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RIEMANNIAN CUBIC POLYNOMIALS

L. ABRUNHEIRO AND M. CAMARINHA

Abstract: This paper gives an analysis of the Riemannian cubic polynomials,
with special interest in the Lie group SO(3), based on the study of a second order
variational problem. The corresponding Euler-Lagrange equation gives rise to an
interesting system of nonlinear differential equations. Motivated by the problem of
the motion of a rigid body, the reduction of the essential size and the separation
of the variables of the system are obtained by means of invariants along the cubic
polynomials.

1. Introduction

The question of generalizing cubic polynomials to non-Euclidean spaces has
been the object of intensive investigation in the context of interpolation the-
ory. It is well known that the cubic polynomials are solutions of a variational
problem in the Euclidean space, whose Lagrangian function is the squared
norm acceleration. A generalization of this notion to Riemannian manifolds
was introduced in 1989 [8] and explored from a dynamic interpolation per-
spective in 1995 [5]. In the last years it has been developed an interesting
geometric theory related to the cubic polynomials which is surprisingly close
to the Riemannian theory of geodesics [5, 4]. An analytical theory for cubic
polynomials (Ljusternik -Schnirelman theory, Morse theory) has also been
established [6]. After that, it became important to find interesting cubic
polynomials examples, namely the SO(3) case.

The main idea of the present paper is a qualitative analysis of the cubic
polynomials on SO(3) and is motivated by the particular importance of the
notion of cubic polynomials on Lie groups to the development of interpola-
tion theory, for instance in trajectory planning for rigid body motion with
applications to aeronautics and robotics. An analogous analysis, but for the
particular case of the so-called null cubic polynomials, was produced in [9].
The paper starts with the definition of the generalized Riemannian cubic
polynomials and the deduction of some invariants along the cubic polynomi-
als. It follows a special analysis of the problem of the motion of a rigid body
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as a motivation to section 4, which is devoted to the essential case of SO(3).
In this specific situation, a reduction of the cubic polynomial equation and
a property related with a new parametrization of the cubic polynomial are
obtained.

2. Cubic polynomials on a Riemannian manifold

Consider a Riemannian manifold M , with Riemannian metric 〈., .〉. Denote
the symmetric connection on M , which is compatible with this metric, by
∇, and the covariant derivative along a curve x in M by DX/dt where X is
a vector field along x. Moreover, denote the curvature tensor field by R and
the covariant differential of R by ∇R.

In order to generalize the notion of cubic polynomials to a Riemannian
manifold, the following second order variational problem in M was formulated
[8, 5]

min
x∈Ω

1

2

∫ T

0

〈

D2x

dt2
,

D2x

dt2

〉

dt

where Ω is the class of C1 piecewise smooth curves x : [0, T ] → M , satisfying

x(0) = p,
dx

dt
(0) = v, x(T ) = q,

dx

dt
(T ) = u,

with (p, v), (q, u) ∈ TM and T ∈ R
+.

Cubic polynomials on M are smooth curves x : [0, T ] → M that are solu-
tions of the Euler-Lagrange equation

D4x

dt4
+ R

(

D2x

dt2
,

dx

dt

)

dx

dt
= 0 (1)

Consider x a cubic polynomial and denote the velocity vector field along

x,
dx

dt
, by V .

Lemma 2.1. [2] The following expression is invariant along the cubic poly-
nomial

〈

D2V

dt2
, V

〉

−
1

2

〈

DV

dt
,

DV

dt

〉

.

Proof : The result follows from the integration of the inner product of (1)
with V .
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Lemma 2.2.

d

dt

[〈

D2V

dt2
,
D2V

dt2

〉

−

〈

D3V

dt3
,
DV

dt

〉]

=

〈

(∇V R)

(

DV

dt
, V

)

V,
DV

dt

〉

Proof : Use the tensor curvature property 〈R(X, Y )Z, W 〉 = 〈R(W, Z)Y, X〉
and the definition of the covariant differentiation of the curvature tensor R,
that is, (∇X R)(Y, Z)W =

= ∇X [R(Y, Z)W ] − R(∇XY, Z)W − R(Y,∇XZ)W − R(Y, Z)∇XW,

to get

d

dt

〈

R

(

DV

dt
V

)

,
DV

dt

〉

−

〈

(∇R)

(

DV

dt
, V

)

V,
DV

dt

〉

=

= 2

〈

R

(

DV

dt
, V

)

V,
D2V

dt2

〉

.

Moreover, notice that

d

dt

〈

D2V

dt2
,

D2V

dt2

〉

= 2

〈

D3V

dt3
,

D2V

dt2

〉

In order to complete the proof, it is sufficient to make the inner product of

(1) with
D2V

dt2
and apply the above equalities in the obtained equation.

Remark 2.1. In Riemannian locally symmetric manifolds, the lemma 2.2
gives a second invariant along the cubic polynomial.

3. Motion of a rigid body

The Lie group SO(3) is the configuration space for the motion of a rigid
body with no external forces and fixed center mass. This problem is an
interesting motivation to the study of cubic polynomials on SO(3), since the
motion can be described as motion along geodesics on the Lie group SO(3)
provided with a left-invariant Riemannian metric ([1], appendix 2).

The motion of a rigid body is described by the equation

d

dt
(J y) = (J y) × y (2)

where y = (y1, y2, y3) is the angular velocity and J is the diagonal matrix
whose elements are the principal moments of inertia in the body. The fol-
lowing two invariants are satisfied

〈J y , y〉 = c and 〈J2 y , y〉 = m (3)
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with c and m real constants.

Proposition 3.1. The rigid body motion equation (2) reduces to

d2y

dt2
= D1y + D2





y1
3

y2
3

y3
3





with D1 and D2 diagonal matrices.

Proof : Use the property u × v =
J

|J|
[(Ju) × (Jv)] to rewrite (2) as

dy

dt
=

1

|J|
(J2 y) × (J y) . Now differentiate this, use (2) and apply the cross

product property

u × (v × w) = 〈u, w〉 v − 〈u, v〉 w (4)

to obtain

d2y

dt2
= 〈J y , y〉 J−1 y +

1

|J|
〈J2 y , y〉 J y −

(

〈y , y〉 +
1

|J|
〈J2 y , J y〉

)

y

To conclude the proof use in the above equation the following property and
the invariants (3)

〈J2y , J y〉 = |J|〈y , y〉 − tr(Jcof)〈Jy , y〉 + trJ〈J2y , y〉

where |.| denotes the matrix determinant, tr the matrix trace and .cof the
cofactor matrix.

Remark 3.1. The proposition 3.1 gives an alternative proof of the well
known result (see [7]) that the rigid body equations can be solved in terms
of the Jacobian elliptic functions. Indeed, each coordinate of y is a solution
of the differential equation (dz/dt)2 = az4 + bz2 + c [10].

4. Cubic polynomials on SO(3)
Consider the Lie group SO(3) equipped with a bi-invariant Riemannian

metric and the corresponding Lie algebra (so(3), [., .]). Let .̂ denotes the
isomorphism between the Lie algebras (R3,×) and (so(3), [., .]).

Theorem 4.1. [9] A smooth curve x : I → SO(3) is a cubic polynomial if
and only if it satisfies

(dLx−1)x

dx

dt
= v̂ (5)
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d3v

dt3
+ v ×

d2v

dt2
= 0 (6)

The smooth curves v : I → R
3, solutions of the equation (6), are called Lie

quadratics.

Lemma 4.1. If v is a Lie quadratic, then the following invariants along v
are satisfied:

〈
d2v

dt2
, v〉 −

1

2
〈
dv

dt
,

dv

dt
〉 = I1 (7)

〈
d2v

dt2
, v ×

dv

dt
〉 +

1

2
〈v ×

dv

dt
, v ×

dv

dt
〉 = I2 (8)

〈
d2v

dt2
,

d2v

dt2
〉 = I3 (9)

Proof : The result follows from the integration of the inner product of the

equation (6) with v, v ×
dv

dt
and

d2v

dt2
, respectively.

Observe that (7) and (8) correspond to the invariants presented in section 2.

Proposition 4.1. Let v be a Lie quadratic. Then f = 〈v, v〉 satisfies

f (4) + ff ′′ −
3

4
(f ′)2 − 2I1f − 6(I2 + I3) = 0. (10)

Furthermore, if y = f(t) is a solution of the differential equation (10), then
the equation (6) reduces to

d5v

dt5
+ f

d3v

dt3
+

3

2
f ′ d2v

dt2
− (

1

6
f ′′ +

2

3
I1)

dv

dt
−

1

3
f (3) v = 0.

Proof : From (7) it follows
d2

dt2
〈v, v〉 = 3〈

dv

dt
,
dv

dt
〉 + 2I1. On the other hand,

(8) and (9) imply

d2

dt2
〈
dv

dt
,
dv

dt
〉 = 〈

dv

dt
, v〉2 − 〈v, v〉〈

dv

dt
,
dv

dt
〉 + 2(I2 + I3).

Conjugating the above equalities the differential equation (10) yields. In
order to complete the proof, it suffices to differentiate twice the equation (6)
and use (4).
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Remark 4.1. Note that (6) is equivalent to
d2v

dt2
+ v ×

dv

dt
= C, C ∈ R

3. The

null Lie quadratics (C = 0) were studied in [9] and Proposition 4.1 was
proved to this case ([9], Lemma 3).

Remark 4.2. The proposition 4.1 motivates interesting problems, such as
numerical methods applications or integrability study of the corresponding
Hamiltonian system. The cubic polynomials may be expressed as extremals
of sub-Riemannian optimal control problems on TSO(3), whose Hamiltonian
function is exactly the first invariant (7) (see [3] for details)

〈
d2v

dt2
, v〉 −

1

2
〈
dv

dt
,

dv

dt
〉.

It is well known from the theory of geodesics, that only the linear repara-
metrization preserves the curve as a geodesic. This result follows from the
fact that the velocity vector field length is an invariant along the geodesic.
The invariant (8) has a similar role in the analysis of the freedom for cubic
polynomial reparametrization. However, for the cubic polynomial, the study
of the degenerated case turns out to be particularly interesting.

The following proposition analyses the freedom for cubic polynomial repa-
rametrization.

Proposition 4.2. Let x : I → SO(3) be a cubic polynomial and v : I → R
3

the corresponding Lie quadratic. If the invariant (8) along v is no zero, a
reparametrization of x is a cubic polynomial if and only if it is linear.

Proof : It is enough to note that, if y : I ′ → SO(3) is a smooth curve obtained
by a reparametrization of x, y = x ◦ s, and w : I ′ → R

3 is the corresponding

Lie curve defined by (dLy−1)y

dy

dt
= ŵ, then

〈
d2w

dt2
, w ×

dw

dt
〉 +

1

2
〈w ×

dw

dt
, w ×

dw

dt
〉 =

= (s′)6

(

〈
d2v

dt2
, v ×

dv

dt
〉 +

1

2
〈v ×

dv

dt
, v ×

dv

dt
〉

)

.
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[6] R. Giambò, F. Giannoni, P. Piccione, An analytical theory for Riemannian cubic polynomials,

IMA J. Math. Control Inform. 19 (2002), 445–460.
[7] R. Hermann, Differential geometry and the calculus of variations, Academic Press Inc., New

York, 1968
[8] L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces, IMA J. of Math.

Control Inform. 6 (1989), 465–473.
[9] L. Noakes, Null cubics and Lie quadratics, J. Math. Phys. 44 n. 3 (2003), 1436–1448.

[10] V. Prasolov, Y. Solovyev, Elliptic functions and elliptic integrals, Translations of Mathematical
Monographs 170, American Math. Society, USA, 1997

L. Abrunheiro

Inst. Sup. de Cont. e Adm., Universidade de Aveiro, 3811-953 Aveiro, Portugal

E-mail address: ligia.abrunheiro@isca.ua.pt

M. Camarinha
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