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DEGENERATIONS OF POISSON ALGEBRAS

HANI ABDELWAHAB, AMIR FERNÁNDEZ OUARIDI, AND CÁNDIDO MARTÍN GONZÁLEZ

ABSTRACT. We construct a method to obtain the algebraic classification of Poisson algebras defined on a commutative associative alge-

bra, and we apply it to obtain the classification of the 3-dimensional Poisson algebras. In addition, we study the geometric classification,

the graph of degenerations and the closures of the orbits of the variety of 3-dimensional Poisson algebras. Finally, we also study the

algebraic classification of the Poisson algebras defined on a commutative associative null-filiform or filiform algebra and, to enrich this

classification, we study the degenerations between these particular Poisson algebras.
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INTRODUCTION

The algebraic and geometric classification of different varieties of low-dimensional algebras is an interesting problem on

which numerous works have been published in recent years. The first consists in determining the algebras modulo isomorphisms

of a given class. The second consists in determining the irreducible components of a variety of algebras with respect to the

Zariski topology. For example, both problems have been studied for 2-dimensional algebras in [25], 2-dimensional pre-Lie

algebras in [4], 2-dimensional terminal algebras in [7], 3-dimensional Novikov algebras in [5], 3-dimensional Jordan algebras

in [12], 3-dimensional Jordan superalgebras in [2], 3-dimensional Leibniz and 3-dimensional anticommutative algebras in [19],

4-dimensional Lie algebras in [6], among many others. Moreover, if we add the works in which certain subvarieties of algebras,

such as the subvariety of nilpotent (or solvable) algebras of a given class is considered [1,3,8,11,18,20,24,26,27], the amount

of papers on this topic in last years increases even more. Nevertheless, the geometry of the varieties of algebras endowed with

two multiplications is a subject still to be explored. In this work, we consider a generalization of the geometrical notions and

results used for algebras with a single multiplication, established by Grunewald and O’Halloran in [15,16], to algebras with two

multiplications, applying these ideas with the purpose of obtaining a geometrical description of this variety to the best known

class of algebras of this type: the Poisson algebras.

The first historical encounter with Poisson algebras is in Hamiltonian mechanics (1809), where the algebra of smooth

functions on variables the space coordinates qi and the corresponding momenta pi is endowed with a Lie bracket which satisfies

a Leibniz compatibility rule, namely, the Lie bracket is a derivation. This is achieved by defining the product of two smooth

functions by:

{f, g} =

n
∑

i=1

(
∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi
).

This structure, the Hamiltonian and the Hamilton equations make a system that is widely used to describe any kind of

environment in classical mechanics and that provides a solid theoretical foundation for the later generalization to quantum

mechanics. Additionally, there are generalizations for n-ary Lie brackets which can handle the sue of (n − 1) Hamiltonians

through the Nambu-Poisson algebras. These generalizations are motivated by different applications including string theory,

M-branes theory and quarks models [9, 29, 30]. With the later abstraction of many notions of classical Physics, Hamiltonian

systems were geometrized into manifolds that model the set of all possible configurations of the system, and the cotangent

bundle of this manifold describes its phase space, which is endowed with a Poisson algebra [31]. This construction has been

used in a wide range of fields in Physics, including classical mechanics, quantum mechanics, general relativity and geometrical

optics, quantization theory, quantum groups, and in Mathematics, including representation theory, linear partial differential

equations or completely integrable systems.

The study of all possible Poisson algebras with a certain Lie or associative part is an important problem in the theory of

Poisson algebras. In the complex case, some examples of Poisson algebras were constructed on finite dimensional commutative

associative algebras [14] and a classification of the 3-dimensional Poisson algebras was given by considering the Poisson
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structures defined on the 3-dimensional Lie algebras [13]. In this paper, we have considered the problem of classifying the

Poisson structures of some finite-dimensional algebras. In particular, we correct a minor mistake in [13] on the classification

of 3-dimensional Poisson algebras and we classify other interesting types of Poisson algebras. In addition, we consider the

problem of the geometric classification of the varieties defined by this kind of structures in which we find two multiplications

linked by a compatibility rule, closing this work with the geometric classification, the complete graph of degenerations and the

description of the closures of the orbits of the variety of 3-dimensional Poisson algebras.

Thus, this work is organized as follows. In the first section (1), we introduce the classification method that we use to obtain

the algebraic classification of the Poisson algebras using the classification of the commutative associative algebras. In the

second section (2), we apply this method to obtain the classification of the 3-dimensional Poisson algebras. In the third section

(3), we classify Poisson algebras defined on commutative associative null-filiforms and filiforms. In the fourth section (4),

we study the geometry of the variety of Poisson algebras of dimension three. Finally, in the fifth section (5), we study the

degenerations between the Poisson algebras defined on commutative associative null-filiforms and filiforms.

1. THE ALGEBRAIC CLASSIFICATION METHOD

In this section, we stablish a straightforward method to obtain the algebraic classification of the Poisson structures defined

over an arbitrary commutative associative algebra. First, let us recall the definition of a Poisson algebra.

Definition 1.1. A Poisson algebra is a vector space P over an arbitrary field F equipped with two bilinear operations:

(1) An commutative associative multiplication, denoted by − · − : P × P −→ P;

(2) A Lie algebra multiplication, denoted by {−,−} : P × P −→ P .

These two operations are required to satisfy the following Leibniz identity:

{x · y, z} = {x, z} · y + x · {y, z} ,

for any x, y, z ∈ P . The dimension of the Poisson algebra P is the dimension of P as a vector space.

In this paper, all vector spaces are assumed to be complex and finite dimensional, unless stated otherwise. For simplicity,

every time we write the multiplication table of a Poisson algebra the products of basic elements whose values are zero or can be

recovered by the commutativity, in the case of − · −, or by the anticommutativity, in the case of {−,−}, are omitted. Further,

the variety of all n-dimensional Poisson algebras over the complex field will be denoted Pn.

Now, given an arbitrary commutative associative algebra, we may consider all the Poisson structures defined over this

algebra. This notion is captured in the following definition.

Definition 1.2. Let (P , ·) be a commutative associative algebra. Define Z2 (P ,P) to be the set of all skew symmetric bilinear

maps θ : P × P −→ P such that:

θ (θ (x, y) , z) + θ (θ (y, z) , x) + θ (θ (z, x) , y) = 0,

θ (x · y, z)− θ (x, z) · y − x · θ (y, z) = 0,

for all x, y, z in P . Then Z2 (P ,P) 6= ∅ since θ = 0 ∈ Z2 (P ,P).

Observe that, for θ ∈ Z2 (P ,P), if we define a bracket {−,−}θ on P by {x, y}θ = θ (x, y) for all x, y in P , then

(P , ·, {−,−}θ) is a Poisson algebra. Conversely, if (P , ·, {−,−}) is a Poisson algebra, then there exists θ ∈ Z2 (P ,P) such

that (P , ·, {−,−}θ)
∼= (P , ·, {−,−}). To see this, consider the skew symmetric bilinear map θ : P × P −→ P defined by

θ (x, y) = {x, y} for all x, y in P . Then θ ∈ Z2 (P ,P) and (P , ·, {−,−}θ) = (P , ·, {−,−}).

Now, let (P , ·) be a commutative associative algebra and Aut (P) be the automorphism group of P . Then Aut (P) acts on

Z2 (P ,P) by

(θ ∗ φ) (x, y) = φ−1 (θ (φ (x) , φ (y))) ,

for φ ∈ Aut (P), and θ ∈ Z2 (P ,P).

Lemma 1.1. Let (P , ·) be a commutative associative algebra and θ, ϑ ∈ Z2 (P ,P). Then (P , ·, {−,−}θ) and (P , ·, {−,−}ϑ)
are isomorphic if and only if there is a φ ∈ Aut (P) with θ ∗ φ = ϑ.

Proof. If θ ∗ φ = ϑ, then φ : (P , ·, {−,−}ϑ) −→ (P , ·, {−,−}θ) is an isomorphism since φ (ϑ (x, y)) = θ (φ (x) , φ (y)).
On the other hand, if φ : (P , ·, {−,−}ϑ) −→ (P , ·, {−,−}θ) is an isomorphism of Poisson algebras, then φ ∈ Aut (P) and

φ ({x, y}ϑ) = {φ (x) , φ (y)}θ. Hence ϑ (x, y) = φ−1 (θ (φ (x) , φ (y))) = (θ ∗ φ) (x, y) and therefore θ ∗ φ = ϑ.

Hence, we have a procedure to classify the Poisson algebras associated to a given commutative associative algebra (P , ·). It

consists of three steps:
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(1) Compute Z2 (P ,P).
(2) Find the orbits of Aut (P) on Z2 (P ,P).
(3) Choose a representative θ from each orbit and then construct the Poisson algebra (P , ·, {−,−}θ).

Remark 1.1. Similarly, we can construct an analogous method for classifying the 3-dimensional Poisson algebras from the

classification of Lie algebras of dimension three. However, since we are also looking for a classification of Poisson algebra

with its associated commutative associative algebra to be either null-filiform or filiform, we have to consider the method that

starts with commutative associative algebra.

Let us introduce the following notations. Let e1, e2, . . . , en be a fixed basis of a commutative associative algebra (P , ·).
Define Λ2 (P ,F) to be the space of all skew symmetric bilinear forms on P . Then Λ2 (P ,F) = 〈∆i,j : 1 ≤ i < j ≤ n〉 where

∆i,j is the skew-symmetric bilinear form ∆i,j : P × P −→ F defined by

∆i,j (el, em) :=







1, if (i, j) = (l,m) ,
−1, if (i, j) = (m, l) ,
0, otherwise.

Now, if θ ∈ Z2 (P ,P), then θ can be uniquely written as θ (x, y) =
n
∑

i=1

Bi (x, y) ei where B1, B2, . . . , Bn is a sequence of

skew symmetric bilinear forms on P . Also, we may write θ = (B1, B2, . . . , Bn) . Let φ−1 ∈ Aut (P) be given by the matrix

(bij). If (θ ∗ φ) (x, y) =
n
∑

i=1

B′
i (x, y) ei, then B′

i =
n
∑

j=1

bijφ
tBjφ.

2. THE ALGEBRAIC CLASSIFICATION OF THE 3-DIMENSIONAL POISSON ALGEBRAS

To obtain the classification of the 3-dimensional Poisson algebras, we will use the classification commutative associative

algebras of dimension 3. This classification can be obtained from the classification of 3-dimensional Jordan algebras given

in [17] . We have summarized it in the following result.

Theorem 2.1. Let (P , {−,−}) be a complex commutative associative algebra of dimension three. Then P has a basis {ei}
3
1

and it is isomorphic to one of the following algebras:

A1 : trivial algebra.• A2 : e1 · e1 = e2.•

A3 : e1 · e2 = e3.• A4 : e1 · e1 = e2, e1 · e2 = e3.•

A5 : e1 · e1 = e1, e2 · e2 = e2, e3 · e3 = e3.• A6 : e1 · e1 = e1, e2 · e2 = e2, e2 · e3 = e3.•

A7 : e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3.• A8 : e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3, e2 · e2 = e3.•

A9 : e1 · e1 = e1, e2 · e2 = e2.• A10 : e1 · e1 = e1, e1 · e2 = e2.•

A11 : e1 · e1 = e1.• A12 : e1 · e1 = e1, e2 · e2 = e3.•

Also, the following result (see [19]) will help us with the classification of 3-dimensional Poisson algebras when the commu-

tative associative multiplication (P , ·) is trivial.

Theorem 2.2. Let (P , {−,−}) be a complex Lie algebra of dimension three. Then P is isomorphic to one of the following

algebras:

• L3,1 : trivial algebra.

• L3,2 : {e1, e2} = e3.

• L3,3 : {e1, e2} = e2, {e1, e3} = e2 + e3.

• Lα
3,4 : {e1, e2} = e2, {e1, e3} = αe3.

• L3,5 : {e1, e2} = e3, {e1, e3} = −2e1, {e2, e3} = 2e2.

Applying the method developed in the previous section of this work, we have obtained the algebraic classification of the

three-dimensional complex Poisson algebras.

Theorem 2.3. Let (P , ·, {−,−}) be a complex Poisson algebra of dimension three. ThenP is isomorphic to one of the following

Poisson algebras:
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P3,1 : trivial algebra.• P3,2 : {e1, e2} = e3.•

P3,3 : {e1, e2} = e2, {e1, e3} = e2 + e3.• Pα
3,4 : {e1, e2} = e2, {e1, e3} = αe3.•

P3,5 : {e1, e2} = e3, {e1, e3} = −2e1, {e2, e3} = 2e2.• P3,6 : e1 · e1 = e2, e1 · e2 = e3.•

P3,7 : e1 · e1 = e1, e2 · e2 = e2, e3 · e3 = e3.• P3,8 : e1 · e1 = e1, e2 · e2 = e2, e2 · e3 = e3.•

P3,9 : e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3, e2 · e2 = e3.• P3,10 : e1 · e1 = e1, e2 · e2 = e2.•

P3,11 : e1 · e1 = e1, e1 · e2 = e2.• P3,12 : e1 · e1 = e1, e2 · e2 = e3.•

P3,13 : e1 · e1 = e2.• P3,14 :

{

e1 · e1 = e2,

{e1, e3} = e3.
•

P3,15 :

{

e1 · e1 = e2,

{e1, e3} = e2.
• Pα

3,16 :

{

e1 · e2 = e3,

{e1, e2} = αe3.
•

P3,17 : e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3.• P3,18 :

{

e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3,

{e2, e3} = e2.
•

P3,19 : e1 · e1 = e1.• P3,20 :

{

e1 · e1 = e1,

{e2, e3} = e2.
•

Between these algebras there are precisely the following isomorphisms:

• Pα6=0
3,4

∼= Pβ 6=0
3,4 if and only if α = β or α = 1

β .

• Pα
3,16

∼= Pβ
3,16 if and only if α2 = β2.

Proof. By Theorem 2.1, we may assume (P , ·) ∈ {A1, A2, . . . , A12}. If (P , ·) = A1, then (P , {−,−}) is a Lie algebra and

we get the algebras P3,1,P3,2,P3,3,P
α
3,4 and P3,5. If (P , ·) ∈ {A4, A5, A6, A8, A9, A10, A12}, then Z2 (P ,P) = {0}. So we

get the algebras P3,6, . . . ,P3,12. Assume now that (P , ·) ∈ {A2, A3, A7, A11}. Then we have the following cases:

(1) (P , ·) = A2. Let θ = (B1, B2, B3) be an arbitrary element of Z2 (P ,P). Then θ = (0, α∆1,3, β∆1,3) for some

α, β ∈ C. The automorphism group of A2, an element φ ∈ Aut (A2) is given by an invertible matrix of the following

form:




a11 0 0
a21 a211 a23
a31 0 a33



 .

Suppose that θ ∗ φ = (0, α′∆1,3, β
′∆1,3). Then

α′ =
1

a11
(αa33 − βa23) ,

β′ = βa11.

Let us distinguish two cases:

• (α, β) = (0, 0). In this case we get the algebra P3,13.

• (α, β) 6= (0, 0). If β 6= 0, we get the representative θ = (0, 0,∆1,3) and therefore we get the algebra P3,14. On

the other hand, if β = 0, we obtain the representative θ = (0,∆1,3, 0) and thus we get the algebra P3,15.

(2) (P , ·) = A3. If θ = (B1, B2, B3) is an arbitrary element of Z2 (P ,P), then θ = (0, 0, α∆1,2) for some α ∈ C.

Moreover, the automorphism group of A2, Aut (A2), consists of the isomorphisms φ given by a matrix of the following

form:




a11 a12 0
a21 a22 0
a31 a32 a11a22 + a12a21



 : a12 = a21 = 0 or a11 = a22 = 0.

Assume that θ ∗ φ = (0, 0, α′∆1,2). Then

α′ =
1

a11a22 + a12a21
(αa11a22 − αa12a21) .

From here we have α′2 = α2. So we get the representatives θα = (0, 0, α∆1,2). Moreover, we have θαand θα
′

in the

same orbit if and only if α′2 = α2. We denote the algebras corresponding to the representatives θα by Pα
3,16.



DEGENERATIONS OF POISSON ALGEBRAS 5

(3) (P , ·) = A7. Choose an arbitrary element θ = (B1, B2, B3) ∈ Z2 (P ,P). Then θ = (0, α∆2,3, β∆2,3) for some

α, β ∈ C. Furthermore, an automorphism φ ∈ Aut (A7), is given by an invertible matrix of the form:





1 0 0
0 a22 a23
0 a32 a33



 .

Write θ ∗ φ = (0, α′∆2,3, β
′∆2,3). Then

α′ = αa33 − βa23,

β′ = βa22 − αa32.

If (α, β) = (0, 0), we get the algebra P3,17. If (α, β) 6= (0, 0), we get the representative θ = (0,∆2,3, 0) and hence

we get the algebra P3,18.

(4) (P , ·) = A11. Consider an arbitrary element θ = (B1, B2, B3) ∈ Z2 (P ,P). Then θ = (0, α∆2,3, β∆2,3) for some

α, β ∈ C. An automorphism φ ∈ Aut (A11), is given by an invertible matrix of the form:





1 0 0
0 a22 a23
0 a32 a33



 .

Suppose that θ ∗ φ = (0, α′∆2,3, β
′∆2,3). Then

α′ = αa33 − βa23,

β′ = βa22 − αa32.

If (α, β) = (0, 0), we get the algebra P3,19. If (α, β) 6= (0, 0), we get the representative θ = (0,∆2,3, 0) and hence

we get the algebra P3,20.

These cases complete the classification of Poisson algebras of dimension three.

Additionally, we have compared the classification we have obtained to the previously known classification, from the paper

by Goze and Remm [13], and we have found the following isomorphisms, maintaining the corresponding notation of each

work.

GR P3,1 (γ) P3,2 P3,3 (α) P3,4 P3,5 P3,6 P3,7 (α) P3,8 P3,9

AFM Pα
3,6 P3,15 P3,20 P3,14 P3,2 P3,18 Pα

3,4 P3,3 P3,5

TABLE 1. Comparison between Goze’s and Remms classification and our classification.

From the table, there is a family on that paper which is isomorphic to a single algebra from our classification.

Finally, we recall the notion of Malcev Poisson algebra, which is a generalization of the notion of Poisson algebra.

Definition 2.1. A Malcev Poisson algebra is a vector space P equipped with two bilinear operations:

(1) An commutative associative multiplication, denoted by − · − : P × P −→ P;

(2) A Malcev algebra multiplication, denoted by {−,−} : P × P −→ P .

These two operations are required to satisfy the following Leibniz identity:

{x · y, z} = {x, z} · y + x · {y, z} ,

for any x, y, z ∈ P .

Since any Malcev algebra up to dimension three is a Lie algebra, we have the following result.

Theorem 2.4. All Malcev Poisson algebras of dimension three are Poisson algebras. Therefore, the classification of complex

Malcev Poisson algebras of dimension three is given in Theorem 2.3.
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3. THE CLASSIFICATION OF CERTAIN TYPES OF POISSON ALGEBRAS

In this section, we consider the classification problem for an arbitrary dimension in two particular cases. Namely, we study

the classification of all n-dimensional (n > 3) complex Poisson algebra (P , ·, {−,−}) such that (P , ·) is a null-filiform algebra

or a filiform algebra. Recall the definition of a null-filiform algebra.

Definition 3.1. An n-dimensional algebra P is a null-filiform if dimP i = n− i+ 1 where 2 ≤ i ≤ n+ 1 and

P1 = P ,Pk+1 = Pk · P for n ∈ N.

By [21, 23, 28], we have the classification of the associative null-filiform algebras.

Theorem 3.1. An arbitrary n-dimensional null-filiform associative algebra is isomorphic to the algebra:

µn
0 : ei · ej = ei+j , 2 ≤ i+ j ≤ n,

where {e1, e2, . . . , en} is a basis of the algebra µn
0 .

Lemma 3.1. Let (P , ·) be an n-dimensional null-filiform commutative associative algebra. Then Z2 (P ,P) = {0}.

Proof. By Theorem 3.1, we may assume (P , ·) = µn
0 . Let θ be an arbitrary element of Z2 (P ,P). Then, we will prove that

θ (ei, ej) = 0 for 1 ≤ i, j ≤ n by induction on i + j. If i + j = 2 we have θ (ei, ej) = 0. Now, assume that θ (ei, ej) = 0
for i + j < n. Then, for i + j = n, we have i > 1 or j > 1. Without loss of generality, we may assume i > 1. Hence, since

i− 1 + j < n and 1 + j < n, θ (ei, ej) = θ (ei−1 · e1, ej) = θ (ei−1, ej) · e1 + ei−1 · θ (e1, ej) = 0.

Theorem 3.2. Let (P , ·, {−,−}) be an n-dimensional Poisson algebra such that (P , ·) is null-filiform. Then (P , ·, {−,−}) is

isomorphic to the following algebra:

Pn
0 : ei · ej = ei+j , 2 ≤ i+ j ≤ n,

where {e1, e2, . . . , en} is a basis of the algebra Pn
0 .

Now, recall the definition of a filiform algebra.

Definition 3.2. An n-dimensional algebra P is a filiform if dimP i = n− i where 2 ≤ i ≤ n.

Thanks to [22, 23], we have the classification of the commutative associative filiform algebras .

Theorem 3.3. Every n-dimensional (n > 3) complex filiform commutative associative algebra is isomorphic to one of the next

non-isomorphic algebras with basis {e1, e2, . . . , en}:

µn
1,1 = µn−1

0 ⊕ Cen : ei · ej = ei+j ,

µn
1,2 : ei · ej = ei+j , en · en = en−1.

where 2 ≤ i+ j ≤ n− 1.

Lemma 3.2. Let (P , ·) be an n-dimensional (n > 3) complex filiform commutative associative algebra.

(1) If (P , ·) = µn
1,1, then Z2 (P ,P) = {α∆1,n (−,−) en−1 + β∆1,n (−,−) en : α, β ∈ C}.

(2) If (P , ·) = µn
1,2, then Z2 (P ,P) = {α∆1,n (−,−) en−1 : α ∈ C}.

Proof. (1) Let θ ∈ Z2 (P ,P). As in Lemma 3.1, we have θ (ei, ej) = 0 for 1 ≤ i, j ≤ n − 1. Since θ (x · y, z) =
x · θ (y, z) + y · θ (x, z), we have x · θ (en, z) = 0 for all x, z ∈ µn

1,1. From here, we conclude that θ (ei, en) ∈ 〈en−1, en〉 for

1 ≤ i ≤ n. Further if i > 1, then we have

θ (ei, en) = e1 · θ (ei−1, en) + ei−1 · θ (e1, en) = 0.

Hence θ (x, y) = α∆1,n (x, y) en−1 + β∆1,n (x, y) en for some α, β ∈ C.

(2) The proof is similar to the above case.

The group of automorphisms of the algebras µn
1,1 and µn

1,2 is given by [23].
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Lemma 3.3. Let φn
1,s ∈ Aut(µn

1,s). Then φn
1,1, φ

n
1,2 and are given respectively by the matrices























a1,1 0
a21,1 0

a31,1
...

∗ 0
an−1
1,1 an−1,n

an,1 0 . . . 0 0 an,n























,

























a1,1 0

a21,1
...

a31,1 0

∗ −an,1a
(n−3)/2
1,1

an−1
1,1 an−1,n

an,1 0 . . . 0 0 a
(n−1)/2
1,1

























.

Finally, we address the isomorphism problem.

Theorem 3.4. Let (P , ·, {−,−}) be an n-dimensional (n > 3) complex Poisson algebra such that (P , ·) is filiform. Then

(P , ·, {−,−}) is isomorphic to one of the following algebras:

• Pn
1,1 = Pn−1

0 ⊕ Cen : ei · ej = ei+j .

• Pn
1,2 :

{

ei · ej = ei+j ,

{e1, en} = en.

• Pn
1,3 :

{

ei · ej = ei+j ,

{e1, en} = en−1.
• Pn

1,4 : ei · ej = ei+j , en · en = en−1.

• Pn
1,5 :

{

ei · ej = ei+j , en · en = en−1,

{e1, en} = en−1.

where 2 ≤ i+ j ≤ n− 1.

Proof. By Theorem 3.3, we may assume (P , ·) ∈
{

µn
1,1, µ

n
1,2

}

. Therefore, we have the following cases:

(1) (P , ·) = µn
1,1. Choose an arbitrary element θ of Z2 (P ,P). Then θ (x, y) = α∆1,n (x, y) en−1 + β∆1,n (x, y) en.

Consider φ ∈ Aut(µn
1,1) given by

(

ai,j
)

, and let θ ∗ φ (x, y) = α′∆1,n (x, y) en−1 + β′∆1,n (x, y) en. Since θ ∗

φ (e1, en) = φ−1 (θ (φ(e1), φ(en))), we have

α′en−1 + β′en = αa1,1an,nφ
−1 (en−1) + βa1,1an,nφ

−1 (en) .

Moreover, we have φ−1 (en−1) = a1−n
1,1 en−1 and φ−1 (en) = −an−1,na

1−n
1,1 en−1 +

1
an,n

en. Thus

α′ = a2−n
1,1 (αan,n − βan−1,n) ,

β′ = βa1,1.

If (α, β) = 0, we get the algebra Pn
1,1. Assume now (α, β) 6= 0. If β 6= 0, we get the representative θ (x, y) =

∆1,n (x, y) en. So we obtain the algebra Pn
1,2. If β = 0, we get the representative θ (x, y) = ∆1,n (x, y) en−1. Thus

we have the algebra Pn
1,3.

(2) (P , ·) = µn
1,2. Choose an arbitrary element θ of Z2 (P ,P). Then θ (x, y) = α∆1,n (x, y) en−1. Consider φ ∈

Aut(µn
1,2) given by

(

ai,j
)

, and let θ ∗ φ = α′∆1,nen−1. Since θ ∗ φ (e1, en) = φ−1 (θ (φ(e1), φ(en))), we have

α′en−1 = αa1,1a
(n−1)/2
1,1 φ−1 (en−1) = αa

(3−n)/2
1,1 en−1.

So we have α′ = αa
(3−n)/2
1,1 . If α = 0, we get the algebra Pn

1,4. If α 6= 0, we obtain the representative θ (x, y) =

∆1,n (x, y) en−1. Therefore we have the algebra Pn
1,5.

In short, we obtain five algebras, up to isomorphisms, under the conditions of the theorem.

Remark 3.1. As the proof of Lemma 3.1 and Lemma 3.2 only depends on the identity θ (x · y, z) = x · θ (y, z) + y · θ (x, z),
Theorem 3.2 and Theorem 3.4 are also true for Malcev Poisson algebras.

4. THE GEOMETRIC CLASSIFICATION OF THE 3-DIMENSIONAL POISSON ALGEBRAS

Given a complex vector space V of dimension n, the set of bilinear maps Bil(V,V) ∼= Hom(V⊗2,V) ∼= (V∗)⊗2 ⊗ V is a

vector space of dimension n3. The set of pairs of bilinear maps (or bilinear pairs) Bil(V,V) ⊕ Bil(V,V) ∼= (V∗)⊗2 ⊗ V ⊕

(V∗)⊗2 ⊗ V which is a vector space of dimension 2n3. This vector space has the structure of the affine space C2n3

in the
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following sense: fixed a basis e1, . . . , en of V, then any pair with multiplication (µ, µ′), is determined by some parameters

ckij , c
′k
ij ∈ C, called structural constants, such that

µ(ei, ej) =
n
∑

p=1

ckijek and µ′(ei, ej) =
n
∑

p=1

c′kijek

which corresponds to a point in the affine space C2n3

. Then a set of bilinear pairs S corresponds to an algebraic variety, i.e.,

a Zariski closed set, if there are some polynomial equations in variables ckij , c
′k
ij with zero locus equal to the set of structural

constants of the bilinear pairs in S. Since given the identities defining Poisson algebras we can obtain a set of polynomial

equations in variables ckij , c
′k
ij , the class of n-dimensional Poisson algebras Pn is a variety. Now, consider the following action

of GL(V) on Pn:

(g ∗ (µ, µ′))(x, y) := (gµ(g−1x, g−1y), gµ′(g−1x, g−1y))

for g ∈ GL(V), (µ, µ′) ∈ Pn and for any x, y ∈ V. Observe that the GL(V)-orbit of (µ, µ′), denoted O((µ, µ′)), contains all

the structural constants of the bilinear pairs isomorphic to the Poisson algebra with structural constants (µ, µ′).
In the previous section, we gave a decomposition of P3 into GL(V)-orbits, i.e., an algebraic classification of the 3-

dimensional Poisson algebras. In this section, we will describe the closures of orbits of (µ, µ′) ∈ P3, denoted by O((µ, µ′)),
and we will give a geometric classification of P3, which consists in describing its irreducible components. Recall that any affine

variety can be represented as a finite union of its irreducible components in a unique way.

Additionally, describing the irreducible components of a variety, such as P3, gives us which are those bilinear pairs with an

open GL(V)-orbit.

Definition 4.1. Let P and P ′ be two n-dimensional Poisson algebras and (µ, µ′), (λ, λ′) ∈ Pn be their representatives in the

affine space, respectively. We say P degenerates to P ′, and write P → P ′, if (λ, λ′) ∈ O((µ, µ′)). If P 6∼= P ′, then we call it a

proper degeneration.

Conversely, if (λ, λ′) 6∈ O((µ, µ′)) then we call it a non-degeneration and we write P 6→ P ′.

Note that the definition of a degeneration does not depend on the choice of (µ, µ′) and (λ, λ′). Also, due to the transitivity of

the notion of degeneration (that is, if P → P ′′ and P ′′ → P ′ then P → P ′) we have the following definitions.

Definition 4.2. Let P and P ′ be two n-dimensional Poisson algebras such that P → P ′. If there is no P ′′ such that P → P ′′

and P ′′ → P ′ are proper degenerations, then P → P ′ is called a primary degeneration. Analogously, let P and P ′ be two

n-dimensional Poisson algebras such that P 6→ P ′, if there are no P ′′ and P ′′′ such that P ′′ → P , P ′ → P ′′′, P ′′ 6→ P ′′′ and

one of the assertions P ′′ → P and P ′ → P ′′′ is a proper degeneration, then P 6→ P ′ is called a primary non-degeneration.

Note that it suffices to prove primary degenerations and non-degenerations to fully describe the geometry of a variety.

Therefore, in this work we will focus on proving the primary degenerations and non-degenerations.

Firstly, if Der(P) denotes the Lie algebra of derivations of P , dimDer(P) is equal to dimAut(P), as an algebraic group.

Recall the formula dimGx = dimG−dim Stab(x), where G is an algebraic group acting on a variety X , x ∈ X , Gx denotes

the orbit of x and Stab(x) denotes the stabilizer of x. Then, dimO((µ, µ′)) = n2 − dimDer(P). Therefore, if P → P ′ and

P 6∼= P ′, we have that dimDer(P) < dimDer(P ′). Hence, we will check the assertion P → P ′ only for P and P ′ such that

dimDer(P) < dimDer(P ′).
Secondly, let P and P ′ be two Poisson algebras represented by the structures (µ, µ′) and (λ, λ′) from Pn, respectively. If

there exist a parametrized change of basis g : C∗ → GL(V) such that:

lim
t→0

g(t) ∗ (µ, µ′) = (λ, λ′),

then P → P ′. To prove primary degenerations, we will provide the map g.

Thirdly, now to prove primary non-degenerations we will use the following lemma.

Lemma 4.1. Consider two Poisson algebras P and P ′. Suppose P → P ′. Let C be a Zariski closed in Pn that is stable by

the action of the invertible upper (lower) triangular matrices. Then if there is a representation (µ, µ′) of P in C, then there is a

representation (λ, λ′) of P ′ in C.

Proof. Suppose (µ, µ′) is a representation of P in C, then O(µ, µ′) = GL(P) ∗ (µ, µ′). By [15, Proposition 1.7] we have

(1) GL(P) ∗ (µ, µ′) = GL(P) ∗ (T (µ, µ′))

where T is the subgroup of upper (lower) triangular matrices of GL(P), which is a borel subgroup of GL(P). Now, taking any

(λ, λ′) ∈ GL(P) ∗ (µ, µ′), formula (1) implies that (λ, λ′) = g ∗ (γ, γ′) where (γ, γ′) ∈ T ∗ (µ, µ′). But (µ, µ′) ∈ C whence
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T ∗ (µ, µ′) ⊂ C and T ∗ (µ, µ′) ⊂ C. So (γ, γ′) ∈ C and we conclude that (λ, λ′) = g ∗ c for some c ∈ C. So there is a

representative of (λ, λ′) in C.

Remark 4.1. By Lemma 4.1, if we have a polynomial identity in two multiplications P, then it defines a Zariski closed set in

Pn which is stable up to isomorphism (and in particular, it is stable up to invertible lower triangular matrices). Therefore, any

degeneration of a Poisson algebra that satisfies P, also satisfies P.

Moreover, we have the following corollary, similar to results found in [4, 16].

Corollary 4.1. Consider two Poisson algebras P and P ′. Suppose P → P ′. Then if follows:

(1) dimAnn(P , ·) ≤ dimAnn(P ′, ·),
(2) dimAnn(P , {−,−}) ≤ dimAnn(P ′, {−,−}),
(3) dimAnn(P) ≤ dimAnn(P ′),
(4) dimP · P ≥ dimP ′ · P ′,
(5) dim {P ,P} ≥ dim {P ′,P ′},

(6) dimP2 ≥ dimP ′2,

where Ann(P) = {x ∈ P : x · P + {x,P} = 0} and P2 = P · P + {P ,P}.

Let R be a set of polynomial equations in the variables ckij , c
′k
ij and in the conditions of the previous result. Let CR be the

subclass of C of all algebras satisfying the identities of R. Assume that (µ, µ′) ∈ CR and O((λ, λ′)) ∩ CR = ∅, give us the

non-degeneration P 6→ P ′. In this case, we call the identities in R a separating set for P 6→ P ′. To prove non-degenerations,

we will present the corresponding separating set and we will omit the verification of the fact that R is stable under the action of

the lower triangular matrices and of the fact that O((λ, λ′)) ∩ R = ∅, which can be obtained by straightforward calculations

using a software like Wolfram.

Finally, if the algebraic classification of the class under consideration is finite, then the graph of primary degenerations gives

the whole geometric classification: the description of irreducible components can be easily obtained. However, the variety P3

of 3-dimensional Poisson algebras contains infinitely many non-isomorphic algebras, since it has the families P∗
3,4 and P∗

3,16.

Definition 4.3. Let P(∗) = {P(α) : α ∈ I} be a family of n-dimensional Poisson algebras and let P ′ be another Poisson

algebra. Suppose that P(α) is represented by the structure (µ(α), µ′(α)) ∈ Pn for α ∈ I and P ′ is represented by the structure

(λ, λ′) ∈ Pn. We say the family P(∗) degenerates to P ′, and write P(∗) → P ′, if (λ, λ′) ∈ {O((µ(α), µ′(α)))}α∈I .

Conversely, if (λ, λ′) 6∈ {O((µ(α), µ′(α)))}α∈I then we call it a non-degeneration, and we write P(∗) 6→ P ′.

On the one hand, to prove P(∗) → P ′, suppose that P(α) is represented by the structure (µ(α), µ′(α)) ∈ Pn for α ∈ I and

P ′ is represented by the structure (λ, λ′) ∈ Pn. If there exists a pair of maps (f, g), where f : C∗ → I and g : C∗ → GL(V)
are such that:

lim
t→0

g(t) ∗ (µ
(

f(t)
)

, µ′(f(t)
)

) = (λ, λ′),

then P(∗) → P ′.
On the other hand, to prove P(∗) 6→ P ′, we will use an analogue of the Lemma 4.1 for families of Poisson algebras.

Lemma 4.2. Consider the family of Poisson algebrasP(∗) and the Poisson algebraP ′. SupposeP(∗) → P ′. Let C be a Zariski

closed in Pn that is stable by the action of the invertible upper (lower) triangular matrices. Then if there is a representation

(µ(α), µ′(α)) of P(α) in C for every α ∈ I , then there is a representation (λ, λ′) of P ′ in C.

Similarly, constructing a set R in the conditions of the previous result, such that (µ(α), µ′(α)) ∈ CR for any α ∈ I and

O((λ, λ′)) ∩ CR = ∅, gives us the non-degenerationP(∗) 6→ P ′.

In Theorem 2.3 we presented the classification, up to isomorphism, of the complex Poisson algebras of dimension three. To

obtain the irreducible components of this variety, we have studied the primary degenerations and non-degenerations first.

Lemma 4.3. The graph of primary degenerations and non-degenerations for the variety of 3-dimensional Poisson algebras is

given in Figure 1, where the numbers on the right side are the dimensions of the corresponding orbits.

Proof. From Table 3 we deduce the dimensions of the orbits for each Poisson algebra of dimension 3. Every primary degen-

eration and non-degeneration can be proven using the parametrized changes of basis and the separating sets included in Table

4 and Table 5 below, respectively. Note that, in Table 4, a parametrized change of basis g is defined by gi(t) := g(t)(ei) for

1 ≤ i ≤ 3, where {ei}
3
1 is the basis from Theorem 2.3.

At this point, only the description of the closure of the orbit of the parametric families P∗
3,4 and P∗

3,16 is missing.
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Lemma 4.4. The description of the closure of the orbit of the parametric families P∗
3,4 and P∗

3,16 in the variety P3 is given.

(1) The closure of the orbit of the parametric family P∗
3,4 contains the closures of the orbits of the Poisson algebras

P3,3,P3,2 and P3,1.

(2) The closure of the orbit of the parametric family P∗
3,16 contains the closures of the orbits of the Poisson algebras

P3,15,P3,13,P3,2 and P3,1.

Proof. The primary degenerations and non-degenerations that do not follow from the previous results are included in Table 6

and Table 7, respectively.

By Lemma 4.3 and Lemma 4.4, we have the following result that give us the geometric classification of P3.

Theorem 4.1. The variety of 3-dimensional Poisson algebras P3 has six irreducible components corresponding to the Poisson

algebras P3,5,P3,7,P3,18 and P3,20 and the families of Poisson algebras P∗
3,4 and P∗

3,16. The lattice of subsets for the orbit

closures is given in Figure 2, where the numbers above are the dimensions of the corresponding orbits.

5. DEGENERATIONS BETWEEN CERTAIN TYPES OF POISSON ALGEBRAS

In this section, as a closing of this work, we will study the degenerations and non-degenerations between the Poisson

algebras obtained in Theorem 3.2 and Theorem 3.4. This class of algebras is not a variety, although, their study can enrich

this classification since it will help, for example, to understand how the polynomial identities are inherited between them.

Obviously, Poisson algebras of dimension three constructed on the commutative associative null-filiforms and filiforms are

included in our classification of 3-dimensional Poisson (see table below). Hence, we may assume n > 3.

3D P3,6 P3,13 P3,14 P3,15 P0
3,16 P

√
−1

3,16

N/F P3
0 P3

1,1 P3
1,2 P3

1,3 P3
1,4 P3

1,5

TABLE 2. Isomorphisms between algebras in Theorem 2.3 and those in Theorem 3.2 and Theorem 3.4.

In the first place, to determine the dimension of the orbits of each of these algebras, we compute their algebra of derivations.

Lemma 5.1. Let ϕ be a derivation of Pn
0 , then ϕ(ei) =

∑n
k=i iλk−i+1,1ek for some λk,1 ∈ C, k = 1, . . . , n. Hence, the

dimension of the Lie algebra of derivations of Pn
0 is n.

Proof. Clearly, ϕ(e1) =
∑n

i=1 λi,1ei for some λi,1 ∈ C. Now, for 2 ≤ i+ j ≤ n we have

ϕ(ei+j) = ϕ(eiej) = ϕ(ei)ej + eiϕ(ej) = (i + j)ei+j−1ϕ(e1).

Then, we may fix k = i+ j and write

ϕ(ek) = kek−1ϕ(e1) = kek−1

n
∑

i=1

λi,1ei = k

n
∑

i=1

λi,1ei+k−1 = k

n
∑

j=k

λj−k+1,1ej .

The converse is a straightforward verification. Moreover, the Lie algebra of derivations of Pn
0 has dimension n.

Lemma 5.2. Let ϕ be a derivation of P ∈
{

Pn
1,i : i = 1, . . . , 5

}

for n > 3.

• If P = Pn
1,1, then

ϕ(e1) =

n
∑

k=1

λk,1ek, ϕ(ei) =

n−1
∑

k=i

iλk−i+1,1ek, ϕ(en) = λn−1,nen−1 + λn,nen,

for 2 ≤ i ≤ n− 1, where λk,1, λn−1,n, λn,n ∈ C, k = 1, . . . , n. Moreover, dimDer(Pn
1,1) = n+ 2 .

• If P = Pn
1,2, then

ϕ(e1) =

n
∑

k=2

λk,1ek, ϕ(ei) =

n−1
∑

k=i+1

iλk−i+1,1ek, ϕ(en) = λn,nen,

for 2 ≤ i ≤ n− 1, where λk,1, λn,n ∈ C, k = 2, . . . , n. Further, dimDer(Pn
1,2) = n .
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• If P = Pn
1,3, then

ϕ(e1) =
n
∑

k=1

λk,1ek, ϕ(ei) =
n−1
∑

k=i

iλk−i+1,1ek, ϕ(en) = λn−1,nen−1 + (n− 2)λ1,1en,

for 2 ≤ i ≤ n− 1, where λk,1, λn−1,n ∈ C, k = 1, . . . , n. Moreover, dimDer(Pn
1,3) = n+ 1 .

• If P = Pn
1,4, then

ϕ(e1) =

n
∑

k=1

λk,1ek, ϕ(ei) =

n−1
∑

k=i

iλk−i+1,1ek, ϕ(en) = −λn,1en−1 + λn−1,nen−1 +
n− 1

2
λ1,1en,

for 2 ≤ i ≤ n− 1, where λk,1, λn−1,n, λn,n ∈ C, k = 1, . . . , n. Moreover, dimDer(Pn
1,4) = n+ 1 .

• If P = Pn
1,5, then

ϕ(e1) =
n
∑

k=2

λk,1ek, ϕ(ei) =
n−1
∑

k=i+1

iλk−i+1,1ek, ϕ(en) = −λn,1en−2 + λn−1,nen−1,

for 2 ≤ i ≤ n− 1, where λk,1, λn−1,n ∈ C, k = 2, . . . , n. Further, dimDer(Pn
1,5) = n .

Proof. We are proving the case P = Pn
1,5, the rest of the cases can be argued similarly. It is clear that ϕ(e1) =

∑n
i=1 λi,1ei for

some λi,1 ∈ C. In the associative part, for 2 ≤ k ≤ n− 1, we have (see Lemma 5.1)

ϕ(ek) = kek−1

n
∑

i=1

λi,1ei = k

n−1
∑

i=1

λi,1ei+k−1 = k

n−1
∑

j=k

λj−k+1,1ej .

Note that ϕ(enen) = 2ϕ(en)en implies that λn,n =
(n−1)λ1,1

2 , where ϕ(en) =
∑n

i=1 λi,nei. For the Lie bracket part, we have

(n− 1)λ1,1en−1 = ϕ(en−1) = ϕ({e1, en}) =

{

n
∑

i=1

λi,1ei, en

}

+ {e1, ϕ(en)} = λ1,1en−1 +
(n− 1)λ1,1

2
en−1.

Hence, we have λ1,1 = λn,n = 0.

Now, for 2 ≤ i ≤ n, we have 0 = ϕ(eien) = ϕ(ei)en + eiϕ(en) = eiϕ(en). In particular, we obtain

e2ϕ(en) = e2

n−1
∑

i=1

λi,nei =
n−3
∑

i=1

λi,nei+2 = 0,

so λi,n = 0 for 1 ≤ i ≤ n − 3 and ϕ(en) = λn−2,nen−2 + λn−1,nen−1. Moreover, 0 = ϕ(e1en) = ϕ(e1)en + e1ϕ(en) =
λn,1en−1 + λn−2,nen−1 implies λn−2,n = −λn,1. The converse is a direct verification.

Now, we study the degenerations and non-degenerations between the algebras under consideration.

Theorem 5.1. The primary degenerations and non-degenerations in the class of Poisson algebras constructed on a null-filiform

or filiform algebra of dimension n > 3 is given in Figure 3. The numbers on the right side are the dimensions of the orbits.

Proof. The assertions that do not follow by the dimensions of the orbits, which are obtained from Lemma 5.1 and Lemma 5.2,

are proved below.

• Pn
1,2 → Pn

1,3. Consider the action of the linear map

gi(t) = t−iei, gn(t) = t−1en−1 + en,

for 1 ≤ i ≤ n− 1, on Pn
1,2 to obtain

{

ei · ej = ei+j ,

{e1, en} = en−1 + ten,

where 2 ≤ i+ j ≤ n− 1. Applying the limit, we have Pn
1,3.

• Pn
1,3 → Pn

1,1 and Pn
1,4 → Pn

1,1. Consider the map gi(t) = ei, gn(t) = t−1en, for 1 ≤ i ≤ n− 1.

The actions g ∗ Pn
1,3 and g ∗ Pn

1,4 gives us, respectively, the algebras
{

ei · ej = ei+j ,

{e1, en} = ten−1,
ei · ej = ei+j , en · en = t2en−1,

where 2 ≤ i+ j ≤ n− 1. Clearly, by taking the limit, we obtain Pn
1,1 in both cases.
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• Pn
1,5 → Pn

1,3. Choose, for 1 ≤ i ≤ n− 1, the map

gi(t) = t−iei, gn(t) = t−n+2en.

Hence, by applying the action we have
{

ei · ej = ei+j , en · en = tn−3en−1

{e1, en} = en−1.

where 2 ≤ i+ j ≤ n− 1. Thus, the limit gives us Pn
1,3.

• Pn
1,5 → Pn

1,4. Consider the map

gi(t) = t2iei, gn(t) = tn−1en,

for 1 ≤ i ≤ n− 1. Then, the action g ∗ Pn
1,5 gives us the algebra

{

ei · ej = ei+j , en · en = en−1

{e1, en} = tn−3en−1,

where 2 ≤ i+ j ≤ n− 1. By the limit we obtain Pn
1,4.

• Pn
0 → Pn

1,4. Consider, for 1 ≤ i ≤ n− 1, the parametrized isomorphism given by

gi(t) = (−1)
−i

n−1 t−iei, gn(t) = −

n−1
∑

k=2

(−1)
−k
n−1 tn−2kek + ten.

and its inverse given by

g−1
i (t) = (−1)

i
n−1 tiei, g−1

n (t) =

n
∑

k=2

tn−1−kek.

The verification of lim
t→0

g(t) ∗ Pn
0 = Pn

1,4 can be studied analogously.

• Pn
0 6→ Pn

1,3. This is clear, since (Pn
0 , {−,−}) is the zero algebra and (Pn

1,3, {−,−}) is not.

• Pn
1,2 6→ Pn

1,4. Observe that Ann(Pn
1,2, ·) = 〈en−1, en〉 and Ann(Pn

1,4, ·) = 〈en−1〉, then it follows by Corollary 4.1.

It follows by the dimension of the orbits that every degeneration in Figure 3 is a primary degeneration.



DEGENERATIONS OF POISSON ALGEBRAS 13

9

8

7

6

5

4

3

0P3,1
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P3,13

P3,3 Pα 6=1
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P3,15 Pβ 6=0
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P0

3,16P3,17 P3,19
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Legend:

– Squared nodes: Poisson algebras.
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Figure 1. Graph of primary degenerations and non-degenerations.
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Figure 2. Inclusion graph for orbit closures and dimension.
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P Multiplication table dimDer (P , ·) (P , {−,−})

P3,1 9 A1 L3,1

P3,2 {e1, e2} = e3. 6 A1 L3,2

P3,3 {e1, e2} = e2, {e1, e3} = e2 + e3. 4 A1 L3,3

P1
3,4 {e1, e2} = e2, {e1, e3} = e3. 6 A1 L1

3,4

Pα6=1
3,4 {e1, e2} = e2, {e1, e3} = αe3. 4 A1 Lα

3,4

P3,5 {e1, e2} = e3, {e1, e3} = −2e1, {e2, e3} = 2e2. 3 A1 L3,5

P3,6 e1 · e1 = e2, e1 · e2 = e3. 3 A4 L3,1

P3,7 e1 · e1 = e1, e2 · e2 = e2, e3 · e3 = e3. 0 A5 L3,1

P3,8 e1 · e1 = e1, e2 · e2 = e2, e2 · e3 = e3. 1 A6 L3,1

P3,9 e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3, e2 · e2 = e3. 2 A8 L3,1

P3,10 e1 · e1 = e1, e2 · e2 = e2. 1 A9 L3,1

P3,11 e1 · e1 = e1, e1 · e2 = e2. 2 A10 L3,1

P3,12 e1 · e1 = e1, e2 · e2 = e3. 2 A12 L3,1

P3,13 e1 · e1 = e2. 5 A2 L3,1

P3,14

{

e1 · e1 = e2,

{e1, e3} = e3.
3 A2 L0

3,4

P3,15

{

e1 · e1 = e2,

{e1, e3} = e2.
4 A2 L3,2

Pα
3,16

{

e1 · e2 = e3,

{e1, e2} = αe3.
4 A3 L3,2

P3,17 e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3. 4 A7 L3,1

P3,18

{

e1 · e1 = e1, e1 · e2 = e2, e1 · e3 = e3,

{e2, e3} = e2.
2 A7 L0

3,4

P3,19 e1 · e1 = e1. 4 A11 L3,1

P3,20

{

e1 · e1 = e1,

{e2, e3} = e2.
2 A11 L0

3,4

TABLE 3. The classification of the 3-dimensional Poisson algebras.
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Degeneration Parametrized change of basis

P3,17 → P3,13 g1(t) = t
−1

e1 − t
−2

e2, g2(t) = e2, g3(t) = e3.

P3,19 → P3,13 g1(t) = t
−1

e1 + t
−2

e2, g2(t) = e2, g3(t) = e3.

P3,9 → P3,17 g1(t) = e1, g2(t) = t
−1

e2, g3(t) = e3.

P3,9 → P3,6 g1(t) = t
−1

e1 − t
−2

e2 + t
−3

e3, g2(t) = e2, g3(t) = te3.

P3,11 → P3,6 g1(t) = t
−1

e1 − t
−2

e2 − t
−3

e3, g2(t) = e2 + t
−1

e3, g3(t) = e3.

P3,12 → P3,6 g1(t) = 1

2
t
−1

e1 + 1

2
t
−2

e2 + t
−3

e3, g2(t) = −e1 + 4t−2
e3, g3(t) = 2e2 − 4t−1

e3.

P3,12 → P3,19 g1(t) = e1, g2(t) = t
−1

e2, g3(t) = e3.

P3,10 → P3,11 g1(t) = e1 − t
−1

e2, g2(t) = t
−1

e2, g3(t) = e3.

P3,10 → P3,12 g1(t) = e1, g2(t) = t
−1

e2 + t
−2

e3, g3(t) = e3.

P3,8 → P3,12 g1(t) = e1, g2(t) = t
−1

e2 − t
−2

e3, g3(t) = e3.

P3,8 → P3,11 g1(t) = t
−1

e3, g2(t) = e1, g3(t) = e2.

P3,8 → P3,9 g1(t) = e1 + t
−1

e2 + t
−2

e3, g2(t) = −t
−1

e2 − t
−2

e3, g3(t) = e3.

P3,7 → P3,8 g1(t) = e1, g2(t) = e2 − t−1e3, g3(t) = t−1e3.

P3,7 → P3,10 g1(t) = e1, g2(t) = e2, g3(t) = t
−1

e3.

P3,3 → P3,2 g1(t) = t
−1

e1, g2(t) = e2 + t
−1

e3, g3(t) = −t
−1

e3.

P3,3 → P
1

3,4 g1(t) = e1, g2(t) = te2, g3(t) = e3.

P
α 6=1

3,4
→ P3,2 g1(t) = t

−1
e1, g2(t) = e2 − t

−1(α − 1)−1
e3, g3(t) = e3.

P3,5 → P
−1

3,4
g1(t) = −2t2e1 + te2, g2(t) = −

1

2
t
−2

e1 −
1

4
t
−3

e2, g3(t) = t
−1

e2 + e3.

P3,18 → P3,14 g1(t) = t
−1

e1 − t
−2

e2, g2(t) = te2 + e3, g3(t) = t
−2

e3.

P3,20 → P3,14 g1(t) = t−1e1 + t−2e2, g2(t) = −te2 + e3, g3(t) = t−2e3.

P3,14 → P3,15 g1(t) = t
−1

e1, g2(t) = t
−2

e2 − t
−1

e3, g3(t) = t
−1

e2.

P3,14 → P
0

3,4 g1(t) = e1, g2(t) = te3, g3(t) = e2.

P3,20 → P3,19 g1(t) = e1, g2(t) = e2, g3(t) = t
−1

e3.

P3,18 → P3,17 g1(t) = e1, g2(t) = e2, g3(t) = t
−1

e3.

P3,15 → P3,2 g1(t) = t
−1

e1, g2(t) = te2 + e3, g3(t) = −e3.

P3,15 → P3,13 g1(t) = te1, g2(t) = t
2
e2, g3(t) = e3.

P3,6 → P
0

3,16 g1(t) = e1, g2(t) = te2, g3(t) = te3.

P
α
3,16 → P3,13 g1(t) = t

2
e1 + e2, g2(t) = t

−4
e2, g3(t) = −

1

2
e2 + te3.

TABLE 4. Degenerations of 3-dimensional Poisson algebras.

Non-degeneration Arguments

P3,5 6→ P3,3,P
α
3,4(α 6= −1) R =







c′121 = −c′112, c
′2
21 = −c′212, c

′3
21 = −c′312, c

′1
31 = −c′113

c′231 = −c′213, c
′3
31 = −c′313 = c212, c

′2
32 = −c′223 = c113,

c′332 = −c′323 = −c112, c
k
ij = c′kij = 0 otherwise







P3,9 6→ P3,19 R =

{

c111, c
2
11, c

3
11, c

3
22 ∈ C, c221 = c212 = c313 = c331 = c111,

c321 = c312, c
1
11c

3
12 = c322c

2
11, c

k
ij = c′kij = 0 otherwise

}

P3,11 6→ P3,19 R =

{

c211, c
3
11 ∈ C, c221 = c212 = c111, c

3
21 = c312,

ckij = c′kij = 0 otherwise

}

P3,10 6→ P3,17 R =

{

c111, c
2
11, c

3
11 ∈ C, c221 = c212, c

3
21 = c312,

c212c
3
22 = c312c

2
22, c

k
ij = c′kij = 0 otherwise

}

Pα
3,16 6→ P3,2,P

1
3,4 R =

{

c311 ∈ C, c321 = c312, c
′3
21 = −c′312 = −αc312

ckij = c′kij = 0 otherwise

}

P3,18 6→ Pα
3,4(α 6= 0),Pα

3,16,P3,19 R =















c111, c
2
11, c

3
11 ∈ C, c221 = c212 = c111, c

3
31 = c313 = c111,

c′221 = −c′212, c
′3
21 = −c′312, c

′2
31 = −c′213, c

′3
31 = −c′313,

c′232 = −c′223, c
′3
32 = −c′323, c

′2
12c

′3
23 = c′312c

′2
23,

c′213c
′3
23 = c′313c

′2
23, c

′2
13c

′3
12 = c′212c

′3
13, c

k
ij = c′kij = 0 otherwise















P3,20 6→ Pα
3,4(α 6= 0),Pα

3,16,P3,17 R =







c111, c
2
11, c

3
11 ∈ C, c′221 = −c′212, c

′3
21 = −c′312, c

′2
31 = −c′213,

c′331 = −c′313, c
′2
32 = −c′223, c

′3
32 = −c′323, c

′2
12c

′3
23 = c′312c

′2
23,

c′213c
′3
23 = c′313c

′2
23, c

′2
13c

′3
12 = c′212c

′3
13, c

k
ij = c′kij = 0 otherwise







TABLE 5. Non-degenerations of 3-dimensional Poisson algebras.

Degeneration Parametrized change of basis Parametrized index

P∗
3,16 → P3,15 g1(t) = t−1e2, g2(t) = t−1e1 +

1
2 t

−2e3, g3(t) = e2 + te3. f(t) = t−1

P∗
3,4 → P3,3 g1(t) = e1, g2(t) = e2 − (1 + t)−1te3, g3(t) = e2. f(t) = 1 + t

TABLE 6. Degenerations of the 3-dimensional Poisson algebras for the families P∗
3,4 and P∗

3,16.
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Non-degeneration Arguments

P∗
3,4 6→ P3,13 R =

{

c′221 = −c′212, c
′3
21 = −c′312, c

′3
31 = −c′313, c

k
ij = c′kij = 0 otherwise

}

P∗
3,16 6→ Pα

3,4, P3,17, P3,19 R =
{

c311 ∈ C, c321 = c312, c
′3
21 = −c′312, c

k
ij = c′kij = 0 otherwise

}

TABLE 7. Non-degenerations of the 3-dimensional Poisson algebras for the families P∗
3,4 and P∗

3,16.

n2 − n

n2 − n − 1

n2 − n − 2Pn
1,1

Pn
1,3 Pn

1,4

Pn
0

Pn
1,2 Pn

1,5

Figure 3. Graph of degenerations and non-degenerations.
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UNIVERSITY OF CÁDIZ, DEPARTMENT OF MATHEMATICS, PUERTO REAL (ESPAÑA).
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