
Pré-Publicações do Departamento de Matemática
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Abstract: M. Fiedler proved in [1] that the set of real n-by-n symmetric matrices
A such that rank(A+D) ≥ n−1 for any real diagonal matrix D is the set of matrices
PTPT where P is a permutation matrix and T an irreducible tridiagonal matrix.
We show that this result remains valid for arbitrary fields with some exceptions for
5-by-5 matrices over ZZ3.

1. Introduction

Let A be an n-by-n, irreducible, tridiagonal matrix with elements in a field
IK. It is well known and easy to prove that rank A ≥ n−1: just delete the first
row and the last column of A to obtain an upper triangular (n−1)-by-(n−1)
submatrix of A with nonzero diagonal elements. For every n-by-n diagonal
matrix D, with elements in IK, A+D is again an irreducible tridiagonal matrix
and so A has the following property, which we call Fiedler’s Property :
For every diagonal matrix D, rank (A + D) ≥ n − 1.

M. Fiedler proved in [1] the interesting fact that, over the reals, the only
real symmetric matrices which have that property are, up to permutation
of rows and the same permutation of columns, the irreducible tridiagonal
matrices:

Theorem 1 (Fiedler’s Characterization of Tridiagonal Matrices). Let A be
an n-by-n real symmetric matrix. We have rank (A + D) ≥ n − 1, for every
n-by-n real diagonal matrix D, if and only if A is, up to permutation of rows
and the same permutation of columns, an irreducible tridiagonal matrix.

Note that permuting the rows of A is equivalent to pre-multiplication by
an appropriate permutation matrix P while doing the same permutation
of columns is equivalent to post-multiplication by P T . Moreover the set
of matrices P TTP , where P is an n-by-n permutation matrix and T an
irreducible tridiagonal matrix, is precisely the set of matrices whose graph is
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a path on n vertices. Therefore we can restate Theorem 1 saying that a real
symmetric matrix A has the Fiedler’s Property if and only if there exists an
n-by-n permutation matrix P such that PAP T is an irreducible tridiagonal
matrix or equivalently if and only if the graph of A is a path.

Fiedler’s Proof of Theorem 1 is highly analytical but W. C. Reinbolt and
R. A. Shepherd in [4] presented a purely algebraic and combinatorial proof
of that theorem (actually they presented two proofs of that sort). Although
the authors of [4] state Theorem 1 in terms of real matrices, actually their
proof is valid for any infinite field (in fact for fields with a sufficiently large
number of elements). Our purpose here is to discuss the case of finite fields:
Is Fiedler’s Characterization of Tridiagonal Matrices valid for matrices over
finite fields?

The answer to the above question is no! Over ZZ3 each one of the following
matrices has Fiedler’s Property:

F1 =













a11 1 1 1 1
1 a22 1 2 2
1 1 a33 1 2
1 2 1 a44 1
1 2 2 1 a55













, F2 =













a11 2 2 2 2
2 a22 2 1 1
2 2 a33 2 1
2 1 2 a44 2
2 1 1 2 a55













, (1)

F3 =













a11 1 1 1 2
1 a22 2 2 2
1 2 a33 1 1
1 2 1 a44 2
2 2 1 2 a55













, F4 =













a11 1 1 2 2
1 a22 2 1 2
1 2 a33 2 1
2 1 2 a44 1
2 2 1 1 a55













. (2)

for any choice of the diagonal elements a11, a22, a33, a44, a55 ∈ ZZ3 (see Sec.
5). (Note that the diagonal elements of each Fi are arbitrary and so we
should have written something like Fi(a11, a22, a33, a44, a55) instead of just
Fi, but for simplicity we usually write Fi.)

But, amazingly, these are essentially the only exceptions; in fact our main
result is the following:

Theorem 2. Let IK be any field and A an n-by-n symmetric matrix with
elements in IK. We have rank (A + D) ≥ n − 1 for any n-by-n diagonal
matrix D with elements in IK if and only if the graph of A is a path or
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IK = ZZ3, n = 5 and A = PFiP
T , where P is a 5-by-5 permutation matrix

and Fi, i = 1, 2, 3, 4, is one of the matrices of (1) and (2).

Like the proofs given in [4], our proof of Theorem 2 will be by induction;
we have to treat first the case of some small values of n (n ≤ 4, for arbitrary
IK, and n ≤ 6 for IK = ZZ3): this will be done in Proposition 3 and in
Sections 4, 5 and 6; in the next section we present some basic properties of
matrices with Fiedler’s Property and in the Section 3 we consider matrices
with zero non-diagonal elements. Finally in section 7 we complete the proof
of Theorem 2.

We shall use the following notation:
We denote the set of all n-by-n matrices with elements in a field IK by

Mn(IK) and the set of all n-by-n symmetric matrices with elements in IK
by Sn(IK). The set of matrices in Sn(IK) verifying Fiedler’s Property will be
denoted by Fn(IK), that is

Fn(IK) =

{A ∈ Sn(IK) : rank (A+D) ≥ n−1 for any diagonal matrix D ∈ Mn(IK)} .

Sometimes we will refer to the elements of Fn(IK) as Fiedler’s matrices.
Let i1, i2, . . . , ik integers with 1 ≤ i1 < i2 < · · · < ik ≤ n and A ∈ Mn(IK).

We denote by A[i1 i2 . . . ik] (respectively A(i1 i2 . . . ik) ) the submatrix of A
contained in rows and columns i1, i2, . . . , ik (respectively obtained from A
by deleting rows and columns i1, i2, . . . , ik). Finally, for A ∈ Sn(IK), we
denote by G(A) the (undirected) graph of A.

Theorems 1 and 2 may be seen as results about Completion Problems (see
e g [2], [3]): by a partial matrix we mean a matrix in which some of the
entries are specified elements of a certain set S, while others are independent
indeterminate variables over S (the unspecified elements). A completion of
a partial matrix is the matrix with elements in S obtained form the partial
matrix when we specify for each of these variables a value of S. So if A = (aij)
is a partial matrix a completion of A will be any matrix B = (bij) with
elements in S, the same dimensions of A, and such that if aij is specified
in A, bij = aij. A matrix completion problem asks whether any (in some
problems, at least one) completion of a partial matrix has a completion with
certain properties.

In our case the specified entries of A are the non-diagonal ones, while
we may see the diagonal entries as free variables. We want that for any
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completion B of A, B is a symmetric n-by-n matrix with rank B ≥ n − 1.
What Theorem 2 says is that this is only possible if A is symmetric and its
graph is a path or, when IK = ZZ3, A is up to a permutation similarity, one of
the matrices Fi. In sequel we sometimes use these kind of ideas and think of
an A ∈ Fn(IK) as a partial matrix; for instance we often refer to the a choice
of a particular diagonal element of A.

We would like to note that Theorems 1 and 2 are theorems about symmetric
matrices; they fail for general matrices, namely for Hermitian matrices as the
following example shows.

Let A be the following complex Hermitian matrix:




0 1 i
1 0 1
−i 1 0



 ,

and D = diag (d1, d2, d3) any complex 3-by-3 diagonal matrix. We have
rank (A + D) ≥ 2. In fact if d1 = 0 the minor

∣

∣

∣

∣

d1 1
1 d2

∣

∣

∣

∣

,

of A + D is nonzero. If d1 6= 0 at least one of the minors

∣

∣

∣

∣

1 i
d2 1

∣

∣

∣

∣

∣

∣

∣

∣

d2 1
−i 1

∣

∣

∣

∣

,

of A + D is nonzero.

2. Basic Properties of Fn(IK)
We present in this section some basic facts about the set Fn(IK) that we

will need later; although these results are given in [1], [4] and the proofs in
[4] are valid for arbitrary fields (with the exception of n. 2 of our Proposition
2), for completeness we include here also the proofs.

Lemma 1. Let A ∈ Mn(IK). There exists a diagonal matrix D ∈ Mn(IK)
such that rank (A + D) < n.

Proof. Let A = [aij] and dj = −
∑n

i=1 aij, j = 1, . . . , n. Take D =
diag (d1, . . . , dn) and let C1, . . . , Cn be the columns of A + D. We have
C1 + · · ·+ Cn = 0 and so the columns of A + D are linearly dependent, that
is rank (A + D) < n.
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Proposition 2. Let A be a n-by-n symmetric matrix with elements in IK.
1. For any diagonal matrix D ∈ Mn(IK) and any permutation matrix P ∈
Mn(IK) the following are equivalent:

i) A ∈ Fn(IK);
ii) −A ∈ Fn(IK);
iii) A + D ∈ Fn(IK);
iv) P TAP ∈ Fn(IK).

2. If A ∈ Fn(IK) then A is irreducible.

Proof. 1 follows immediately from the definition of Fn(IK). To prove 2,
suppose that A is reducible, say A = A1⊕A2 where A1 has order k, 1 < k < n.
By Lemma 1 there exist diagonal matrices D1 ∈ Mk(IK) and D2 ∈ Mn−k(IK)
such that rank (A1 +D1) < k and rank (A2 +D2) < n−k. Let D = D1⊕D2;
then rank (A + D) < n − 1 and so A can not be an element of Fn(IK).

Proposition 3. Let A ∈ S3(IK). We have A ∈ F3(IK) if and only is the
graph of A is a path.

Proof. If the graph of A = [aij] is connected (i e A irreducible) and its
graph is not a path then it is the complete graph, that is aij 6= 0 for i 6= j.

Choose a11 =
a12 a13

a23
, a22 =

a12 a23

a13
, a33 =

a13 a23

a12
. A will have rank one.

The next Proposition, due to W. C. R Rheinbolt and R. A. Shepherd, [4],
is crucial for the induction procedure in the proof of Theorem 2.

Proposition 4. Let A ∈ Fn(IK) and i an integer, 1 ≤ i ≤ n. Choose aii 6= 0
and apply Gaussian elimination along the i-the row and column of A. Let A′

be the resulting matrix. Then A′(i) ∈ Fn−1(IK).

Proof. By Proposition 1 we may suppose, with out loss of generality, i = 1.
Suppose A partitioned in the following way:

A =

[

a11 bT

b A(1)

]

.

Now elimination along the first column is just pre-multiplying by the ma-
trix:

A =

[

1 0
−a−1

11 b In−1

]

,
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while elimination along the first row is just post multiplying A by ET . We
have then A′ = EAET . Take an arbitrary diagonal matrix D1 ∈ Mn−1(IK)
and let D = 0 ⊕ D1. Now rank E(A + D)ET = rank (A + D) ≥ n − 1 and

E(A + D)ET =

[

a11 0
0 −a−1

11 bbT + A(1) + D1

]

,

But −a−1
11 bbT + A(1) = A′(1) and so rank (A′(1) + D1) ≥ n− 2; this means

that A′(1) ∈ Fn−1(IK).

Corollary 5. Let A = [aij] ∈ Fn(IK); denote by Li the i-th row of A and by
L′

i the row vector obtained from Li by deleting the element in the column i,
i = 1, . . . , n. Then, for any i, j, 1 ≤ i < j ≤ n, L′

i and L′
j are linearly

independent.

Proof. If L′
i and L′

j are linearly dependent then is is possible to choose nonzero
diagonal elements aii and ajj such that Li and Lj are linearly dependent.
Eliminate along the row and column i; let A′ be the resulting matrix. All the
elements of row and column j of A′ are 0 and so A′(i) is reducible. Therefore
A′(i) /∈ Fn−1(IK), which contradicts Proposition 4.

The next Proposition is due to Fiedler, [1]; our proof follows that in [4].
Recall that a cycle on n vertices is a (undirected) connected graph in

which any vertex has degree two; or equivalently for some ordering of the
vertices, say v1, v2, . . . , vn, the vertex vi is connected with vi−1 and vi+1,
i = 1, 2, . . . , n, with the convention v0 = vn, vn+1 = v1.

Proposition 6. Let A ∈ Sn(IK), n > 2. If the graph of A is a cycle then
A /∈ Fn(IK).

Proof. The proof is by induction on n. For n = 3, by Proposition 3, the
result is certainly true.

Assume the result is true for n − 1 and let us prove that it remains true
for n (n > 3).
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Let A ∈ Sn(IK) be a matrix whose graph is a cycle. By Proposition 2, we
may assume, without loss of generality

A =

















a11 a12 0 . . . 0 a1n

a12 a22 a23 . . . 0 0
0 a23 a33 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . an−1 n−1 ann−1

a1n 0 0 . . . ann−1 ann

















.

Choose a11 6= 0 and eliminate along the first row and column of A. Let A′

be the resulting matrix. The graph of A′(1) is a cycle on n−1 vertices. If A ∈
Fn(IK) we will have, by Proposition 4, A′(1) ∈ Fn−1(IK) which contradicts
the induction hypothesis. Therefore A /∈ Fn(IK).

3. Fiedler matrices with zero non-diagonal elements

In this section we will prove our main result for matrices that have some
matrices that have some zero nondiagonal elements.

Proposition 7. Let A ∈ Fn(IK). If A has a zero non-diagonal element then
the graph of A is a path.

Proof. We will use induction over n. For n < 3 there is nothing to prove
and the case n = 3 was proved in Proposition 3.

We will prove the case n = 4. Let A ∈ F4(IK).
Suppose first that G(A) has a vertex of degree one; without loss of gener-

ality we may assume that vertex one has degree one and and moreover that
{1, 2} is an edge of G(A). We have then

A =









a11 a12 0 0
a12 a22 a23 a24

0 a23 a33 a34

0 a24 a34 a44









with a12 6= 0. Choose a11 6= 0 and eliminate along the first row and column;
as this does not change the graph of A(1), it follows from Propositions 3 and
4 that the graph of A(1) is a path and so either G(A) is a star (a four vertex
tree with a vertex of degree three) or each vertex of G(A) has degree less
than 3. The first case is clearly impossible: take all diagonal elements of A
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equal to 0: A will have rank two. In the second case Proposition 6 implies
that G(A) is a path.

Suppose now that all vertices of G(A) have degree at least two and that A
has a zero non-diagonal element.

Suppose IK 6= ZZ2. Without loss of generality we may suppose A in the
following form:

A =









a11 a12 a13 0
a12 a22 a23 a24

a13 a23 a33 a34

0 a24 a34 a44









.

Choose a11 6= 0; the Gaussian elimination along the first row and column
of A does not change the elements in the last row and column; moreover we
are supposing a24 6= 0, a34 6= 0. So A must be transformed in the following
matrix









a11 0 0 0
0 a′22 0 a24

0 0 a′33 a34

0 a24 a34 a44









,

that is the element in position (2, 3) must be transformed into zero for any
choice of a non-zero diagonal element a11; but this is impossible as a13 6= 0
and IK has at least two non-zero elements.

Suppose IK = ZZ2. If all vertices of G(A) have degree less than three then,
by Proposition 6, G(A) must be a path. Suppose that G(A) has a vertex of
degree three, say

A =









1 1 1 1
1 a22 a23 a24

1 a23 a33 a34

1 a24 a34 a44









.

The elimination along the first row and column of A changes the zero non-
diagonal elements of A(1) to 1 and vice-versa; so, by Proposition 3, G(A(1))
has only one edge and G(A) has a vertex of degree one, contrary of what
we are supposing. So, for any field, G(A) can not have all the vertices with
degree at two or more, and we have already proved that, if there is a vertex
of degree one, then G(A) is a path.

Assume now that the theorem is true for integers less than n, n > 4, and
let us prove that it still holds for n.
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Let A = [aij] ∈ Fn(IK). We will begin by proving that if, for a vertex
i of G(A), deg i < n − 1 then deg i ≤ 2. We may assume, without loss
of generality, that i = n and that, for a certain k (1 < k < n), a12 6=
0, . . . , a1k 6= 0 a1 k+1 = · · · = a1n = 0.

Suppose first that A[2, . . . , k] is diagonal (including the case of k = 2).
Choose a11 6= 0 and eliminate along the first row and column. Let A′ =
[a′ij] be the resulting matrix. In order to apply the induction hypothesis
we must prove first that A′(1) has a zero non-diagonal element; this clearly
happens if k > 3. For k ≤ 3 we will show that at least one of the elements
ak k+1, . . . , ak n, ak+1 k+2, . . . , ak+1n must be zero. In fact, if all those

elements are nonzero, choose akk =
ak k+1 ak k+2

ak+1 k+2
and eliminate along the

k-th row and column of A. Let A′′ = [a′′ij ] be the resulting matrix. Note that,
for i > 1, we have a′′

1i 6= 0, and so, in G(A′′(k)) we have deg 1 = n − 2 ≥ 3.
Moreover, as a′′

k+1 k+2 = 0, we may apply the induction hypothesis to A′′(k)
and therefore the graph of that matrix is a path; but this is impossible
because we have just observed that, in G(A′′(k)), deg 1 ≥ 3. Hence some of
the elements ak k+1, . . . , ak n, ak+1 k+2, . . . , ak+1n must be zero. Now observe
that the elimination along the first row and column of A only changes the
elements of A[2, . . . , k], and so the matrix A′(1) does have a zero non-
diagonal element. Therefore we may apply the induction hypothesis to A′(1)
to conclude that the graph of that matrix is a path. This shows that, in
G(A), deg n ≤ 2.

Suppose that A[2, . . . , k] is not diagonal; then we will have ars 6= 0 for

some r, s, 2 ≤ r ≤ k, 2 ≤ s ≤ k, r 6= s. Choose a11 =
a1sa1r

ars

and

eliminate along the first row and column. Let A′ = [a′ij] be the resulting
matrix. Note that, a′

rs = 0, and so we may apply the induction hypothesis
to A′(1); therefore G(A′(1)) is a path. As before, the elimination process
did not change the last row and column of A and so we have, in G(A),
deg n ≤ 2. This finish the proof that if, for a vertex i of G(A), deg i < n − 1
then deg i ≤ 2.

Let us prove that, if A = [aij] ∈ Fn(IK) has a zero non-diagonal element,
then the graph of A is in fact a path. As above we may assume that a1n = 0;
then in G(A) we will have deg 1 ≤ 2, deg n ≤ 2; doing, if necessary, an
appropriate permutation of rows and the same permutation of columns we
may also assume that a14 = a15 = · · · = a1n = 0; hence we will also have
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deg j ≤ 2 for j ≥ 4. Moreover among the elements a24, a25, . . . , a2n

there are at most two different from zero; to see that this happen choose
a11 6= 0 and eliminate along the first row and column; this will change only
the elements of the submatrix A[1, 2, 3]. Let A′ = [a′ij ] be the resulting
matrix. Clearly A′(1) must have a zero non-diagonal element and so, by the
induction hypothesis, the graph of A′(1) is a path; as we have a′

2j = a2j for
j ≥ 4, this proves our claim. The same argument also shows that among the
elements a34, a35, . . . , a3n there are at most two different from zero. Hence,
if n > 5, rows (and columns) two and three will also have zero elements and
so we will have deg j ≤ 2 for 1 ≤ j ≤ n. By Proposition 6 the graph of A is
a path and we are done.

It remains to examine the case of n = 5. Let A = [aij] ∈ F5(IK); we will
assume that a14 = a15 = 0. Choose a11 6= 0 and eliminate along the first row
and column of A; let A′ be the resulting matrix; we will have

A′ =













a11 0 0 0 0
0 a′22 a′23 a24 a25

0 a′23
′a33 a34 a35

0 a24 a34 a44 a45

0 a25 a35 a44 a45













.

By Proposition 4, A′(1) ∈ F4(IK); from a15 = 0 follows that, in G(A),
deg 5 ≤ 2 and therefore at least one of the non-diagonal elements of the last
row and column of A′(1) is zero; by induction hypothesis G(A′(1)) is a path
and so at least one of the elements a24, a25, a34 and a35 must be zero; there
is no loss of generality in assuming a35 = 0; then we will have deg 3 ≤ 2 and
so at least one of the elements a13, a23 or a34 must be zero. If a13 = 0 then
elimination along the first row and column does not change G(A(1)) and so
this graph is a path; hence each row and column of A has a zero non-diagonal
element; it follows that deg i ≤ 2 for every i, 1 ≤ i ≤ 5; by Proposition 6,
G(A) is a path. If a23 = 0 we have again deg i ≤ 2 for every i, 1 ≤ i ≤ 5 and
the same conclusion follows. Finally if a34 = 0 then G(A′(1)) can not be a
path unless either a24 = 0 or a25 = 0; but then again deg i ≤ 2 for every i
and G(A) is a path.

4. The set F4(IK)
Proposition 8. For any field IK and any matrix A ∈ S4(IK) we have A ∈
F4(IK) if and only if the graph of A is a path.
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Proof. The sufficiency part is already known. For necessity we have only to
prove that if a matrix A ∈ M4(IK) has all its non-diagonal elements different
from zero then A /∈ F4(IK); to prove this we show that, for an appropriate
choice of the diagonal elements A will have rank less than three. Let

A =









a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44









.

Choose

a11 = 0, a22 =
a12a23

a13
−

a2
12a34

a13a14
+

a24a12

a14
,

a33 =
a13a34

a14
−

a2
13a24

a12a14
+

a13a23

a12
, a44 =

a14a34

a13
−

a2
14a23

a12a13
+

a14a24

a12
.

Let Ci be the i-th column of A, i = 1, 2, 3, 4; then C1 and C2 are linearly
independent while

C3 =

(

a34

a14
−

a13a24

a12a14

)

C1 +
a13

a12
C2 ,

C4 =

(

a34

a13
−

a14a23

a12a13

)

C1 +
a14

a12
C2 .

Therefore A has rank two.

5. The set F5(ZZ3)
Now we are going to see that the set F5(ZZ3) does contains matrices with

all non-diagonal elements different from zero.

Proposition 9. Let A ∈ S5(ZZ3). We have A ∈ F5(ZZ3) if and only if the
graph G(A) is a path or there exists a permutation matrix P ∈ M5(ZZ3) such
that A is one of the matrices PFiP

T , where Fi, i = 1, 2, 3, 4, is one of the
matrices of (1) and (2).

Proof. We need only to focus on matrices with all the non-diagonal elements
different from zero. We begin by the “only if” part. So let A = [aij] ∈
F5(ZZ3); We consider several cases:
CASE 1: A has a row with equal non-diagonal elements. By Proposition 2
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we may suppose that this row is the first one. If this elements are equal to 1
we will have:

A =













a11 1 1 1 1
1 a22 a23 a24 a25

1 a23 a33 a34 a35

1 a24 a34 a44 a45

1 a25 a35 a45 a55













.

Take a11 = 2 and eliminate along the fist row and column; we will obtain
the following matrix:

A′ =













2 0 0 0 0
0 a22 + 1 a23 + 1 a24 + 1 a25 + 1
0 a23 + 1 a33 + 1 a34 + 1 a35 + 1
0 a24 + 1 a34 + 1 a44 + 1 a45 + 1
0 a25 + 1 a35 + 1 a45 + 1 a55 + 1













.

According to Proposition 4 and 8 the graph of A′(1) must be a path;
there is no loss of generality in assuming that A′(1) is actually an irreducible
tridiagonal matrix. This is only possible if

A =













a11 1 1 1 1
1 a22 1 2 2
1 1 a33 1 2
1 2 1 a44 1
1 2 2 1 a55













.

Now if the non-diagonal elements in the first row of A are equal to 2 we
just apply the previous reasoning to the the matrix −A (which is also an
element F5(ZZ3) ). So in Case 1 A is, up to row permutation and the same
permutation of column, either F1 or F2.
CASE 2: There is a row of A with three equal non-diagonal elements and
no row with four equal non-diagonal elements. By Proposition 2 we may
suppose that the row with the three non diagonal elements is the first one
and moreover that a12 = a13 = a14 6= a15. Suppose first that these equal
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elements are 1. So we will have

A =













a11 1 1 1 2
1 a22 a23 a24 a25

1 a23 a33 a34 a35

1 a24 a34 a44 a45

2 a25 a35 a45 a55













.

Choose a11 = 2 and eliminate along the first row and column. Let A′ be the
resulting matrix; by Propositions 4 and 8 G(A′(1)) is a path. Note that we
may permute the rows two to four of A and do the same permutations of
columns two to four, without changing the first row and column of A. This
means that, up to row and columns permutations that do not change the
first row and column of A, A′(1) must be one of the following matrices:









a′22 0 a′24 0
0 a′33 a′34 a′35

a′24 a′34 a′44 0
0 a′35 0 a′55









,









a′22 0 0 a′25
0 a′33 a′34 0
0 a′34 a′44 a′45

a′25 0 a′45 a′55









,









a′22 a′23 0 0
a′23 a′33 0 a′35
0 0 a′44 a′45
0 a′35 a′45 a′55









,









a′22 a′23 0 0
a′23 a′33 a′34 0
0 a′34 a′44 a′45
0 0 a′45 a′55









.

If A′(1) is the first of these matrices then the non-diagonal elements of the
fourth row of A will be all equal to 1 while if A′(1) is the fourth of these
matrices the non-diagonal elements of the third row of A will be all equal to
1; recall that, in CASE 2, we are supposing that in any row of A the non-
diagonal elements are not all equal and so A′(1) must be either the second
or the third of the above matrices; this gives the following two hypothesis for
A:













a11 1 1 1 2
1 a22 2 2 2
1 2 a33 1 1
1 2 1 a44 2
2 2 1 2 a55













,













a11 1 1 1 2
1 a22 1 2 1
1 1 a33 2 2
1 2 2 a44 2
2 1 2 2 a55













.

The first hypothesis is precisely F3. The second hypothesis is similar to
F3 via a permutation matrix: This can be easily seen if we draw the graph
of ones of both matrices: the graph on five vertices with an edge between
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vertices i and j if and only if the matrix considered has a 1 in position (i, j).
It is easily seen that the two above matrix have the same graph of ones: in
fact the second matrix can be obtained from F3 by just moving the third
column of F3 to the second position, the fourth column to the third position
and the second column to the third position and doing the same permutation
with the rows of F3.

Suppose now that A has in the first row three 2’s and one 1. The matrix
−A is also an element of F5(ZZ3) and is in the previous conditions. So −A
must be, up to row permutations and the same permutations of columns, the
matrix F3. Therefore we have (again up to row permutations and the same
permutations of columns)

A =













a11 2 2 2 1
2 a22 1 1 1
2 1 a33 2 2
2 1 2 a44 1
1 1 2 1 a55













.

But again the above matrix is similar to F3 via a permutation matrix: to
obtain the above matrix from F3 by just move the second column of F3 to
the first position, the third column of F3 to the second position, the fifth
column to the third position and the first column to the fifth position and
doing the same permutation with the rows of F3.

CASE 3: Each row of A has at most two equal non-diagonal elements. As
we are considering just nonzero non-diagonal elements, this means that each
row of A has exactly two 1’s and two 2’s in non-diagonal positions. We may
also suppose that

A =













a11 1 1 2 2
1 a22 a23 a24 a25

1 a23 a33 a34 a35

2 a24 a34 a44 a45

2 a25 a35 a45 a55













.

Now by Corollary 5, applied to rows one and two, the second row of A must
be [1 a22 2 1 2] or [1 a22 2 2 1]. The second hypothesis may be reduced to
the first just by permuting the fourth column of A with the fifth and doing
the same permutation on the rows of A; note that this permutation do not
change the first row and column of A. So we have only to consider the first
hypothesis. Repeated use of Corollary 5 (together with the fact that there
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are two 1’s and two 2’s in non-diagonal positions in each row of A gives us
the following matrix:













a11 1 1 2 2
1 a22 2 1 2
1 2 a33 2 1
2 1 2 a44 1
2 2 1 1 a55













,

which is precisely F4.
To finished the proof we have only to show that Fi ∈ F5(ZZ3), i = 1, 2, 3, 4.

To prove this, it is sufficient to show first that for any j, 1 ≤ j ≤ 5, and any
nonzero choice of the diagonal element ajj of Fi, if we eliminate along the
row and column j and then delete the row and column j we will obtain a
4-by-4 matrix whose graph is a path (this means that, for that choice of ajj

rank Fi ≥ 4). Next we must verify that when all the diagonal elements of Fi

are zero the rank of Fi is also greater than three (it is actually four). These
are straightforward calculations and we omit them.

Note that, once we establish, for a certain i, say i = 1, that F1 ∈ F5(ZZ3)
the fact that, for j > 1, Fj ∈ F5(ZZ3), follows immediately from the following
relations (note that actually, for any i, j, any matrix of type Fi is similar to
some matrix of type Fj):

F2(a11, a22, a33, a44, a55) = −F1(−a11, −a22, −a33, −a44, −a55) =

= [e2 e3 e4 e1 e5]
T × diag (1, 2, 1, 2, 1) × F1(a22, a33, a44, a11, a55)×

× diag (1, 2, 1, 2, 1) × [e2 e3 e4 e1 e5] ,

F3(a11, a22, a33, a44, a55) =

= [e1 e2 e5 e4 e3]
T × diag (1, 1, 2, 1, 1) × F1(a11, a22, a55, a44, a33)×

× diag (1, 1, 2, 1, 1) × [e1 e2 e5 e4 e3] ,

F4(a11, a22, a33, a44, a55) =

diag (1, 1, 1, 2, 1) × F3(a11, a22, a33, a44, a55) × diag (1, 1, 1, 2, 1)× =

= [e1 e2 e5 e4 e3]
T × diag (1, 1, 2, 2, 1) × F1(a11, a22, a55, a44, a33)×

× diag (1, 1, 2, 2, 1) × [e1 e2 e5 e4 e3] ,

where ei is the i-th column of the 5-by-5 identity matrix.
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6. The set F6(ZZ3)
In order to prove, by induction, that for n > 5, if A ∈ Fn(ZZ3) then G(A)

is a path, we have to prove it first for n = 6. This will be done in the next
proposition.

Proposition 10. Let A be a 6-by-6 symmetric matrix over ZZ3. We have
A ∈ F6(ZZ3) if and only if the graph G(A) is a path.

Proof. We have only to show that, if the non-diagonal elements of a 6-by-6
symmetric matrix, A = [aij], over ZZ3, are all nonzero, then A /∈ F6(ZZ3).

assume that A ∈ F6(ZZ3). Let A′ (respectively A′′) the matrix obtained
from A by choosing a11 = 1 (respectively a11 = 2) and eliminating along the
first row and column of A. By Proposition 4 A′(1), A′′(1) ∈ F5(ZZ3). We will
show that, in fact, the graphs of these submatrices are the path on 5 vertices.
In fact if the graph of A′(1) is not a path then it must be the complete
graph on five vertices. The elements of the first row of A′ are a2i + 2a12a1i,
i = 2, . . . , 6; so we have a2i 6= a12a1i, i = 3, . . . , 6. As ZZ3 has only two
nonzero elements we have a2i = 2a12a1i, that is a2i +a12a1i = 0, i = 3, . . . , 6;
but a2i + a12a1i, i = 2, . . . , 6 are precisely the elements in the first row of
A′′ and so this matrix would be reducible, which is impossible. Therefore
A′(1) must have a zero in a non-diagonal position and so, by Proposition 7,
G(A′(1)) is a path. An analogous argument shows that G(A′′(1)) is also a
path.

Now note that, as the non-diagonal elements of the first row and column
of A are nonzero, the elimination process along the first row and column
will change every element of A(1); moreover if, for a11 = 1, the elimination
process transforms an element of A(1) into zero then, for a11 = 2, that
element will be transformed into a nonzero element (and vice-versa); this
means that G(A′′(1)) contains the complement of the graph G(A′(1)); but
that complement has cycles and so G(A′′(1)) could not be a path. therefore
if G(A) is the complete graph then A /∈ F6(ZZ3).

Remark 11. We note that the argument used in the above proof does not
work for 5-by-5 matrices. This is due to the fact that the complement of the
4-path is again the four path and so it may be possible that, for any of the two
nonzero choices of the diagonal elements of A, the graphs of the submatrices
corresponding to A′ and A′′ in the above proof are both path. This is precisely
what happens for each of the matrices F1, F2, F3 and F4 of Proposition 9.
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7. The main Theorem

We are now going to complete the proof of our main result, the Theorem
2.

Theorem 2. Let IK be any field and A an n-by-n symmetric matrix with
elements in IK. We have rank (A + D) ≥ n − 1 for any n-by-n diagonal
matrix D with elements in IK if and only if the graph of A is a path or
IK = ZZ3, n = 5 and A = PFiP

T , where P is a 5-by-5 permutation matrix
and Fi, i = 1, 2, 3, 4, is one of the matrices of (1) and (2).

Proof. We have only to prove the “only if” part, the “if” part being already
established.

We proceed by induction; for n ≤ 4 (respectively, n ≤ 6 if IK = ZZ3)
the result has already been proven. Now let n > 4 (respectively, n > 6 if
IK = ZZ3) and suppose that the result is true for matrices of order less than
n.

Let A ∈ Fn(IK). By Proposition 7 we may suppose that all the non-
diagonal elements of A are non-zero. Choose a11 6= 0 and eliminate along
the first row and column. Let A′ be the resulting matrix. By Proposition 4
A′(1) ∈ Fn−1(IK) and so, by the induction hypothesis, the graph of A′(1) is
a path.

Now note that, as the non-diagonal elements of the first row and column
of A are nonzero, the elimination process along the first row and column will
change every element of A(1). So, if IK = ZZ2 all the non-diagonal elements
of A(1) will be transformed into zero, that is A′(1) is a diagonal matrix; this
contradicts the fact that G(A′(1)) is a path.

For IK 6= ZZ2, choose another nonzero element in position (1,1) (different
from the previous one) and eliminate along the first row and column. Let A′′

be the resulting matrix; an element of A(1) that, for the first choice of a11,
was transformed into zero will be, for this second choice transformed into a
non-zero element; this means that G(A′′(1)) contains the complement of the
graph G(A′(1)); but G(A′′(1)) must also be a path while the complement of
a path has cycles if n > 5. So for n > 5 we got a contradiction! For n = 5
we just choose a third nonzero element (note that for n=5 we are supposing
that IK 6= ZZ3) in position (1,1) and again eliminate along the first row and
column of A. Let A′′′ be the resulting matrix. A non-diagonal element of
A(1) that, for one the two previous choices of a11 was transformed into zero
by the elimination procedure will be now transformed into a nonzero element
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of A′′′(1). Therefore the graph of A′′′(1) must be the complete graph on four
vertices. But by Propositions 4 and 8 that graph is a path; once again we
get a contradiction, finishing the proof.
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