbb{F}^{*} be the set $*$-generated by $\left(F_{1}, F_{2}, F_{3}\right)$. Then, for $j=1,2$, $\Theta_{j}^{*}\left(F_{i}^{\sigma}\right)_{i=1}^{3}=\left(F_{i}^{s_{j} \sigma}\right)_{i=1}^{3}, \sigma \in<s_{1}, s_{2}>$, satisfy:
(a) $\left(\Theta_{j}^{*}\right)^{2}=i d, j=1,2$.
(b) $\Theta_{1}^{*} \Theta_{2}^{*} \Theta_{1}^{*}=\Theta_{2}^{*} \Theta_{1}^{*} \Theta_{2}^{*}$.

That is, \mathcal{S}_{3} acts on \mathbb{F}^{*}.
Proof: Use previous proposition.
Let us consider the canonical words of $\mathcal{S}_{k+1}, k \geq 1$, (20), written as : $\theta_{r} \omega$, with $\theta_{r}:=s_{r} \theta_{r+1}, \theta_{k+1}:=i d$, and $\omega \in \mathcal{S}_{k}$, for $r=1, \ldots, k$.

Definition 4.3 Let $k \geq 1$ and $F_{1} \geq \ldots \geq F_{k} \geq F_{k+1}$. We define, recursively, the set $\mathbb{F}^{*}=\left\{\left(F_{1}^{\sigma}, . ., F_{k+1}^{\sigma}\right): \sigma \in<s_{1}, . ., s_{k}>\right\} *$-generated by $\left(F_{1}, . ., F_{k}, F_{k+1}\right)$ as follows:

- If $k=1, \mathbb{F}^{*}:=\left\{\left(F_{1}, F_{2}\right), \mathbf{s}_{*}\left(F_{1}, F_{2}\right)\right\}$.
- If $k>1, \mathbb{F}^{*}:=\left\{\left(F_{i}^{\omega}\right)_{i=1}^{k+1}: \omega \in \mathcal{S}_{k}\right\} \cup\left\{\left(F_{i}^{\theta_{r} \omega}\right)_{i=1}^{k+1}: 1 \leq r \leq k, \omega \in \mathcal{S}_{k}\right\}$, where
(i) $\left\{\left(F_{i}^{\omega}\right)_{i=1}^{k}: \omega \in \mathcal{S}_{k}\right\}$ is *-generated by $\left(F_{1}, \ldots, F_{k}\right)$, and $F_{k+1}^{\omega}=F_{k+1}$, for all $\omega \in \mathcal{S}_{k}$;
(ii) for each $r=1, \ldots, k$, and $\omega \in \mathcal{S}_{k}$,

$$
\begin{equation*}
\mathbf{s}_{*}\left(F_{r}^{\theta_{r+1} \omega}, F_{r+1}^{\theta_{r+1} \omega}\right)=\left(F_{r}^{s_{r} \theta_{r+1} \omega}, F_{r+1}^{s_{r} \theta_{r+1} \omega}\right), \text { and } F_{p}^{s_{r} \theta_{r+1} \omega}=F_{p}^{\theta_{r+1} \omega}, \quad p \neq r, r+1 \tag{37}
\end{equation*}
$$

Proposition 4.7 Let $k \geq 1$ and $F_{1} \geq \ldots \geq F_{k} \geq F_{k+1}$. The following statements hold
(I) There exists always $\mathbb{F}^{*} *$-generated by $\left(F_{i}\right)_{i=1}^{k+1}$.
(II) If \mathbb{F}^{*} is $*$-generated by $\left(F_{i}\right)_{i=1}^{k+1}$, then, for each $r \in\{1, \ldots, k+1\}$, and $\omega \in \mathcal{S}_{k}$, there exist $G_{i}^{\omega} \subseteq F_{i}^{\omega}$, with $\left|G_{i}^{\omega}\right|=\left|F_{k+1}\right|$, for $1 \leq i<r$, such that

$$
G_{1}^{\omega} \geq \ldots \geq G_{r-1}^{\omega} \geq F_{r}^{\theta_{r} \omega} \geq \ldots \geq F_{k}^{\theta_{k} \omega} \geq F_{k+1}
$$

where $F_{i}^{\theta_{i} \omega} \subseteq F_{i}^{\omega},\left|F_{i}^{\theta_{i} \omega}\right|=\left|F_{k+1}\right|$, for $i=r, \ldots, k$, and $F_{k+1} \subseteq F_{k+1}^{\theta_{k} \omega}$.
Proof: By double induction on k and r. When $k=1$, this is definition 4.1 with s_{*}. When $k=2$, this is definition 4.2 with s_{*}, and this set was constructed in proposition 4.5. We have to show that (37) is feasible, for $k \geq 3$. By induction, there exists a set $\widetilde{\mathbb{F}}=\left\{\left(F_{i}^{\omega}\right)_{i=1}^{k}\right.$: $\left.\omega \in \mathcal{S}_{k}\right\} *$-generated by $\left(F_{i}\right)_{i=1}^{k}$, satisfying (II) above. Fix ω arbitrarily in \mathcal{S}_{k}. Then, there exist, for $i=1, \ldots, k, G_{i}^{\omega} \subseteq F_{i}^{\omega}$, with $G_{k}^{\omega}=F_{k}$ and $\left|G_{i}^{\omega}\right|=\left|F_{k}\right|$, such that

$$
G_{1}^{\omega} \geq \ldots \geq G_{k}^{\omega}=F_{k} \geq F_{k+1}
$$

Since $G_{k}^{\omega}=F_{k} \subseteq F_{k}^{\omega}$, it follows that $F_{k}^{\omega} \geq F_{k+1}$. So, putting $F_{k+1}^{\omega}=F_{k+1}$, we may define $\mathbf{s}_{*}\left(F_{k}^{\omega}, F_{k+1}^{\omega}\right)=\left(F_{k}^{s_{k} \omega}, F_{k+1}^{s_{k} \omega}\right)$ and $F_{p}^{s_{k} \omega}=F_{p}^{\omega}, p \neq k, k+1$. We have $F_{k}^{s_{k} \omega}=\min _{F_{k+1}} F_{k}^{\omega}$ and $F_{k+1}^{s_{k} \omega}=F_{k+1} \cup\left(F_{k}^{\omega} \backslash F_{k}^{s_{k} \omega}\right)$. Thus, $G_{k}^{\omega} \geq F_{k}^{s_{k} \omega}$ and $G_{1}^{\omega} \geq \ldots \geq G_{k-1}^{\omega} \geq F_{k}^{s_{k} \omega} \geq F_{k+1}$, with $F_{k+1} \subseteq F_{k+1}^{s_{k} \omega}, F_{k}^{s_{k} \omega} \subseteq F_{k}^{\omega}$, and $\left|F_{k}^{s_{k} \omega}\right|=\left|F_{k+1}\right|$. Clearly we may consider $\left|G_{i}^{\omega}\right|=\left|F_{k+1}\right|$, for $i=1, \ldots, k-1$.

Suppose we have already defined $\left(F_{i}^{s_{r+1} \ldots s_{k} \omega}\right)_{i=1}^{k+1}$, for $1<r+1 \leq k$, such that

$$
G_{1}^{\omega} \geq \ldots \geq G_{r}^{\omega} \geq F_{r+1}^{s_{r+1} \ldots s_{k} \omega} \geq \ldots \geq F_{k}^{s_{k} \omega} \geq F_{k+1}
$$

with $F_{i}^{s_{i} \ldots s_{k} \omega} \subseteq F_{i}^{s_{i+1} \ldots s_{k} \omega},\left|F_{i}^{s_{i} \ldots s_{k} \omega}\right|=\left|F_{k+1}\right|, i=r+1, \ldots, k, G_{i}^{\omega} \subseteq F_{i}^{\omega}=F_{i}^{s_{r+1} \ldots s_{k} \omega}$, $\left|G_{i}^{\omega}\right|=\left|F_{k+1}\right|, i=1, \ldots, r$.

So we must have $F_{r}^{\omega}=F_{r}^{s_{r+1} \ldots s_{k} \omega} \geq F_{r+1}^{s_{r+1} \ldots s_{k} \omega}$, and we may define

$$
\mathbf{s}_{*}\left(F_{r}^{s_{r+1} \ldots s_{k} \omega}, F_{r+1}^{s_{r+1} \ldots s_{k} \omega}\right)=\left(F_{r}^{s_{r} s_{r+1} \ldots s_{k} \omega}, F_{r+1}^{s_{r} s_{r+1} \ldots s_{k} \omega}\right)
$$

and $F_{p}^{s_{r} s_{r+1} \ldots s_{k} \omega}=F_{p}^{s_{r+1} \ldots s_{k} \omega}, p \neq r, r+1$.
As $F_{r}^{s_{r} \ldots s_{k} \omega}=\min _{F_{r+1}^{s_{r}} \ldots s_{k} \omega} F_{r}^{s_{r+1} \ldots s_{k} \omega}$ and $F_{r+1}^{s_{r} \ldots s_{k} \omega}=F_{r+1}^{s_{r+1} \ldots s_{k} \omega} \cup\left(F_{r}^{s_{r+1} \ldots s_{k} \omega} \backslash F_{r}^{s_{r} \ldots s_{k} \omega}\right)$, then, $G_{r-1}^{\omega} \geq G_{r}^{\omega} \geq F_{r}^{s_{r}^{r+1} s_{k} \omega}$, and

$$
G_{1}^{\omega} \geq \ldots \geq G_{r-1}^{\omega} \geq F_{r}^{s_{r} \ldots s_{k} \omega} \geq \ldots \geq F_{k}^{s_{k} \omega} \geq F_{k+1}
$$

with $F_{r}^{s_{r} \ldots s_{k} \omega} \subseteq F_{r}^{s_{r+1} \ldots s_{k} \omega}=F_{r}^{\omega}$ and $\left|F_{r-1}^{s_{r-1} \ldots s_{k} \omega}\right|=\left|F_{k+1}\right|$. By induction, the result follows.

Next we show that the operators $\Theta_{k}^{*}, k=1, \ldots, t-1$, may be used to decompose a sequence $F_{1} \geq \ldots \geq F_{t}, t \geq 3$, such that we have an action of \mathcal{S}_{t}.

Theorem 4.8 Let $F_{1} \geq \ldots \geq F_{k} \geq F_{k+1}, k \geq 2$, and $\mathbb{F}^{*}=\left\{\left(F_{i}^{\sigma}\right)_{i=1}^{k+1}: \sigma \in \mathcal{S}_{k+1}\right\}{ }^{*-}$ generated by $\left(F_{i}\right)_{i=1}^{k}$. For each $t, t+1, t+2 \in\{1, \ldots, k+1\}$ and $\sigma \in \mathcal{S}_{k+1}$, let $G=$ $\left\{\left(F_{t}^{\alpha \sigma}, F_{t+1}^{\alpha \sigma}, F_{t+2}^{\alpha \sigma}\right): \alpha \in<s_{t}, s_{t+1}>\right\} \subseteq \mathbb{F}^{*}$. Then,

$$
\Theta_{j}^{*}\left(F_{j}^{\alpha \sigma}, F_{j+1}^{\alpha \sigma}\right)=\left(F_{j}^{s_{j} \alpha \sigma}, F_{j+1}^{s_{j} \alpha \sigma}\right), \text { for all } \alpha \in<s_{t}, s_{t+1}>, \quad j=t, t+1
$$

and $F_{p}^{s_{j} \alpha \sigma}=F_{p}^{\alpha \sigma}$, for $p \neq j, j+1$.
Proof: By induction on k. When $k=2$, we have $\left\{\alpha \sigma: \alpha \in<s_{1}, s_{2}>\right\}=<s_{1}, s_{2}>$, for all $\sigma \in \mathcal{S}_{2}$, and this is proposition 4.5.

Let $k \geq 3$ and $\widetilde{\mathbb{F}}=\left\{\left(F_{i}^{\omega}\right)_{i=1}^{k}: \omega \in \mathcal{S}_{k}\right\}$ *-generated by $\left(F_{1}, \ldots, F_{k}\right)$. By induction hypothesis, for each $\omega \in \mathcal{S}_{k}$, and $i, i+1 \in\{1, \ldots, k-1\}$,

$$
\begin{equation*}
\Theta_{i}^{*}\left(F_{i}^{\omega}, F_{i+1}^{\omega}\right)=\left(F_{i}^{s_{i} \omega}, F_{i+1}^{s_{i}^{i \omega}}\right) \tag{38}
\end{equation*}
$$

and $F_{p}^{s_{i} \omega}=F_{p}^{\omega}, p \neq i, i+1$.

Fix $\omega \in \mathcal{S}_{k}$ arbitrarily. If $t+1=k$, since $F_{k}^{\omega} \geq F_{k+1}$ and

$$
\Theta_{k-1}^{*}\left(F_{k-1}^{\omega}, F_{k}^{\omega}\right)=\left(F_{k-1}^{s_{k-1} \omega}, F_{k}^{s_{k-1} \omega}\right),
$$

it follows, by (38),

$$
\begin{align*}
F_{k-1}^{\omega} & \geq F_{k}^{\omega} \geq F_{k+1}, \quad \text { or } \tag{39}\\
F_{k-1}^{s_{k-1} \omega} & \geq F_{k}^{s_{k-1} \omega} \geq F_{k+1} . \tag{40}
\end{align*}
$$

Notice that $\left\{\alpha s_{k-1}: \alpha \in<s_{k-1}, s_{k}>\right\}=<s_{k-1}, s_{k}>$. Then, $G=\left\{\left(F_{k-1}^{\alpha \omega}, F_{k}^{\alpha \omega}, F_{k+1}^{\alpha \omega}\right)\right.$: $\left.\theta \in<s_{k-1}, s_{k}>\right\}$ is $*$-generated by (39) or by (40). Again, by proposition 4.5 the claim is true.

Now, let $\sigma=\theta_{r} \omega$, where $\theta_{r}=s_{r} \theta_{r+1}, 1 \leq r \leq k$, with $\theta_{k+1}=i d$, and suppose the claim is true for all θ_{i}, with $r<i \leq k$.

If $t+2<r$, by induction hypothesis, the claim is true.
If $t>r$, then $s_{t} s_{r} \ldots s_{k} \omega=s_{r} \ldots s_{k} \omega^{\prime}$, with $\omega^{\prime}=s_{t-1} \omega \in \mathcal{S}_{k}$. So it is enough to analyze the cases $t=r, t+1=r$ and $t+2=r$.

Case $t+2=r$. We have $F_{t}^{\sigma}=F_{t}^{\omega}, F_{t+1}^{\sigma}=F_{t+1}^{\omega}$. Then by previous theorem, (II), $F_{r-1}^{\omega} \geq F_{r}^{\sigma}$, and, by induction, $\Theta_{j}^{*}\left(F_{j}^{\sigma}, F_{j+1}^{\sigma}\right)=\Theta_{t}^{*}\left(F_{t}^{\omega}, F_{t+1}^{\omega}\right)=\left(F_{t}^{s t \omega}, F_{t+1}^{s t \omega}\right)$. So,

$$
\begin{align*}
F_{r-2}^{s_{r-2} \omega} & \geq F_{r-1}^{s_{r-2} \omega} \geq F_{r}^{\sigma} \text { or } \tag{41}\\
& F_{r-2}^{\omega} \geq F_{r-1}^{\omega} \geq F_{r}^{\sigma} . \tag{42}
\end{align*}
$$

Then $G=\left\{\left(F_{r-2}^{\alpha \sigma}, F_{r-1}^{\alpha \sigma}, F_{r}^{\alpha \sigma}\right): \alpha \in<s_{r-2}, s_{r-1}>\right\}$ is $*$-generated by (41) or by (42). Again proposition 4.5 shows the claim.

Case $t+1=r$. We have by previous theorem, (II), $F_{r-1}^{\sigma}=F_{r-1}^{\omega} \geq F_{r}^{\sigma} \geq o p F_{r+1}^{\sigma}$ and $\Theta_{r}^{*}\left(F_{r}^{\sigma}, F_{r+1}^{\sigma}\right)=\left(F_{r}^{s_{r} \sigma}, F_{r+1}^{s_{r} \sigma}\right)$. So, $F_{r}^{s_{r} \sigma}=F_{r}^{\omega}$ and $F_{r+1}^{s_{r} \sigma}=F_{r+1}^{s_{r+1} \ldots s_{k} \sigma}$. By induction, $\Theta_{r-1}^{*}\left(F_{r-1}^{\omega}, F_{r}^{\omega}\right)=\left(F_{r-1}^{s_{r-1} \omega}, F_{r}^{s_{r-1} \omega}\right)$. Hence,

$$
\begin{align*}
F_{r-1}^{\omega} & \geq F_{r}^{\omega} \geq F_{r+1}^{s_{r+1} \ldots s_{k} \omega}, \text { or } \tag{43}\\
F_{r-1}^{s_{r-1} \omega} & \geq F_{r}^{s_{r-1} \omega} \geq F_{r+1}^{s_{r+1} \ldots s_{k} \omega} . \tag{44}
\end{align*}
$$

Then G is *-generated by (43) or by (44). Again apply proposition 4.5
Case $t=r$. By previous theorem, $F_{r}^{\sigma} \geq_{o p} F_{r+1}^{\sigma}$ and

$$
\Theta_{r}^{*}\left(F_{r}^{\sigma}, F_{r+1}^{\sigma}\right)=\left(F_{r}^{s_{r} \sigma}, F_{r+1}^{s_{r} \sigma}\right)
$$

Then, using previous theorem, (II), $F_{r}^{\omega} \geq F_{r+1}^{s_{r+1} \ldots s_{k} \omega} \geq_{o p} F_{r+2}^{\sigma}=F_{r+2}^{s_{r+1} \ldots s_{k} \omega}$, and

$$
\Theta_{r+1}^{*}\left(F_{r+1}^{s_{r+1} \ldots s_{k} \omega}, F_{r+2}^{s_{r+1} \ldots s_{k} \omega}\right)=\left(F_{r+1}^{s_{r+2} \ldots s_{k} \omega}, F_{r+2}^{s_{r+2} \ldots s_{k} \omega}\right)=\left(F_{r+1}^{\omega}, F_{r+2}^{s_{r+2} \ldots s_{k} \omega}\right) .
$$

By induction $\Theta_{r}^{*}\left(F_{r}^{\omega}, F_{r+1}^{\omega}\right)=\left(F_{r}^{s_{r} \omega}, F_{r+1}^{s_{r} \omega}\right)$. Hence,

$$
\begin{gather*}
F_{r}^{\omega} \geq F_{r+1}^{\omega} \geq F_{r+2}^{s_{r+2} \ldots s_{k} \omega} \text { or } \tag{45}\\
F_{r}^{s_{r} \omega} \geq F_{r+1}^{s_{r} \omega} \geq F_{r+2}^{s_{r+2} \ldots s_{k} \omega} . \tag{46}
\end{gather*}
$$

Therefore, G is $*$-generated by (45) or by (46). Again proposition 4.5 shows the claim.

Corollary 4.9 Let $k \geq 2, F_{1} \geq \ldots \geq F_{k}$, and $\mathbb{F}^{*}=\left\{\left(F_{i}^{\sigma}\right)_{i=1}^{k}: \sigma \in \mathcal{S}_{k}\right\}$ *-generated by $\left(F_{i}\right)_{i=1}^{k}$. Then, for $j=1, \ldots, k-1, \Theta_{j}^{*}\left(\left(F_{i}^{\sigma}\right)_{i=1}^{k}\right)=\left(F_{i}^{s_{j} \sigma}\right)_{i=1}^{k}, \sigma \in \mathcal{S}_{k}$, satisfy:
(a) $\left(\Theta_{j}^{*}\right)^{2}=i d, 1 \leq j \leq k-1$.
(b) $\Theta_{j}^{*} \Theta_{r}^{*}=\Theta_{r}^{*} \Theta_{j}^{*},|j-r|>1$.
(c) $\Theta_{j}^{*} \Theta_{j+1}^{*} \Theta_{j}^{*}=\Theta_{j+1}^{*} \Theta_{j}^{*} \Theta_{j+1}^{*}, 1 \leq j \leq k-2$.

That is, \mathcal{S}_{k} acts on \mathbb{F}^{*}.
Proof: Use previous theorem.
In view of the results above, we may give the following definitions.
Definition 4.4 Given $J_{1}, \ldots, J_{t} \subseteq\{1, \ldots, n\}$ and $\sigma \in \mathcal{S}_{t}$, we say that $\left(J_{1}, \ldots, J_{t}\right)$ is a $\sigma-L R$ sequence of sets if there exists $F_{1} \geq \ldots \geq F_{t}$ such that $\left(J_{1}, \ldots, J_{t}\right)=\left(F_{1}^{\sigma}, \ldots, F_{t}^{\sigma}\right) \in \mathbb{F}^{*}$, with \mathbb{F}^{*} *-generated by $\left(F_{1}, \ldots, F_{t}\right)$.

Proposition 4.10 Given $J_{1}, \ldots, J_{t} \subseteq\{1, \ldots, n\}$, the sequence $\left(J_{1}, \ldots, J_{t}\right)$ is a $\sigma-L R$ sequence of sets if and only if $\Theta_{i_{1}}^{*} \Theta_{i_{2}}^{*} \ldots \Theta_{i_{r}}^{*}\left(J_{1}, \ldots, J_{t}\right)$ is a LR sequence of sets, where $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ is a word of σ in the alphabet $\left\{s_{1}, \ldots, s_{t-1}\right\}$.

Proof: Use previous corollary.
Now we shall characterize σ-LR sequences of lenght 3 , with $\sigma \in \mathcal{S}_{3}$, and we show that the elements generated in a set \mathbb{F}, by an LR sequence, may also be generated by the transformations $\Theta_{k}^{*}, k=1,2$, by some other LR sequence.

Theorem 4.11 Let $J_{1}, J_{2}, J_{3} \subseteq\{1, \ldots, n\}$. Then,
(a) $\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{1}-L R$ sequence iff $\exists A \subseteq J_{2}$ with $|A|=\left|J_{1}\right|$ such that $J_{1} \geq A \geq J_{3}$.
(b) $\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{2}-L R$ sequence iff
(i) $\exists A_{1}^{1} \subseteq J_{1}, A_{3}^{1} \subseteq J_{3}$ with $\left|A_{1}^{1}\right|=\left|A_{3}^{1}\right|=\left|J_{2}\right|$ such that $A_{1}^{1} \geq J_{2} \geq A_{3}^{1}$,
(ii) $\exists A_{1}^{2} \subseteq J_{1} \backslash A_{1}^{1}$ with $\left|A_{1}^{2}\right|=\left|J_{3} \backslash A_{3}^{1}\right|$ such that $A_{1}^{2} \geq J_{3} \backslash A_{3}^{1}$.
(c) $\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{1} s_{2}-L R$ sequence iff
(i) $\exists A_{2}^{1} \subseteq J_{2}, A_{3}^{1} \subseteq J_{3}$ with $\left|J_{1}\right|=\left|A_{2}^{1}\right|=\left|A_{3}^{1}\right|$ such that $J_{1} \geq A_{2}^{1} \geq A_{3}^{1}$,
(ii) $\exists A_{2}^{2} \subseteq J_{2} \backslash A_{2}^{1}$ with $\left|A_{2}^{2}\right|=\left|J_{3} \backslash A_{3}^{1}\right|$ such that $A_{2}^{2} \geq J_{3} \backslash A_{3}^{1}$.
(d) $\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{2} s_{1}-L R$ sequence iff
(i) $\exists A_{1}^{1} \subseteq J_{1}, A_{3}^{1} \subseteq J_{3}$ with $\left|A_{1}^{1}\right|=\left|J_{2}\right|=\left|A_{3}^{1}\right|$ such that $A_{1}^{1} \geq J_{2} \geq A_{3}^{1}$,
(ii) $\exists A_{3}^{2} \subseteq J_{3} \backslash A_{3}^{1}$ with $\left|A_{3}^{2}\right|=\left|J_{1} \backslash A_{1}^{1}\right|$ such that $J_{1} \backslash A_{1}^{1} \geq A_{3}^{2}$.
(e) $\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{1} s_{2} s_{1}-L R$ sequence iff
(i) $\exists A_{2}^{1} \subseteq J_{2}, A_{3}^{1} \subseteq J_{3}$ with $\left|J_{1}\right|=\left|A_{2}^{1}\right|=\left|A_{3}^{1}\right|$ such that $J_{1} \geq A_{2}^{1} \geq A_{3}^{1}$,
(ii) $\exists A_{3}^{2} \subseteq J_{3} \backslash A_{3}^{1}$ with $\left|A_{3}^{2}\right|=\left|J_{2} \backslash A_{2}^{1}\right|$ such that $J_{2} \backslash A_{2}^{1} \geq A_{3}^{2}$.

Proof: The only if part. If $\left(J_{1}, J_{2}, J_{3}\right)$ is a σ-LR sequence, then there exists $F_{1} \geq F_{2} \geq F_{3}$ such that $\left(J_{1}, J_{2}, J_{3}\right)=\left(F_{1}^{\sigma}, F_{2}^{\sigma}, F_{3}^{\sigma}\right) \in \mathbb{F}^{*}$, the set $*$-generated by $\left(F_{1}, F_{2}, F_{3}\right)$. Using theorem 4.4, the conclusion follows easily.

The if part. (a) and (b) are obvious.
(c) It is enough to prove that $\Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a s_{2}-LR sequence.

Define $\widetilde{A}:=\max \left\{X \subseteq J_{2}:|X|=\left|J_{1}\right|, J_{1} \geq X\right\}$ and let $F_{2}:=\widetilde{A}$ and $F_{1}:=J_{1} \cup\left(J_{2} \backslash F_{2}\right)$. Clearly, $\Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)=\left(F_{1}, F_{2}, F_{3}\right)$, with $F_{3}=J_{3}$.

Since $J_{1} \geq \widetilde{A} \geq A_{2}^{1}$, we may write $\widetilde{A}=X_{1} \cup Y_{1} \cup Z, A_{2}^{1}=X_{1} \cup X_{2} \cup X_{3}$, and $A_{2}^{2}=Y_{1} \cup Y_{2}$, union of pairwise disjoint subsets, with $Z \subseteq J_{2} \backslash\left(A_{2}^{1} \cup A_{2}^{2}\right),\left|Y_{1}\right|=\left|X_{2}\right|$, and $|Z|=\left|X_{3}\right|$ such that $Y_{1} \geq X_{2}, Z \geq X_{3}$. Let $A_{3}^{2}:=J_{3} \backslash A_{3}^{1}$. Since $A_{2}^{1} \geq A_{3}^{1}$ and $A_{2}^{2} \geq A_{3}^{2}$, we may also write $A_{3}^{1}=X_{1}^{\prime} \cup X_{2}^{\prime} \cup X_{3}^{\prime}$ and $A_{3}^{2}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$, union of pairwise disjoint subsets, where $\left|X_{i}^{\prime}\right|=\left|X_{i}\right|, X_{i} \geq X_{i}^{\prime} i=1,2,3$, and $\left|Y_{i}^{\prime}\right|=\left|Y_{i}\right|, Y_{i} \geq Y_{i}^{\prime} i=1,2$.

We have: $(i) J_{1} \subseteq F_{1}$ and $\widetilde{A}_{3}:=X_{1}^{\prime} \cup X_{3}^{\prime} \cup Y_{1}^{\prime} \subset F_{3}$ with $\left|J_{1}\right|=\left|F_{2}\right|=\left|\widetilde{A}_{3}\right|$ such that $J_{1} \geq F_{2} \geq \widetilde{A}_{3}$; and (ii) $X_{2} \cup Y_{2} \subseteq F_{1} \backslash J_{1}$ with $\left|X_{2} \cup Y_{2}\right|=\left|F_{3} \backslash \widetilde{A}_{3}\right|$ such that $X_{2} \cup Y_{2} \geq F_{3} \backslash \widetilde{A}_{3}$. Hence, by (b), $\Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a s_{2}-LR sequence.
(d) It is enough to prove that $\Theta_{2}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a s_{1}-LR sequence. Let $F_{1}:=J_{1}, F_{3}:=$ $\max \left\{X \subseteq J_{3}:|X|=\left|J_{2}\right|, J_{2} \geq X\right\}$ and $F_{2}:=J_{2} \cup\left(J_{3} \backslash F_{3}\right)$. Clearly, $\Theta_{2}^{*}\left(J_{1}, J_{2}, J_{3}\right)=$ $\left(F_{1}, F_{2}, F_{3}\right)$. Since $A_{1}^{1} \geq J_{2} \geq A_{3}^{1}$ and $J_{1} \backslash A_{1}^{1} \geq A_{3}^{2}$, we may write $F_{3}=X_{1}^{\prime} \cup Y_{1}^{\prime} \cup Z$, $J_{2}=X_{1} \cup X_{2} \cup X_{3}, A_{3}^{1}=X_{1}^{\prime} \cup X_{2}^{\prime} \cup X_{3}^{\prime}, J_{1} \backslash A_{1}^{1}=Y_{1} \cup Y_{2}$, and $A_{3}^{2}=Y_{1}^{\prime} \cup Y_{2}^{\prime}$, union of pairwise disjoint subsets, with $\left|X_{i}\right|=\left|X_{i}^{\prime}\right|, X_{i} \geq X_{i}^{\prime}, i=1,2,3,\left|Y_{i}\right|=\left|Y_{i}^{\prime}\right|, Y_{i} \geq Y_{i}^{\prime}$, $i=1,2$, and $|Z|=\left|X_{3}\right|$, such that $X_{3} \geq Z \geq X_{3}^{\prime}$ and $X_{2} \geq Y_{1}^{\prime} \geq X_{2}^{\prime}$.

Therefore, $F_{1}=A_{1}^{1} \cup Y_{1} \cup Y_{2} \geq J_{2} \cup X_{2}^{\prime} \cup Y_{2}^{\prime}$, with $J_{2} \cup X_{2}^{\prime} \cup Y_{2}^{\prime} \subseteq F_{2}$ and $\left|J_{2} \cup X_{2}^{\prime} \cup Y_{2}^{\prime}\right|=\left|F_{1}\right|$. Hence, by $(a), \Theta_{2}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a s_{1}-LR sequence.
(e) It is enough to prove that $\Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{2} s_{1}$-LR sequence. If $F_{3}:=J_{3}, F_{2}:=$ $\max \left\{X \subseteq J_{2}:|X|=\left|J_{1}\right|, J_{1} \geq X\right\}$ and $F_{1}:=J_{1} \cup\left(J_{2} \backslash F_{2}\right)$, then clearly, $\Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)=$ $\left(F_{1}, F_{2}, F_{3}\right)$. We may write $J_{1}=X_{1} \cup X_{2}, A_{2}^{1}=Y_{1} \cup Y_{2}, J_{2} \backslash A_{2}^{1}=Y_{3} \cup Y_{4}, A_{3}^{1}=Z_{1} \cup Z_{2}$, $A_{3}^{2}=Z_{3} \cup Z_{4}$, and $F_{2}=Y_{1} \cup Y_{3}$, union of pairwise disjoint subsets, with $\left|X_{i}\right|=\left|Y_{i}\right|=\left|Z_{i}\right|$, $X_{i} \geq Y_{i} \geq Z_{i}, i=1,2$, and $\left|Y_{i}\right|=\left|Z_{i}\right|, Y_{i} \geq Z_{i}, i=3,4$, such that $\left|Y_{3}\right|=\left|Y_{2}\right|$ and $X_{2} \geq Y_{3} \geq Y_{2}$.

Therefore, (i) $X_{1} \cup X_{2} \subseteq F_{1}$ and $Z_{2} \cup Z_{3} \subseteq F_{3}$ with $\left|X_{1} \cup X_{3}\right|=\left|F_{2}\right|=\left|Z_{1} \cup Z_{3}\right|$, such that $X_{1} \cup X_{2} \geq F_{2} \geq Z_{1} \cup Z_{3}$; and (ii) $Z_{2} \cup Z_{4} \subseteq F_{3} \backslash\left(Z_{1} \cup Z_{3}\right)$, with $\left|Z_{2} \cup Z_{4}\right|=\left|F_{1} \backslash\left(X_{1} \cup X_{2}\right)\right|$, such that $F_{1} \backslash\left(X_{1} \cup X_{2}\right) \geq Z_{2} \cup Z_{3}$. Hence, by $(d), \Theta_{1}^{*}\left(J_{1}, J_{2}, J_{3}\right)$ is a $s_{2} s_{1}$-LR sequence.

Definition 4.5 Given $\sigma \in \mathcal{S}_{t}$, we say that \mathcal{T} is a $\sigma-L R$ tableau of type ($a, \sigma m, c$), with m a partition, if its indexing sets are a $\sigma-L R$ sequence.

Let a, m, c be partitions of length $\leq n$ with $a, m \subseteq c$. Given $\sigma \in \mathcal{S}_{t}$, we denote by $L R_{\sigma}(a, \sigma m, c)$ the set constituted by the indexing sets of all σ-LR tableau of type ($a, \sigma m, c$). If $\left\{\left(A_{i}\right)_{i=1}^{t},\left(B_{i}\right)_{i=1}^{t}, \ldots,\left(F_{i}\right)_{i=1}^{t}\right\}$ are the indexing sets of all $L R$ tableaux of type (a, m, c), let $\mathbb{F}_{A}^{*}, \mathbb{F}_{B}^{*}, \ldots, \mathbb{F}_{F}^{*}$ be, respectively, the sets $*$-generated by those indexing sets. Then,

$$
L R_{\sigma}(a, \sigma m, c)=\left\{\left(A_{i}^{\sigma}\right)_{i=1}^{t},\left(B_{i}^{\sigma}\right)_{i=1}^{t}, \ldots,\left(F_{i}^{\sigma}\right)_{i=1}^{t}\right\}
$$

Hence,

$$
\bigcup_{\sigma \in \mathcal{S}_{t}} L R_{\sigma}(a, \sigma m, c)=\mathbb{F}_{A}^{*} \cup \mathbb{F}_{B}^{*} \cup \ldots \cup \mathbb{F}_{F}^{*}
$$

If J_{1}, \ldots, J_{t} are the indexing sets of a σ-LR tableau of type $(a, \sigma m, c)$, then $\Theta_{i}^{*}\left(J_{1}, \ldots, J_{t}\right)$ are the indexing sets of a $s_{i} \sigma$-LR tableau of type $\left(a, s_{i} \sigma m, c\right)$, for all $i=1, \ldots, t$. Hence, given a tableau \mathcal{T} of type $(a, \sigma m, c)$ with indexing sets $J_{1}, \ldots, J_{t}, \mathcal{T}$ is a σ-LR tableau if and only if $\Theta_{i_{1}}^{*} \Theta_{i_{2}}^{*} \ldots \Theta_{i_{r}}^{*}\left(J_{1}, \ldots, J_{t}\right)$ are the indexing sets of an LR tableau of type (a, m, c), where $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ is a word of σ in the alphabet $\left\{s_{1}, \ldots, s_{t-1}\right\}$.

Given $\varepsilon, \sigma \in \mathcal{S}_{t}$ and $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ a word of $\varepsilon \sigma^{-1}$ in the alphabet $\left\{s_{1}, \ldots, s_{t-1}\right\}, \Theta_{i_{1}}^{*} \Theta_{i_{2}}^{*} \ldots \Theta_{i_{r}}^{*}$ defines a bijection between $L R_{\sigma}(a, \sigma m, c)$ and $L R_{\varepsilon}(a, \varepsilon m, c)$.

Theorem 4.12 The involutions $\Theta_{i}^{*}, i=1, \ldots, t-1$, define an action of the symmetric group \mathcal{S}_{t} on $\cup_{\sigma \in \mathcal{S}_{t}} L R_{\sigma}(a, \sigma m, c)$.

Acknowledgement: We are very grateful to Ana Paula Escada and Alexander Kovačec for useful comments. In particular, we are much obliged to Alexander Kovačec for the concept of "witness" which led us to a better understanding of the operations under consideration in this paper.

References

[1] O. Azenhas, E. Marques de Sá, Matrix Realizations of Littlewood-Richardson Sequences, Linear and Multilinear Algebra, 27 (1990), 229-242.
[2] O. Azenhas, Realizações Matriciais de Quadros de Young e Suas Formas Canónicas (in Portuguese), Phd Thesis, Universidade de Coimbra, Coimbra, 1991.
[3] O. Azenhas, A Regra de Littlewood-Richardson: Generalizações e Realizações Matriciais, Proceedings of the third meeting of the Portuguese algebraist (in Portuguese), Coimbra, pp. 9-32, 1993.
[4] O. Azenhas, Opposite Litlewood-Richardson Sequences and their Matrix Realizations, Linear Algebra Appl., 225 (1995), 91-116.
[5] O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra, 46:51-99, 1999.
[6] W. Fulton, Young Tableaux, London Mathematical Society Student Texts 35, Cambridge, University Press, 1997.
[7] L. Gerstein, A Local Approach to Matrix Equivalence, Linear and Multilinear Algebra, 16 (1977), 221-232.
[8] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel, 1998.
[9] T. Klein, The Multiplication of Schur Funtions and Extensions of p-Modules, Journal of London Mathematical Society, 43 (1968), 280-282.
[10] A. Lascoux, M.P. Schutzenberger, Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics, (Naples, 1978), Quad. "Ricerca Sci.", vol. 109, CNR, Rome, 1981.
[11] A. Lascoux, M.P. Schutzenberger, Keys and standard bases, Invariant theory and Tableaux, Minneapolis, MN, 1988.
[12] M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, Cambridge, 2002.
[13] R. Mamede, Permutações de sequências de Littlewood-Richardson e suas Realizações Matriciais (in Portuguese), Master Thesis, Universidade de Coimbra, Coimbra, 2000.
[14] M. Newman, Integral Matrices, Academic Press, New York, 1972.

[^0]: ${ }^{1}$ Work supported by CMUC/FCT.
 ${ }^{2}$ Work supported by CMUC/FCT.

