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2 E. SOUSA AND I.J. SOBEYThe purpose of this paper is to extend studies of the e�et of di�erent dis-retisation of the vortiity boundary onditions for the unsteady inompress-ible Navier-Stokes equations in the stream-funtion vortiity formulation.We are espeially interested in understanding the global stability propertiesof expliit time marhing shemes using various methods for dealing withthe spatially impliit vortiity boundary ondition, although in priniple,our methods ould be applied to impliit time marhing shemes. With thispurpose we build a matrix form for the system of equations whih ouplestogether the advetion-di�usion equation for the vortiity, the Poisson equa-tion for the stream-funtion and the vortiity boundary ondition to providea global iteration matrix; we then study the properties of that matrix fortwo partiular ows. While stability is the primary fous of this work wealso note in passing some results on auray whih are in aordane withexisting results although with some new data.There are many studies of the stream-funtion vortiity formulation for theNavier-Stokes equations and a substantial literature on the subjet, from theseminal work of Thom [2℄ through to texts on omputational uid mehanis,ranging from the early text Roahe [3℄ to the more reent Peyret and Taylor[4℄. The basi method is also reviewed in papers suh as Orszag and Israeli[5℄ and Gresho [6℄.The way vortiity is handled at a boundary is extremely important froma physial point of view as it reets the mehanism of vortiity generationat a boundary. The diÆulty with a vortiity formulation is the lak of nat-ural boundary ondition on the vortiity sine a no-slip boundary onditiondoes not have a simple ounterpart in terms of the vortiity. In order to om-plete the disrete formulation is nevertheless neessary to impose a numerialboundary ondition on the vortiity. Perhaps the most well known numer-ial vortiity boundary ondition is that given by Thom [2℄ whih omesfrom a quadrati polynomial approximation of the stream-funtion near aboundary. The approximation is onstrained to satisfy the orret normalderivative and then applied at the �rst interior point from the boundary.This type of numerial boundary ondition has been analysed by Hou andWetton [7℄, assoiated with a entral sheme for the vortiity equation, andshown to yield seond order aurate solutions. Later Wang and Liu [8℄ stud-ied the Wilkes-Pearson formula assoiated with the entral di�erenes and afourth order sheme with Briley's formula. Other work that has foused onthe role of vortiity boundary onditions is in for example: Weinan and Liu



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 3[9℄ or Napolitano et al. [10℄. More reently Li and Wang [11℄ have gener-alised vortiity boundary onditions to urved boundary domains. There isalso signi�ant work on steady solutions and partiularly their auray inSpotz [12℄.The plan of this paper is to briey reap the formulation of the global iter-ation matrix for the Navier Stokes equations (the idea was �rst explored inSousa and Sobey [13℄ for a one-dimensional analogue of the stream-funtionvortiity equations), to onsider a number of well known disretisations (ofboth the vortiity transport equation and the boundary vortiity) and thento onsider two avity type ows, one an exat solution of the Navier{Stokesequations and one a avity ow driven by one wall moving uniformly, ex-amining variation of the solution with numerial parameters and stability ofexpliit �nite di�erene shemes for these ows.2. Global iteration matrix formulationIn this setion we derive a global iteration matrix for the disretised form ofthe advetion-di�usion equation, the Poisson equation between the stream-funtion and the vortiity and the boundary vortiity method, also onsid-ering briey some onditions for stability of the global iteration.2.1. Flow equations. We onsider inompressible visous ow in a two-dimensional domain without inow or outow. The motion of the uid isgoverned by the Navier-Stokes equations,�u�t + (u � r)u = �rp+ 1Rer2u;r � u = 0; (1)where u = u(x; y; t) = (u(x; y; t); v(x; y; t)) is a non-dimensional veloity�eld, p = p(x; y; t) is a non-dimensional pressure, and Re is a Reynolds num-ber. In a bounded domain 
 enlosed by a boundary �
, the impermeabilityof the boundaries and the no-slip ondition implies thatu(x; y; t) = uW (x; y; t); for (x; y) 2 �
; t > 0; (2)where uW denotes the boundary veloity.In terms of the vortiity �eld ! = vx�uy, the momentum equations providea vortiity equation, �!�t + u�!�x + v�!�y = 1Rer2!: (3)



4 E. SOUSA AND I.J. SOBEYThe uid veloity, u = (u; v) is obtained fromu = � �y ; v = �� �x ; (4)where  (x; y; t) is a stream-funtion, whih is onneted to the vortiity !,by a Poisson equation ! = �r2 ; (5)where without inow or outow in the avity ows we onsider, the streamfuntion is zero on the boundary,  j�
 = 0. The boundary onditions (2)translate into boundary onditions for the stream funtion��� �y ; � �x� = uW (x; y; t); (x; y) 2 �
: (6)There is no expliit boundary ondition for the vortiity.2.2. Matrix form of disretisation. The idea of the matrix formulationwas initially introdued in Sousa and Sobey [13℄ for a one dimensional modelproblem whih was similar to a stream-funtion vortiity problem and soinluded some of the features of that problem but in other respets wasonsiderably simpler, having only two boundary points. In two dimensionswe have a more omplex problem for various reasons, one of them being thefat that we have a onsiderably larger number of points on the boundary.As we have noted, the stream-funtion vortiity formulation has the advan-tage that it not only eliminates the pressure variable, but also automatiallyenfores inompressibility. Yet, a diÆulty in the numerial simulation of (3){ (6) is deiding a suitable numerial boundary ondition for the vortiity.When the vortiity advetion-di�usion equation is updated in time, that doesnot provide values for the vortiity on the boundaries, only at mesh pointsin the interior of 
 so that an additional ondition is needed to determinethe vortiity on the boundary.We will desribe how the problem (3) { (6) is implemented in matrix form.We assume that we are in a avity, with 
 = [0; 1℄ � [0; 1℄ but these ideasgeneralise straight forwardly to arbitrary domains and to more ompliatedows with inlet and outlet onditions.We start by writing the disretised vortiity values in two vetors, WI ,ontaining points whih lie in the interior and WB ontaining points on theboundary. The disrete values of the stream-funtion are similarly ontained



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 5in	I , for the interior and	B for the boundary. A time update of the vorti-ity advetion-di�usion equation provides an update for the interior vortiityvalues only. A fairly broad lass of time marhing disretisation for the vor-tiity advetion equation, (3), an be written in the formQWn+1I = AWnI +BWnB; (7)for suitable matries Q, A and B. Note that this formulation hides someaspets of the Navier-Stokes equations sine aording to (4), the matriesA and B are both funtions of the stream-funtion, and thus impliitly ofthe vortiity. The equation (7), overs some impliit and all expliit timemarhing shemes. For these avity problems, assume there is uniform dis-retization where the spae step is the same in both diretions, namely h,and that the mesh points are:f(jh; kh) : j; k = 0; : : : ;mg:Thus the vetorWI holds (m�1)2 values and the vetorWB has 4m values.The dimensions of the matries Q and A are (m� 1)2� (m� 1)2 and of thematrix B are (m� 1)2 � 4m.For a driven avity ow, the natural ordering of the stream-funtion valuesimplies an ordering of values  jk =  (jh; kh); j; k = 0; : : : ;m with h = 1=m.Suppose we denote a vetor of values 	jk whih approximate  jk using thisnatural ordering 	 = [	00;	10;	20; : : : ;	mm℄T ; (8)then there will exist a permutation matrix P suh that	 = P � 	B	I � ; (9)where	B are values on the boundary (j or k equal to 0 or m, in this ase 4mvalues), 	I those values in the interior (0 < j; k < m, in this ase (m � 1)2values) and if P is suitable partitioned as P = [P1;P2℄ then	 = P1	B +P2	I ; (10)where the matrix P1 is a (m+1)2�4m matrix and P2 is a (m+1)2�(m�1)2matrix.In a similar manner the vortiity approximationWjk, an be written (usingthe same permutation matries)W = [W00;W10;W20; : : : ;Wmm℄T = P1WB +P2WI : (11)



6 E. SOUSA AND I.J. SOBEYNext, the stream-funtion vortiity Poisson equation an be disretised atthe interior points by R	 = �h2WI ; (12)where R is a matrix of dimension (m � 1)2 � (m + 1)2 and is easy to writedown in terms of the natural ordering of 	, so that in equation (12),1h2L	n+1I + 1h2N	n+1B = �Wn+1I ; (13)L = RP2 and N = RP1: (14)and L is a (m� 1)2 � (m� 1)2 and N is an (m� 1)2 � 4m matrix.If the vortiity equation is disretised at the interior points (again usingthe natural ordering of 	n),QWn+1I = GWn = G[P1WnB +P2WnI ℄; (15)where G is a matrix of dimensions (m� 1)2 � (m+ 1)2. ThenQWn+1I = GP1WnB +GP2WnI ; (16)so that the matrix A and B in (7) are determined byA = GP2 and B = GP1: (17)The boundary vortiity is more ompliated, sine the disretisation thererelates the wall vortiity to the updates stream-funtion, but if we use anatural ordering to obtain on the boundaryD1Wn+1 = 1h2D2	n+1 + vn+1; (18)where D1 and D2 are 4m � (m + 1)2 matries. The vetor vn+1 might forinstane arise in a driven avity problem where the walls are moving. Itfollows thatD1[P1Wn+1B +P2Wn+1I ℄ = 1h2D2[P1	n+1B +P2	n+1I ℄ + vn+1; (19)and soD1P1Wn+1B = 1h2D2P1	n+1B + 1h2D2P2	n+1I �D1P2Wn+1I + vn+1: (20)This an be rewrittenWn+1B = 1h2M	n+1I + FWn+1I + 1h2J	n+1B + (D1P1)�1vn+1; (21)



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 7where the matries M, F and J are of dimensions 4m� (m� 1)2 and givenbyM = (D1P1)�1D2P2; F = �(D1P1)�1D1P2; J = (D1P1)�1D2P1: (22)This enables the stream-funtion to be eliminated in the interior using (13)Wn+1B = (F�ML�1)Wn+1I + 1h2 (J�ML�1N)	n+1B + (D1P1)�1vn+1; (23)and then the update of the vortiity in the interior an be replaed so thatWn+1B = (F�ML�1)Q�1(AWnI +BWnB) + 1h2 (J�ML�1N)	n+1B + (D1P1)�1vn+1: (24)This essentially ompletes the derivation of the iteration matrix for thisversion of the Navier-Stokes equations, sine we now have�Wn+1IWn+1B � = � Q�1A Q�1B(F�ML�1)Q�1A (F�ML�1)Q�1B � �WnIWnB �+ Sn+1;(25)or Wn+1 = KWn + Sn+1; (26)where Sn+1 = 1h2 � 0(J�ML�1N)	n+1B �+ (D1P1)�1vn+1and K denotes the overall iteration matrix,K = � Q�1A Q�1B(F�ML�1)Q�1A (F�ML�1)Q�1B � : (27)Let X = F�ML�1, p = (m� 1)2 and q = 4m. We haveK(p+q)2 = � Q�1Ap�p Q�1Bp�qXQ�1Aq�p XQ�1Bq�q � ;and we an observe thatK = � Ip�p 0p�qXq�p Iq�q � � Q�1p�p 0p�q0q�p Iq�q � � Ap�p Bp�q0q�p 0q�q � :Note that if we have an expliit sheme then Q = I so thatK = � I 0X I � � A B0 0 � (28)andX represents the inuene of the vortiity boundary onditions and Pois-son's equation and A and B the inuene of the vortiity equation.



8 E. SOUSA AND I.J. SOBEYIn this work we onsider two-level time-integration shemes and onstantboundary onditions so that Sn+1 = S, is onstant and so,Wn+1 = KnWn + S; (29)where S ontains boundary values of the stream-funtion and of the veloity�eld and in the ase where the ow �eld is evolving or time dependent sinethen the global iteration matrix varies from iteration to iteration and so isdenoted Kn.In setion 4 below we onsider a ase whereKn is onstant,Kn = K. Sinethe ow �eld is onstant and known in advane,Wn+1 = KWn + S: (30)For suh a steady ow, we an denote the di�erene between the steadysolution,W and the urrent iteration value,Wn as an error, en =W�Wn.In that ase the error en satis�es the equationen+1 = Ken = Kn+1e0: (31)When K is onstant, we have the following stability ondition, see Rihtmyerand Morton [14℄.Stability ondition: In order forWn to remain bounded and the sheme,de�ned by the operator Kn+1, to remain stable, the in�nite set of operatorsKn has to be uniformly bounded. That is, we should have, in a seletednorm, for �nite T jjKnjj < C for 0 < n�t < T;where C is independent of n;�t; h.The norm of Kn is often very diÆult to analyse, and instead a neessaryondition but not always suÆient ondition an be obtained from an analysisof the eigenvalues of K.The ondition �(K) � 1 is neessary for the sheme implemented by (30)to be stable, where �(K) is the spetral radius of K.We have the following result.Proposition 1: The value � 6= 0 is an eigenvalue of the matrixK, de�nedby (28), if and only if is an eigenvalue of the matrix A+BX.Proof: If � 6= 0 is an eigenvalue of the matrix K then exists z suh thatKz = �z. From this, we get Az1 + Bz2 = �z1 and XAz1 +XBz2 = �z2,



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 9where z = [z1 z2℄T . We have Xz1 = z2 and then Az1 +BXz1 = �z1 and �is an eigenvalue of A+BX.Reiproally if � is an eigenvalue of A + BX then there is z1 suh thatAz1 + BXz1 = �z1. Therefore � is an eigenvalue of K, sine we haveKz = �z, where z = [z1 Xz1℄T .We an not easily get expliit onditions between the eigenvalues of A andthe eigenvalues of A + BX, sine neither A or BX are speial matries,namely symmetri or other. However the fat that the eigenvalues of K arethe eigenvalues of A + BX shows us more learly that the di�erent hoiesof the vortiity boundary onditions, impliitly represented by X, an a�etthe spetral radius of K.Also if we want to ompute numerially the spetrum of K for large di-mensions is more eÆient to use the matrix A+BX.In later setions we are also going to use a fourth-order Poisson disretisa-tion. Briey, we point out the hanges that ours in the matrix formulationwhen using this disretisation.The formula (13) ome as1h2L	n+1I + 1h2N	n+1B = �T1Wn+1I �T2WnB; (32)and then 	n+1I = �L�1N	n+1B � h2L�1T1Wn+1I � h2L�1T2WnB: (33)Consequently (23) is now given byWn+1B = (F�ML�1T1)Wn+1I �ML�1T2WnB+ 1h2 (J�ML�1N)	n+1B +(D1P1)�1vn+1; (34)and thenWn+1B = �(F�ML�1T1)Q�1A (F�ML�1T1)Q�1B�ML�1T2� � WnIWnB �+ Sn+1:(35)3. Finite di�erene disretisationsIn this setion we set out two di�erent shemes for the unsteady vortiityadvetion-di�usion equation; one a seond order Lax{Wendro� type shemeand one a third order, Quikest type sheme. These shemes, whih areforms of well known shemes of the same name, were introdued in Sousa



10 E. SOUSA AND I.J. SOBEYand Sobey [15℄. We onsider two shemes for disretising a Poisson equation,one the usual seond order entral di�erene sheme and one a fourth ordersheme (see Iserles [16℄). We also set out a number of well known shemesfor disretising the boundary vortiity, that of Thom [2℄, Woods [17℄, Jensen[18℄, d'Alessio and Dennis [19℄ and Briley [20℄. We note in passing someonsequenes for stability from the disretisation of the advetion-di�usionequation.3.1. Disretisation of the vortiity advetion-di�usion equation. Weuse the di�erene operators,�x0Wj;k = 12(Wj+1;k �Wj�1;k);Æ2xWj;k = Wj+1;k � 2Wj;k +Wj�1;k;�x�Wj;k = Wj;k �Wj�1;kwith operators �y0Wj;k; Æ2yWj;k;�y�Wj;k de�ned analogously.Also de�ne loal numerial parameters,�x = u�th ; �y = v�th ; � = 1Re�th2 ;where �t is the time-step so that the iteration time is tn = n�t.We disretise the vortiity advetion-di�usion equation (3) on the (m �1)� (m� 1) interior points using two di�erent numerial shemes.An expliit seond-order numerial Lax-Wendro� type sheme is given by:W n+1jk = W njk � �x�x0W njk + (12�2x + �x)Æ2xW njk � �y�y0W njk+(12�2y + �y)Æ2yW njk + �x�y�x0�y0W njk; j; k = 1; : : : ;m� 1:(36)This sheme uses a nine point stenil and an be used independently of thediretion of the veloity �eld (u; v).An expliit third-order Quikest type sheme is given by:W n+1jk = W njk � �x�x0W njk � �y�y0W njk + (12�2x + �x)Æ2xW njk+(12�2y + �y)Æ2yW njk + �x�y�x0�y0W njk+16�x(1� �2x � 6�x)Æ�xW njk + 16�y(1� �2y � 6�y)Æ�yW njk



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 11��y(�x + 12�2x)Æ2x�y0W njk � �x(�y + 12�2y)Æ2y�x0W njk;j; k = 1; : : : ;m� 1; (37)where the operators Æ�x and Æ�y hange aording to the diretion of theveloity �eld as desribed in the table below. This sheme uses an elevenpoint stenil. u; v � 0 u � 0; v � 0 u � 0; v � 0 u; v � 0Æ�x Æ2x�x� Æ2x�x� Æ2x�x+ Æ2x�x+Æ�y Æ2y�y� Æ2y�y+ Æ2y�y� Æ2y�y+De�nition of the operators Æ�x and Æ�y.In the ase of a non-linear veloity �eld, we treat these di�erene expansionsas loal approximations and use the veloity omponents (u; v) involved inthe variables �x and �y at the entral mesh point, (xj; yk). For additionalinformation on the derivation of these two shemes see Sousa and Sobey [15℄.If we retain the loally onstant approximation then the stability of theiteration is from a linear problem and we an use von Neumann stabilityanalysis for the Cauhy problem involving the advetion-di�usion vortiityequation. This gives us neessary onditions for stability whih are usuallyworthwhile taking into onsideration in the non-linear problem.A von Neumann analysis in two dimensions is a straightforward general-isation of the one-dimensional ase. The disrete Fourier deomposition intwo dimensions onsists of the deomposition of the funtion into a Fourierseries as Unjk =X�x;�y �nei�xj�xei�yk�y;where the range �x, �y is de�ned separately for eah diretion, as in the one-dimensional ase. The ampli�ation fator is given by �. The produts �x�xand �y�y are often represented as a phase angle, namely, �x = �x�x; �y =�y�y: To obtain a von Neumann stability ondition we insert the singularomponent �neij�xeik�y into the disretised sheme. The ampli�ation fatoris said to satisfy the von Neumann ondition if there is a onstant K suhthat j�(�x; �y)j � 1 +K�t 8 �x; �y 2 [0; 2�℄: (38)



12 E. SOUSA AND I.J. SOBEY
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(a) (b)Figure 1. Stability onditions given in Proposition 2: (a) Seond-ordersheme. (b) Third-order sheme.
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(a) (b)Figure 2. Stability onditions given in Proposition 3: (a) Seond-ordersheme: ontours for � = 0:05 (�); � = 0:1 (� � �); � = 0:2 (� � �); � =0:24 (��). (b) Third-order sheme: ontours for � = 0:1 (���); � = 0:2 (���);� = 0:24 (��).As in the one-dimensional ase, in pratie we use the stronger onditionj�(�x; �y)j � 1 8 �x; �y 2 [0; 2�℄; (39)and the disrete sheme that meets this ondition, we refer to as von Neu-mann stable. This has been alled pratial stability by Rihtmyer and Mor-ton [14℄ or strit stability by other authors. In some ases ondition (38)allows numerial modes to grow exponentially in time for �nite values of �t.Therefore, the pratial, or strit, stability ondition (39) is reommendedin order to prevent numerial modes from growing faster than the physialmodes of the di�erential equation.



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 13For our �nite di�erene shemes we have the following results, that are alsorepresented in Figures 1 and 2.Proposition 2: For the hyperboli problem, that is, � = 0, we have:(a) The sheme (36) is stable if and only ifj�xj2=3 + j�yj2=3 � 1: (40)(b) The sheme (37) is stable only ifj�xj+ j�yj � 1: (41)Proof:(a) This is well known, see Turkel [21℄.(b) Let u; v � 0 so that �x; �y � 0. The ampli�ation fator for the phaseangles �x = 0 and �y = � gives that to have j�j � 1 is the same as tohave �x � 1. Similarly for the phase angles �x = � and �y = 0, we have�y � 1.Then assuming �x; �y � 1 for the phase angles of high frequeny�x = �y = �, j�j � 1 is equivalent to �x + �y � 1. Similarly results ouldbe obtained for di�erent diretions of the veloity �eld in order to obtainondition (41).Proposition 3:(a) Neessary von Neumann onditions for the stability of the sheme (36)are 4� � 1 �2x + �2y � 1� 4�:(b) A neessary von Neumann ondition for the stability of the sheme (37)is (�2x + 2�) + (�2y + 2�) + 23 j�xj(1� �2x � 6�) + 23 j�yj(1� �2y � 6�) � 1:Proof:(a) The �rst ondition is obtained in the limiting ase �x ! 0, �y ! 0. Theseond ondition is obtained from the partiular ase �x = �y = �.(b) Let u; v � 0 so that �x; �y � 0. The seond ondition is obtained fromthe partiular ase �x = �y = �.3.2. Disretisation of the Poisson equation. We onsider two disretisa-tions of the Poisson equation, (5). The �rst is the usual seond order entral



14 E. SOUSA AND I.J. SOBEYdi�erene sheme, (Æ2x + Æ2y)	n+1j;k = �h2W n+1j;k : (42)The seond disretisation was originated by Collatz [22℄, see also Iserles [16℄,(Æ2x + Æ2y + 16Æ2xÆ2y)	n+1j;k = �h2(I + 112(Æ2x + Æ2y))W n+1j;k (43)where I is an identity operator. This sheme is fourth order aurate inh. We believe that this sheme is the same as that advoated in Spotz [12℄who derived the sheme afresh using disrete approximation for high orderderivatives in the trunation error.3.3. Boundary vortiity disretisation. While there are no formal orexpliit onditions on the vortiity at a wall, it is neessary to use an impliitondition in order to provide the vortiity at the wall. There are variousdi�erent methods for speifying wall vortiity,WB, in terms of the vortiityin the interior and the stream funtion. An extensive review of methods fordealing with the boundary vortiity an be found in Napolitano et al. [10℄. Interms of our matrix formulation, di�erent boundary vortiity shemes implyhanges only in the matries D1;D2.The onditions we use to alulate the vortiity on the boundaries areillustrated for one boundary, y = 0. Sine the veloity �eld on that bound-ary, u(x; 0), is not zero, the formulae assume that  y = u impliitly on theboundary. The formulae below are due to Thom [2℄, Woods [17℄, Jensen [18℄,d'Alessio and Dennis [19℄ and Briley [20℄.Thom: Wj0 = 2h2 (	j0 �	j1 + hu(jh; 0)) (44)Woods: Wj0 = 3h2 (	j0 �	j1 + hu(jh; 0))� 12Wj1 (45)Jensen: Wj0 = 12h2 (7	j0 � 8	j;1 +	j2 + 6hu(jh; 0)) (46)D'Alessio & Dennis: Wj0 = 4h2 (	j0 �	j1 + hu(jh; 0))� 13(4Wj1 �Wj2)(47)Briley: Wj0 = 118h2(85	j;0�108	j;1+27	j;2�4	j;3+66hu(jh; 0)): (48)We omit the supersript n+ 1 de�ning the time, tn+1, in the formulas (44)-(48), all the variables are taken at the updated time level, tn+1. The dis-retisation for the other boundaries is analogous. Considering (18) we have



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 15for Thom's vortiity boundary ondition that D1 = I where I is the matrixidentity, and D2 depends of the values of 	 at the boundary disretisation.For Woods' and d'Allesio & Dennis' boundary ondition D1 is no longer anidentity matrix. Also for Thom's, Jensen's and Briley's formulae, F = 0,sine they do not depend of the interior vortiity values. The order of au-ray of the various methods (see Napolitano et al. [10℄) is O(h) for Thom's,O(h2) for Woods', Jensen's and d'Alessio & Dennis' and O(h3) for Briley's.4. Cavity ow whih is exat solution of Navier{StokesequationsIn this setion we approah the problem of using the global iteration matrixby turning to an exat solution of the Navier{Stokes equations. The solutionis somewhat ontrived in that it relies on a body fore whih may not beattainable in reality but it is, nevertheless, an exat solution and thus allowsonsideration of preisely de�ned error measures, whereas normally in dealingwith ow problems, one an only test against solutions obtained from re�nedmeshes.We start from the stream-funtion (x; y) = 1� sin�x sin �y; (49)whih will take onstant (zero) value on the boundaries of the unit squareand so in one sense an be desribed as a driven avity problem. This stream-funtion desribes a ow with veloity �eld u = (u; v)u(x; y) = sin �x os �y; (50)v(x; y) = � os �x sin �y; (51)and vortiity ! = �r2 = 2� sin�x sin�y: (52)In order to make this an exat solution, onsider the momentum equation inthe Navier-Stokes equations, (1), with the addition of a body fore, f ,�u�t + (u � r)u = �rp+ 1Rer2u+ f ; (53)and hoose p = 14(os 2�x+ os 2�y); (54)f = 2�2Re [sin�x os �y;� os �x sin �y℄: (55)



16 E. SOUSA AND I.J. SOBEYThe set  , p and f provide an exat solution to the steady Navier-Stokesequations.The problem we onsider is to suppose that we have some distribution ofvortiity W (x; y; t) and stream-funtion, 	(x; y; t) related byr2	 = �W; (56)but subjet to the steady veloity �eld u and body fore f through thevortiity advetion equation whih results from (53). The time dependentNavier-Stokes equations will give W ! ! as t!1 and we let W satisfy:�W�t + (u � r)W = 1Rer2W � 1Rer2!: (57)Now use the result that for this exat steady ow �eld�!�t � 0; (u � r)! � 0; (58)so that the di�erene, e =W � !, satis�es�e�t + (u � r)e = 1Rer2e: (59)We interpret e as an error in a vortiity �eld, the error satisfying an advetiondi�usion equation with a veloity �eld whih is spatially varying but onstantin time. If the vortiity time variation on the boundary is set to zero, thenthe vortiity error will deay to zero in time as W ! ! and properties of thedisretisation of the advetion-di�usion equation alone should determine thevortiity time variation behavior in time. If, however, the boundary vortiityis not spei�ed expliitly, but determined as usual for the stream-funtionvortiity formulation, then the error will not deay to zero in time but willreet a global trunation error of the disretisation of the whole stream-funtion vortiity system. Hene the proedure to arry out one time step is:(a) update the error e in the interior of the domain using (59), (b) alulateW in the interior from W = e + !, () alulate the stream-funtion, 	 inthe interior by solving r2	 = �W , (d) alulate the vortiity W on theboundary using an appropriate method, and �nally (e) alulate the error onthe boundary using e =W � !.There are two numerial parameters whih haraterise the system,� = �th � = 1Re�th2 :
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(d) (e)Figure 3. Eigenvalues less than one: The loal matrix A (��); the globalmatrix K ({); m = 32. Seond-order method for advetion-di�usion with:(a) Thom's boundary ondition; (b) Woods's boundary ondition; () Jensenboundary ondition; (d) Alessio's boundary ondition; (e) Briley's boundaryondition.4.1. Stability. We onsider onsequenes for stability of hoosing di�erentboundary vortiity onditions. Sine the vortiity di�erene, e, satis�es anadvetion-di�usion equation with onstant veloity �eld we an examine sta-bility through the global iteration matrix, K, de�ned in (27), where we usedthe seond-order Poisson's disretisation.The results for the eigenvalues of K for di�erent vortiity boundary ondi-tions with the seond order Lax{Wendro� type sheme are shown in �gure 3where we also show the eigenvalues of the iteration matrix for the advetion-di�usion equation, A, The results were obtained for the mesh size m = 32.The overall pattern is that there may be a small redution in the region ofstability with higher order methods but in general, the hoie of boundaryvortiity disretisation does not have signi�ant stability penalties. Meshre�nement does not a�et this onlusion.
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(d) (e)Figure 4. Eigenvalues less than one: The loal matrix A (��);the global matrix K ({); m = 32. Third-order method foradvetion-di�usion with: (a) Thom's boundary ondition; (b)Wood's boundary ondition; () Jensen boundary ondition; (d)Alessio's boundary ondition; (e) Briley's boundary ondition.We have also onsidered the ase of a third order Quikest type shemefor the advetion-di�usion equation and the regions of stability are shown in�gure 4. In this ase there is a more notieable stability penalty but again,only marginally important. There is a region near the � = 0 axis where theeigenvalues are predited to be very slightly greater than one but in pratialomputations, the iterations remain stable in this region.Although Figures 3 and 4 display the stability regions obtained when us-ing the seond-order Poisson's disretisation, for the fourth-order Poissondisretisation (43) we obtain very similar stability regions.4.2. Auray. We have used solution of the system (56) and (59) to ex-amine the auray of the di�erent numerial shemes although as we shallsee in the next setion, the onlusions are more limited than we had hoped.



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 19We start the iteration with the vortiity initially set to have unit valueeverywhere exept at the four orner nodes where it is set to zero (the ornervalues of the vortiity are not used anywhere in the iteration). The systemis then updated aording to the sheme desribed above with the followingpossible hoies:i) Lax{Wendro� or Quikest for advetion-di�usion equation,ii) a seond or fourth order sheme for solution of the Poisson equation,iii) boundary vortiity sheme from: Thom, Woods, Jensen, d'Allessio &Dennis or Briley.The Poisson equation was solved using a four-level multigrid solver withonvergene riterion set to L1 norm of the residual less than 10�7. As theglobal error is onverging to zero as the mesh size vanishes, the order ofonvergene an be extrapolated using two meshes. In the results we do thisfor 16� 16 and 32� 32 meshes and for 32� 32 and 64� 64 meshes.The results shown in table 1 are a little surprising sine for the majorityof ases seond order onvergene is obtained regardless of the disretisationof the vortiity equation or whih form of boundary ondition is used, how-ever, in the ase of Jensen or Briley's method, fourth order onvergene isobtained when the Poisson solver is also fourth order. We believe that thisis onsistent with the theory of Bramble and Hubbard [23℄ who showed thatfor an ellipti problem with trunation error O(hn) [h is mesh spaing℄ thenthe global error would remain O(hn) when there were loal errors of orderO(hn�1) near a boundary with a mixed or Neumann ondition and O(hn�2)near a boundary with Dirihlet ondition. The omplexity of this partiularproblem means that we annot prove this result formally at present. It is alsosurprising that the disretisation of the vortiity equation does not a�et thenumerial results but that too may be onsistent with the theory of Brambleand Hubbard [23℄ or it may be a onsequene of the very arti�ial nature ofthis test problem. Sine in the next setion where we onsider a driven avityow, we do not see this behavior, it is most likely that the onvergene hereis determined more by the solution of Poisson equation than by the solutionof the advetion di�usion equation so that the orret explanation for theglobal onvergene rate omes from Bramble{Hubbard theory.
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Boundary Convetion Poisson Error Convergenemethod Di�usion Equation 16� 16 32� 32 64� 64 16-32 32-64O(h2) 0.914E-02 0.222E-02 0.546E-03 2.04 2.02Lax-Wendro� O(h4) 0.181E-01 0.443E-02 0.109E-02 2.03 2.02Thom O(h2) 0.909E-02 0.222E-02 0.546E-03 2.03 2.02Quikest O(h4) 0.180E-01 0.443E-02 0.109E-02 2.02 2.02O(h2) 0.278E-01 0.668E-02 0.164E-02 2.06 2.03Lax-Wendro� O(h4) 0.183E-01 0.444E-02 0.109E-02 2.04 2.02Woods O(h2) 0.275E-01 0.667E-02 0.164E-02 2.04 2.02Quikest O(h4) 0.181E-01 0.444E-02 0.109E-02 2.03 2.02O(h2) 0.925E-02 0.223E-02 0.546E-03 2.06 2.03Lax-Wendro� O(h4) 0.154E-03 0.930E-05 0.571E-06 4.05 4.03Jensen O(h2) 0.915E-02 0.222E-02 0.546E-03 2.04 2.03Quikest O(h4) 0.153E-03 0.930E-05 0.571E-06 4.04 4.03O(h2) 0.686E-01 0.137E-01 0.319E-02 2.32 2.11Lax-Wendro� O(h4) 0.611E-01 0.123E-01 0.284E-02 2.31 2.11d'Allesio O(h2) 0.653E-01 0.136E-01 0.318E-02 2.26 2.10Quikest O(h4) 0.582E-01 0.122E-01 0.283E-02 2.26 2.10O(h2) 0.961E-02 0.224E-02 0.547E-03 2.10 2.04Lax-Wendro� O(h4) 0.103E-03 0.628E-05 0.387E-06 4.04 4.02Briley O(h2) 0.947E-02 0.224E-02 0.547E-03 2.08 2.03Quikest O(h4) 0.102E-03 0.627E-05 0.387E-06 4.02 4.02Table 1. Global L2 error of time onverged solution for three mesh resolutions,16� 16, 32� 32 and 64� 64, with alulated onvergene rate for varying vortiityboundary ondition, onvetion-di�usion disretisation and disretisation of streamfuntion-vortiity equation.Numerial parameters are : Re = 100, �t = 0:0005, multigrid residual less than 10�7.

5.Drivenavitylaminarow
InthethissetionweonsidertimemarhingsolutionsforafullNavier-

Stokesproblemusingtherangeofdisretisationsjustdesribedandpresent
stabilityregionsandsomenumerialresultsforauray.Thisproblemhas
longservedastheprototypefortheinompressibleNavier-Stokesequations;
see,HouandWetton[7℄,BenjamimandDenny[24℄,ShreiberandKeller
[25℄andShen[26℄,tomentiononlyafew.
Weassumeu=0andv=0onallthe�xedwallsandthatonthemoving

wallaty=1,u=1andv=0.Theseboundaryonditionsanbewritten



EFFECT OF BOUNDARY VORTICITY DISCRETISATION 21in terms of the stream funtion as  = 0on all boundaries and � �n = �where � = 0 on �xed walls and � = 1 on the moving wall at y = 1. Theoordinate n is normal to the surfae.5.1. Stability. In the driven avity problem, energy is provided to thesystem through fores ating on the moving wall and this energy is dissipatedby visous ation, beoming heat whih will be lost through the avity walls.The driven avity does not show stability for a Reynolds number larger than7500, instead there is bounded osillations of the energy even for very smalltime-steps. We have not analysed the nature of this osillation, althoughthe reasons may be assoiated with the dynamial features of the physialproblem as reported in the literature for the driven avity in papers suh asShen [26℄, Bruneau and Jouron [27℄ and Goodrih et al. [28℄, where othernumerial shemes were used.For the driven avity problem, a steady laminar ow exists for Re < 3000.In this setion we give alulations of the stability of numerial alulationof the steady state for a representative Reynolds number 350.We onsider the matrix formulation, desribed in setion 2, of the systemomposed by the vortiity equation with the Poisson's equation. The veloity�eld (~u; ~v) introdued in the vortiity equation is the numerial approxima-tion veloity �eld to (u; v) that we obtain from numerial solution of theavity ow problem.When we use the seond-order and third-order disretisation for the vorti-ity equation and for Thom, Alessio and Dennis and Briley vortiity boundarydisretisations at Reynolds number 350, the result of the eigenvalues for thematrix formulation is desribed in �gure 5. We have used the seond-orderPoisson's disretisation. Nevertheless if instead we use the fourth-order Pois-son's disretisation the stability results are very similar to the ones presentedin Figure 5.5.2. Auray. There are well established alulations of the driven avityproblem whih provide referene values for the solution. We use those fromBottela and Peyret [29℄ whih were omputed using a high order spetral
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(a) (b)Figure 5. Unstable region for Re = 350 [above the urves℄: eigenvalueslarger than one; (a) For the 2nd order method (b) For the 3th order method.Thom's boundary ondition (�); Alessio's boundary ondition (���); Wood'sand Briley's boundary ondition (� � �); Jensen's boundary ondition(��).
method. In partiular we examine the ase Re = 100 and the value of thevortiity in the middle of the moving wall and the vortiity and stream-funtion in the enter of the avity. The results were onsidered onvergedfor a variation of the vortiity between time steps of order 10�21, that is thelimit of double preision auray. We have used four meshes, 32�32, 64�64,128�128 and 256�256. Then results from pairs of meshes were extrapolatedto give an estimate of the onvergene rate as the mesh size dereases. Theresults are given in tables 2-4. For most of the alulations the onvergenerate is essentially quadrati. The exeption is the ondition from d'Allesion& Dennis where the onvergene rate seems loser to 1.5. It is apparent thatthe hoie of disretisation of the Poisson equation makes no di�erene, theonditions whih gave quarti onvergene in the previous setion are nowonly quadrati so that the onditions for Bramble-Hubbard theory to allowglobal onvergene to be determined by disretisation in the interior do nothold (reall that Quikest should be lose to third order aurate in spaeso we might have hoped to �nd Quikest plus quarti disretisation of thePoisson equation giving lose to third order onvergene).
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!(0:5; 1) Referene=6.564094 Convergene!j�
 u � r! r2 = �! 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256Lax O(h2) 6.990319 6.659525 6.585685 6.569531 2.16 2.14 1.99Wendro� O(h4) 6.973841 6.650393 6.582504 6.568800 2.25 2.23 1.97Thom O(h2) 6.856680 6.630311 6.581038 6.568237 2.14 1.97 2.03Quikest O(h4) 6.838890 6.620976 6.577831 6.567307 2.27 2.05 2.10Lax O(h2) 6.856138 6.636151 6.581579 6.568751 2.02 2.04 1.91Wendro� O(h4) 6.833118 6.626328 6.578337 6.568015 2.11 2.13 1.86Woods O(h2) 6.727854 6.607491 6.576985 6.567460 1.92 1.75 1.94Quikest O(h4) 6.703616 6.597450 6.573714 6.566524 2.06 1.79 1.98Lax O(h2) 6.851832 6.635290 6.581445 6.568735 2.01 2.04 1.90Wendro� O(h4) 6.831085 6.624681 6.577995 6.567962 2.14 2.12 1.85Jensen O(h2) 6.724270 6.606717 6.576860 6.567444 1.91 1.74 1.93Quikest O(h4) 6.701177 6.595836 6.573376 6.566472 2.11 1.77 1.96Lax O(h2) 6.915013 6.665129 6.592959 6.573593 1.80 1.81 1.60Wendro� O(h4) 6.889537 6.655285 6.589724 6.572859 1.84 1.83 1.55d'Allesio O(h2) 6.780886 6.635431 6.588223 6.572284 1.60 1.56 1.56Quikest O(h4) 6.754719 6.625346 6.584954 6.571350 1.64 1.55 1.52Lax O(h2) 6.846822 6.638982 6.582381 6.568893 1.92 2.03 1.93Wendro� O(h4) 6.823843 6.627732 6.578811 6.567906 2.03 2.11 1.95Briley O(h2) 6.721911 6.610509 6.577795 6.567601 1.77 1.76 1.97Quikest O(h4) 6.696143 6.598940 6.574191 6.566612 1.92 1.79 2.00Table 2. Calulation of wall vortiity midway along moving wall, !(0:5; 1), for four mesh resolutionstogether with extrapolated onvergene rate for varying vortiity boundary ondition,onvetion-di�usion and stream funtion-vortiity equation disretisation. The referene value givenby Botella & Peyret (1998) is !(0:5; 1) = 6:564094. Numerial parameters are : Re = 100,�t = 0:0005, multigrid residual less than 10�7.
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Boundary Convetion Poisson !(0:5; 0:5) Referene=1.174412 Convergenemethod Di�usion Equation 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256O(h2) 1.063036 1.146349 1.166998 1.172601 1.99 1.92 2.03Lax-Wendro� O(h4) 1.087573 1.153773 1.169074 1.173216 2.07 1.95 2.16Thom O(h2) 1.106146 1.157270 1.168431 1.173058 1.99 1.52 2.14Quikest O(h4) 1.131313 1.164780 1.170514 1.173611 2.16 1.31 2.28O(h2) 1.081257 1.149183 1.167304 1.172618 1.88 1.83 1.99Lax-Wendro� O(h4) 1.106249 1.156676 1.169390 1.173229 1.94 1.82 2.09Woods O(h2) 1.123390 1.160001 1.168729 1.173070 1.82 1.34 2.08Quikest O(h4) 1.148942 1.167596 1.170825 1.173624 1.90 0.93 2.19O(h2) 1.081077 1.149267 1.167335 1.172620 1.89 1.83 1.98Lax-Wendro� O(h4) 1.105883 1.156949 1.169465 1.173245 1.97 1.82 2.08Jensen O(h2) 1.122976 1.160052 1.168758 1.173078 1.84 1.34 2.08Quikest O(h4) 1.148631 1.167852 1.170904 1.173040 1.97 0.90 1.35O(h2) 1.063547 1.140899 1.163966 1.171173 1.73 1.68 1.69Lax-Wendro� O(h4) 1.088474 1.148362 1.166048 1.171759 1.72 1.64 1.66d'Allesio O(h2) 1.106677 1.151932 1.165426 1.171635 1.59 1.32 1.69Quikest O(h4) 1.132078 1.159515 1.167520 1.172189 1.51 1.11 1.63O(h2) 1.081195 1.148418 1.167115 1.172590 1.84 1.83 2.00Lax-Wendro� O(h4) 1.106169 1.156240 1.169278 1.173146 1.91 1.82 2.02Briley O(h2) 1.122568 1.159183 1.168539 1.173038 1.77 1.37 2.10Quikest O(h4) 1.148513 1.167140 1.170713 1.173605 1.83 0.98 2.20Table 3. Calulation of vortiity at the entre, !(0:5; 0:5), for four mesh resolutionstogether with extrapolated onvergene rate for varying vortiity boundary ondition,onvetion-di�usion and stream funtion-vortiity equation disretisation. The referene value givenby Botella & Peyret (1998) is !(0:5; 0:5) = 1:174412. Numerial parameters are : Re = 100,�t = 0:0005, multigrid residual less than 10�7.
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Boundary Convetion Poisson  (0:5; 0:5) Referene=0.0665474 Convergenemethod Di�usion Equation 32� 32 64� 64 128� 128 256� 256 32-64 64-128 128-256O(h2) 0.062828 0.065634 0.066314 0.066490 2.03 1.97 2.02Lax-Wendro� O(h4) 0.063660 0.065884 0.066385 0.066510 2.12 2.03 2.13Thom O(h2) 0.064146 0.065960 0.066355 0.066503 2.03 1.61 2.13Quikest O(h4) 0.064976 0.066215 0.066426 0.066522 2.24 1.45 2.27O(h2) 0.063479 0.065729 0.066322 0.066490 1.91 1.86 1.96Lax-Wendro� O(h4) 0.064325 0.065982 0.066393 0.066510 1.97 1.88 2.04Woods O(h2) 0.064746 0.066051 0.066363 0.066503 1.86 1.43 2.05Quikest O(h4) 0.065596 0.066306 0.066434 0.066522 1.98 1.09 2.15O(h2) 0.063483 0.065733 0.066324 0.066490 1.91 1.86 1.96Lax-Wendro� O(h4) 0.064322 0.065993 0.066396 0.066510 2.01 1.88 2.03Jensen O(h2) 0.064742 0.066054 0.066364 0.066503 1.87 1.43 2.05Quikest O(h4) 0.065595 0.066317 0.066437 0.066523 2.05 1.06 2.15O(h2) 0.062720 0.065385 0.066183 0.066429 1.72 1.68 1.63Lax-Wendro� O(h4) 0.063566 0.065636 0.066254 0.066450 1.71 1.63 1.58d'Allesio O(h2) 0.064039 0.065717 0.066226 0.066443 1.59 1.37 1.62Quikest O(h4) 0.064885 0.065972 0.066297 0.066462 1.53 1.20 1.55O(h2) 0.063483 0.065701 0.066315 0.066488 1.86 1.87 1.98Lax-Wendro� O(h4) 0.064328 0.065966 0.066389 0.066508 1.93 1.88 2.00Briley O(h2) 0.064722 0.066021 0.066356 0.066502 1.79 1.46 2.07Quikest O(h4) 0.065587 0.066290 0.066430 0.066521 1.90 1.14 2.16Table 4. Calulation of streamfuntion at entre,  (0:5; 0:5), for four mesh resolutionstogether with extrapolated onvergene rate for varying vortiity boundary ondition,onvetion-di�usion and stream funtion-vortiity equation disretisation.Numerial parameters are : Re = 100, �t = 0:0005, multigrid residual less than 10�7.

6.Conlusion
Wehavedevelopedaglobaliterationmatrixformulationforthestream-

funtionvortiityequationsandappliedittotwodrivenavityproblems
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