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CONVERSE TO THE PARTER-WIENER THEOREM: THE
CASE OF NON-TREES

CHARLES R. JOHNSON AND ANTÓNIO LEAL DUARTE

Abstract: Through a sucession of results, it is known that if the graph of an
Hermitian matrix A is a tree and if for some index j, λ ∈ σ(A) ∩ σ(A(j)), then
there is an index i such that the multiplicity of λ in σ(A(i)) is one more than that
in A. We exhibit a converse to this result by showing that it is generally true only
for trees. In particular, it is shown that the minimum rank of a positive semidefinite
matrix with a given graph G is ≤ n−2 when G is not a tree. This raises the question
of how the minimum rank of a positive semidefinite matrix depends upon the graph
in general.

In a series of papers over 40 years, [PAR], [WIE], [JLS], a remarkable fact
about multiple eigenvalues, in an Hermitian matrix A whose graph is a tree,
has emerged. If mA(λ), the multiplicity of λ as an eigenvalue of A, is greater
than one, then there is an index i such that in A(i), the (n − 1)-by-(n − 1)
principal submatrix of A with row and column i deleted, mA(i)(λ) = mA(λ)+
1: the multiplicity of λ necessarily goes up in passing to a smaller submatrix!
The same conclusion holds even if mA(λ) = 1, as long as mA(j)(λ) ≥ 1
for some index j. Much more information is available about such indices
i (see [JLS]), but our primary purpose here is to prove a converse to this
remarkable fact: it is generally true only for trees. In the process, facts of
possible independent interest are proven, raising further questions.

Throughout, let G denote an (undirected) graph on n vertices. G need
not be connected; but, generally, our claims are easily verified in the non-
connected case, so that we concentrate on the connected case. We denote by
S(G) the set of all real symmetric matrices (equivalently, complex Hermitian
matrices in case G is a tree). The following (and more) is proven in [JLS],
and it has substantial antecedents in [PAR], [WIE] .

Theorem 1. Let G be a tree. If A ∈ S(G) and there is an index j such that
λ ∈ σ(A) ∩ σ(A(j)) then there is an index i such that mA(i)(λ) = mA(λ) + 1.

It should be noted that there may be several such indices i, and it may be
that j is not among them.

This research was supported by CMUC.
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Our primary goal is to prove a rather strong converse to Theorem 1.
We begin with an illustrative example. A simple connected non-tree is the

cycle, C, on n vertices
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in which we may number the vertices consecutively around the cycle. If one
of the vertices (of degree 2), say n, is deleted, a path, T , remains. Now,
suppose that, for this path, a positive semidefinite (PSD) matrix B ∈ S(T )
with non-positive off-diagonal entries and row sums zero is constructed. This
is an example of a (singular) M-matrix. Then construct a matrix A ∈ S(C)
with A(n) = B; if the last row and column of A are chosen so that the sum of
the off-diagonal entries is zero (note that there are two nonzero off-diagonal
entries because of the graph) and the diagonal entry is sufficiently large and
positive, the result will be a PSD matrix such that mA(0) = mA(n)(0) = 1,
but mA(j)(0) = 0, 1 ≤ i < n. According to Theorem 1, this can nor happen
for a tree. For example, when n=4, we may have

A =









1 −1 0 −1
−1 2 −1 0
0 −1 1 1
−1 0 1 10









and the claim above may be checked directly. The vector (1, 1, 1, 0)T spans
the null space of A.

For a general (connected) non-tree we need not have a vertex that is both
degree at least two and such that its removal leaves a connected graph. The
above strategy may be generalized for connected non-trees; the only difference
will be that mA(i)(0) = 1 for some additional indices i.

Our main result is the following

Theorem 2. Suppose that G is a graph on n vertices that is not a tree.
Then:
(1) There is a matrix A ∈ S(G) with an eigenvalue λ such that there is
an index j so that mA(λ) = mA(j)(λ) = 1 and mA(i)(λ) ≤ 1 for every i,
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i = 1, . . . , n.
(2) There is a matrix B ∈ S(G) with an eigenvalue λ such that mB(λ) ≥ 2
and mB(i)(λ) = mB(λ) − 1 for every i, i = 1, . . . , n.

Several “converses” to theorem 1 might be imagined, but theorem 2 is
stronger than what might be asked. For any non-tree , it guarantees ex-
amples of matrices A, with that graph, and in which the multiplicity of
some (multiple) eigenvalue of A is less in any principal submatrix of size one
smaller, and, even when the multiplicity is one in both A and a submatrix,
the multiplicity does not go up. Our proof rests upon 3 lemmas that include
constructions that may be carried out only for non-trees. Since M-matrices
are frequently used, see [HJ2, Ch. 2] as a general reference for this topic.

Lemma 3. Suppose that A is an n-by-n Hermitian matrix with eigenval-
ues λ1 < λ2 < . . . < λk with respective multiplicities m1, m2, . . . , mk,
∑k

i=1 mi = n. Then, for any i, 1 ≤ i ≤ n, mA(i)(λ1) ≤ m1 and mA(i)(λk) ≤
mk. Moreover, if G(A) is a tree, m1 = mk = 1, and, for each i, 1 ≤ i ≤ n,
mA(i)(λ1) = mA(i)(λk) = 0.

Proof: For each claim, the cases of 1 and k are equivalent via replacing A

by −A. The first claim follows from the interlacing inequalities for Hermitian
matrices (e g [HJ1, Ch. 4]). The only possibility that need be precluded
is mA(i)(λ1) = m1 + 1. But, by the interlacing inequalities, the (m1 + 1)st
smallest eigenvalue of A(i) is at least λ2 > λ1 (e g between λ2 and λ3), so
that mA(i)(λ1) = m1 + 1 is not possible. The “moreover” claim may be ei-
ther proven from theorem 1, together with the first claim of this lemma, or
independently using the Perron-Frobenius theory of irreducible nonnegative
matrices (e g [HJ1, Ch. 8]). Via diagonal similarity and translation by a
scalar matrix, A may be made entry-wise nonnegative without altering the
hypothesis, when the graph is a tree. But, then, because of the irreducibil-
ity, the largest eigenvalue has multiplicity one and for any proper principal
submatrix the largest eigenvalue strictly decreases. The first part of the
moreover claim is known and has several proofs (see e g [JLS]).

We note that none of the claims of lemma 3 is generally true for interme-
diate eigenvalues (λi, 1 < i < k).

The fact that generalizes the example of the cycle given above is the fol-
lowing.
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Lemma 4. Let G be a graph on n vertices that is not a tree. Then, there is
a matrix A ∈ S(G), an eigenvalue λ of A, and an index j, 1 < j < n such
that mA(λ) = mA(j)(λ) = 1 and mA(i)(λ) ≤ 1 for all i, 1 ≤ i ≤ n.

Proof: First, let G be connected and not a tree. We construct a PSD matrix
of rank n-1, such that at least one (n − 1)-by-(n − 1) principal submatrix is
rank deficient by one and none is rank deficient by two. Thus, in this case,
the eigenvalue λ = 0 will satisfy the claims of the lemma.

Since G is connected and not a tree, it contains a cycle C of at least three
vertices. We consider two possibilities, at least one of which must occur: (1)
there is a vertex v of C that is not a cut-vertex of G (of course, degG v ≥ 2);
and (2) there is a vertex u of C that is a cut-vertex of G.

In case (1), construct matrix A1 ∈ S(G− v) with positive diagonal entries,
nonpositive off-diagonal elements and zero row sums. Then A1 is a singular
M-matrix and, as G− v is connected, A1 is PSD of rank defiency one ([HJ2,
Ch. 2]). Now embed A1 in A ∈ S(G) by choosing the sum of the additional
off-diagonal entries (in the new row and column) to be zero. Since degG v ≥ 2,
this is possible. And choose the new diagonal entry to be sufficiently large
and positive, so that A is PSD of rank deficiency one. This is straightforward
as each proper principal submatrix of A1 is positive definite. Now, A has the
desired properties: mA(0) = 1, mA(v)(0) = 1 and mA(i)(0) ≤ 1 for all i,
1 ≤ i ≤ n.

In case (2), call the graph induced by the vertices of the component of G−u

containing C −u together with u, G1 and let G2 be the subgraph induced by
all the other vertices together with u. By numbering the vertices of C − u

first then u and then the remaining vertices, any matrix in S(G) appears as
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,

in which the upper left principal block corresponds to G1, the lower right
to G2 and the lone overlapping entry to u. Now, as in case (1), construct a
singular M-matrix A1 in S(G1−u) and embed it in a PSD matrix A2 of rank
deficiency one in S(G1). Then, choose a positive definite (PD) matrix A3 in
S(G1) and superimpose it, as depicted (adding the entries from A2 and A3
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in the position corresponding to u) to obtain the matrix A ∈ S(G). Now, A

is PSD of rank deficiency one, as is any principal submatrix resulting from
the deletion of a vertex of G2. Again, as every proper principal submatrix of
A1 is PD (and A3 is PD), deletion of no row and column leaves a matrix of
rank deficiency more than one. As before, A meets the desired requirements.

If G is not connected, choose one of the components, and for it construct
a singular M-matrix, as A1 was constructed above. Choose a PD matrix for
each other component to produce A. Then zero is an eigenvalue of multiplic-
ity one of A and of each of principal matrix resulting from the deletion of
a vertex not in the first component and the requirements of the lemma are
met.

It is an interesting question in how few of the A(i) must we have mA(i) = 1
(as opposed to zero). It may be only one if C includes all vertices of G (or in
the case (1) of the proof of lemma 4). But it may be more, as in the graph
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or if G is not connected.
We next give our key lemma that allows us to prove the second claim of

theorem 2.

Lemma 5. Let G be a graph on n vertices that is not a tree. Then, there is
a PSD matrix A ∈ S(G) such that rank A = k ≤ n− 2 and such that for any
i, 1 ≤ i ≤ n, rank A(i) = k.

Proof: First, note that for any G there is a PSD (and not PD) matrix
A ∈ S(G): Choose B ∈ S(G) and let A = B − λmin(B), in which λmin(B)
denotes the smallest eigenvalue of B.

We first suppose that G is connected (and not a tree). The case of any not
connected G will be straightforward later.

Since G is connected and not a tree, there are vertices i, j such that (1)
{i, j} is an edge of G and (2) there is a path in G, not involving {i, j}, from
i to j: {i, p1}, {p1, p2}, . . . , {pk, j}. Without loss of generality, suppose
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i = 1, j = 2. We will construct the desired matrix A as follows:

A =

[

A1 B

BT A2

]

.

Let A2 be a PD M-matrix, A2 ∈ S(G′), G′ = (G − {1, 2}), the subgraph
induced by vertices {3, 4, . . . , n}. Such an A2 may be easily found by
choosing negative off-diagonal entries in the positions allowed by G′ (0 off-
diagonal elements otherwise) and then choosing positive diagonal entries, to
achieve strict diagonal dominance. Let B be nonnegative with positive entries
corresponding to the edges of G and 0’s elsewhere. Finally, let A1 = BA−1

2 BT ,
a nonnegative PSD, 2-by-2 matrix. By Schur complements (see e g [CAR])
rank A = rank A2+rank (A1−BA−1

2 BT ) = rank A2+rank 0 = n−2+0 = n−2,
and A is PSD (in fact the interlacing inequalities applied to the eigenvalues of
A and A2 (see [HJ1, Ch.4]) shows that A cannot have negative eigenvalues)
of rank n − 2.

Now, it suffices to show that A1 has its two off-diagonal entries positive, so
that A ∈ S(G). But B has a positive entry in the 1, p1 position and in the
2, pk position. Moreover, because A2 is an M-matrix, A−1

2 ≥ 0, and, as there
is a path in G′ from p1 to pk, the p1, pk (and pk, p1) entry of A−1

2 is positive.
By matrix multiplication, the 1, 2 entry of the symmetric matrix BA−1

2 BT

is then positive .
Now, we turn to the second claim in the connected case: that rank A(i) =

rank A for 1 ≤ i ≤ n and the A just defined. If i ∈ {1, 2}, A(i) contains
A2 as a principal submatrix and as rank A = rank A2, rank A(i) = rank A

as claimed. On the other hand, if i ∈ {3, 4, . . . , n} rank A2(i) = n − 3,
and as A2(i)

−1 ≤ A−1
2 (i) (entry-wise, because A2 is an M-matrix; see e g [JS,

theorem 2.1]), we have B(i)A2(i)
−1BT (i)

≤
6= (BA−1

2 BT )(i) = A1. Here for i,
we retain the numbering in A and by B(i) ( BT (i) ) we mean B with only
its i-th column deleted (BT with only its i-th row deleted). Thus, the Schur
complement A1−B(i)A2(i)

−1BT (i) 6= 0 and its rank must be 1. We conclude
that rank A(i) = n − 3 + 1 = n − 2, in this case, as well, and the proof is
complete in the case of connected graphs.

Finally if G is not connected, A may be constructed for each connected
component as follows: if the component is an isolated vertex the correspond-
ing submatrix is zero. If the component is a tree, let the corresponding
principal submatrix be any PSD matrix of rank one less than the number of
vertices in the graph is that comprises that component. It follows from the
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lemma 3 that any principal submatrix of such a submatrix is then PD. If the
component is neither a vertex nor a tree (a connected graph that is not a
tree), construct the corresponding principal submatrix as in the earlier part
of this proof. It is then easily checked that both parts of the conclusion of
the lemma hold for such an A, completing the proof.

Remark. Following the same proof as lemma 5 , if G contains a k-clique
C such that for any 2 vertices i, j in C there is also a path from i to j

through C ′ (the complement of C in G), then there is a PSD A ∈ S(G) such
that rank A ≤ n − k. Further, if there is a subgraph H of G induced by k
vertices i1, i2, . . . , ik such that for every pair of vertices in H, either they
are connected by an edge of H and by a path through G − H or they are
connected neither by an edge of H nor a path via G − H, then there is a
PSD matrix A ∈ S(G) such that rank A ≤ n − k. Note that the second case
occurs, even in a connected G, if all paths between the two vertices use edges
in H and not in H.
Problem. The lemma raises the very interesting question of, for a given
graph G on n vertices, what is

min
A∈S(G), APSD

rank A = min PSDRank(G) .

If G is a tree or an isolated vertex the minimum is n − 1. For all other
graphs the mimimum is ≤ n−2. It would be of interest to be able to describe
the mimimum in terms of the graph.

Proof of theorem 2: To conclude, theorem 2 now follows easily from lemmas
4 and 5. Claim number (1) is the content of lemma 4 and number (2) the
content of lemma 5.

From theorems 1 and 2 the following corollary follows easily.

Corollary 6. For an undirectd graph G on n vertices the following are equiv-
alent:

(1) G is a tree.
(2) min

A∈S(G), APSD
rank A = n − 1

(3) For any A ∈ S(G) and any λ ∈ σ(A) such that mA(λ) > 1, there is
an index i, 1 ≤ i ≤ n, such that mA(i)(λ) = mA(λ) + 1.
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