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On split extensions of preordered groups

Maria Manuel Clementino and Carla Ruivo

Abstract. We investigate the behaviour of split extensions in the category OrdGrp of (pre)-
ordered groups. Namely we show that the lexicographic order plays a key role on the existence
of compatible orders for semidirect products, establishing necessary and sufficient conditions
for such existence; we prove that the Split Short Five Lemma holds for (stably) strong split
extensions, and identify classes of split extensions which admit a classifier.

1. Introduction

In [10], the authors studied the behaviour of the category OrdGrp of preordered groups
and monotone group homomorphisms. They show in particular that, unlike the cat-
egories Grp of groups and TopGrp of topological groups, OrdGrp is not protomodular,
and, consequently, the Split Short Five Lemma does not hold. This relies essentially
on the study of possible orders (as very common in the literature, throughout by order
we mean preorder) in a semidirect product X Ì' B in Grp of two ordered groups X
and B so that

X
h1;0i

// X Ì' B
�2

// B
h0;1i
oo

is a split extension in OrdGrp. Calling these orders compatible, it is shown in [10] that
compatible orders must contain the product order and be contained in the (reverse)
lexicographic order, and that they may not exist, or there may be plenty of them.

This note complements the study of split extensions presented in [10]. Indeed, we
establish necessary and sufficient conditions in order to a compatible order inX Ì' B
exist, and show that the compatibility of the lexicographic order is essential. In case it
exists, we identify both the maximal order, which is the lexicographic order, and the
minimal one, which in general does not coincide with the product order.

Strong split extensions, or strong points, are exactly those with minimal order. It
is shown that strong points need not to be stable under pullback, and that the Split
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Short Five Lemma holds for (stably) strong points. This way we identify a sort of rel-
ative protomodularity which is possibly weaker than the notion introduced in [7], but
which still guarantees the validity of the Split Short Five Lemma, and, consequently,
the reflection of isomorphisms by the corresponding change of base functors, as for
protomodularity [1, 4].

Finally, we investigate the existence of split extension classifier, showing that this
is possible only for special classes of split extensions, as for instance for those that
may be identified as ralis (D right adjoints and left inverses) for the Ord-enrichment
of OrdGrp considered in [11].

2. Preliminaries

Let OrdGrp be the category of ordered groups and monotone group homomorphisms.
By an ordered group we mean a (non-necessarily abelian) group X equipped with an
order (i.e., a reflexive and transitive) relation � such that the group operation (here
denoted by C) is monotone. We point out that in general the group inversion is not
monotone; it is in fact necessarily anti-monotone. The order is completely determined
by its positive cone P D ¹x 2 X I x � 0º, which is a submonoid of X closed under
conjugation. Moreover, for any group X , any submonoid closed under conjugation
defines an order on X .

Remark 2.1. Given a subset A of a group X , the least order on X whose positive
cone contains A is obtained in two steps: first we consider the closure OA of A under
conjugation and then the closure of OA under addition, which we denote by hAi.

The category OrdGrp has both an algebraic and a topological flavour; indeed, it
was shown in [10] that the forgetful functors OrdGrp! Grp and OrdGrp! Ord are,
respectively, topological and monadic. These functors allow us to construct limits and
colimits easily, and are the basis for the categorical study of OrdGrp. Therefore, in
order to study the behaviour of split extensions in OrdGrp we start by recalling briefly
the behaviour of split extensions in Grp. By split extension we mean a short exact
sequence

. X
k // A

f
// B /;

with k D ker f and f D coker k, where f is a split epimorphism and a splitting of
f is given,

X
k // A

f
// B:

soo (2.i)
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A morphism between split extensions is a triple .a; b; c/ making the following dia-
gram commutative:

X

a
��

k // A

b
��

f
// B

c
��

soo

X 0
k0
// A0

f 0
// B 0

s0
oo

(2.ii)

so that k0 � a D b � k, f 0 � b D c � f , and s0 � c D b � s.
It is well known that every split extension in Grp is isomorphic to one given by a

semidirect product, i.e., A is necessarily isomorphic to the group X Ì' B having as
underlying set the cartesian product X � B and, for .x; b/; .x0; b0/ in X � B ,

.x; b/C .x0; b0/ D .x C '.b; x0/; b C b0/;

where 'WB � X ! X is an action of B on X (so that '.0; x/ D x, '.b; x C x0/ D
'.b; x/C '.b; x0/, '.b0; '.b; x// D '.b0 C b; x/). This induces an isomorphism of
split extensions

X
k // A

�

��

f
// B

soo

X
h1;0i

// X Ì' B
�2

// B;
h0;1i
oo

with �.a/D .k�1.a � sf .a//; f .a// for every a 2 A, and 'b.x/D '.b; x/D s.b/C
k.x/ � s.b/ (see for instance [9, Section 4.1] for details).

In Grp, split extensions with given kernel have a classifier, in the sense that the
category of split extensions with kernel X has a terminal object, i.e., there exists a
split extension with kernel X

X // X Ì AUT.X/ // AUT.X/oo (2.iii)

such that, for each split extension (2.i) there exists exactly one morphism .a; b; c/

from (2.i) to (2.iii) with a D idX ; here AUT.X/ is the group

¹˛WX ! X I ˛ is an automorphismº;

with the operation given by composition, and the addition on the semidirect product
X Ì AUT.X/ given by

.x; ˛/C .x0; ˛0/ D .x C ˛.x0/; ˛ � ˛0/:
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The claimed morphism of split extensions is then given by

X
k // A

�

��

f
// B

soo

X
h1;0i

// X Ì' B
�2

//

1�x'

��

B
h0;1i

oo

x'

��

X
h1;0i

// X Ì AUT.X/
�2

// AUT.X/
h0;1i
oo

(2.iv)

where x'.b/ D 'b .
Alternatively one also says that in Grp actions are representable, since this prop-

erty can be stated as representability of a functor into Set (see [2, 3] for details).

3. Compatible orders

Throughout this section

.X; PX /
h1;0i

// X Ì' B
�B

// .B; PB/
h0;1i
oo (3.i)

is a split extension in Grp, and X and B are ordered groups, with positive cones PX
and PB respectively. As shown in [10] there may be no – or there may be plenty
of – orders in X Ì' B making (3.i) a split extension in OrdGrp. Here we will identify
exactly those split extensions (3.i) for which there exist compatible orders. For that
we make use of

• the product order, with positive cone Pprod D PX � PB , and

• the lexicographic order, with positive cone

Plex D ¹.x; b/ 2 X � BI b > 0 or .b � 0 and x � 0/º:

We point out that these orders need not to be compatible in (3.i), and that the definition
of lexicographic order above is not the one given in [10], where the authors neglected
in the definition of Plex the possible existence of elements b � 0 inB . In fact, the right
formulation of Plex led to improvements of the results, on the lexicographic order, of
[10, Section 5] we present in the sequel.

Proposition 3.1. For a positive cone P inX Ì' B , the following conditions are equi-
valent:

(i) P is compatible in (3.i);

(ii) Pprod � P � Plex.
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Proof. (i))(ii): Monotonicity of X
h1;0i

// X Ì' B B
h0;1i
oo implies .x; 0/ 2 P and

.0; b/ 2 P when x 2 PX and b 2 PB , and therefore .x; b/D .x; 0/C .0; b/ 2 P , that
is Pprod � P .

If .x; b/ 2 P then necessarily b � 0 because �B is monotone. When b � 0 and
.x; b/ 2 P , then .0; b/ � .0; 0/ and so .x; 0/ D .x; b/ � .0; b/ 2 P , which implies
x � 0 because h1; 0iWX ! X Ì' B is a kernel in OrdGrp.

(ii))(i): For every b 2 PB , x 2 X , .x; b/ � 0 implies b � 0, hence �B is mono-
tone. For every x2X , .x; 0/2P if and only if x2PX , and therefore h1; 0iW .X;PX /!
.X Ì' B; P / is the kernel of �B . Finally, if b � 0 then .0; b/ 2 Pprod � P , and so
h0; 1iW .B; PB/! .X Ì' B;P / is also monotone.

The lexicographic order plays an essential role here, since it is compatible as soon
as there is a compatible order, as we show next.

Theorem 3.2. Given (3.i), the following conditions are equivalent:

(i) There is a compatible order in (3.i).

(ii) For every b 2 B , 'b is monotone, and, if b � 0 then 'b � id (pointwise).

(iii) The lexicographic order is compatible in (3.i).

Proof. (i))(ii): Let P be a compatible positive cone. If x � 0, then, for any b 2 B ,
.'b.x/; 0/D .0; b/C .x;0/� .0; b/ 2P , that is 'b.x/� 0. Now let b � 0 inB . Then,
for every x 2 X , .x � 'b.x/; b/ D .x; 0/C .0; b/ � .x; 0/ 2 P and so x � 'b.x/;
this, together with �x � 'b.�x/ D �'b.x/ gives x � 'b.x/.

(ii))(iii): We need to prove that Plex is a positive cone, that is, it is closed under
addition and conjugation. If .x; b/; .x0; b0/ 2 P and b > 0 or b0 > 0, then, obviously,
.x; b/C .x0; b0/ 2 P ; if both b � 0 and b0 � 0, then in

.x; b/C .x0; b0/ D .x C 'b.x
0/; b C b0/

we have b C b0 � 0 and x C 'b.x0/ � 0 because both x and 'b.x0/ are positive. Now
let .x; b/ 2 P and .y; a/ 2 X Ì' B . Then

.y; a/C .x; b/ � .y; a/ D .y; a/C .x; b/ � .0; a/ � .y; 0/

D .y C 'a.x/ � 'aCb�a.y/; aC b � a/I

if b > 0, then a C b � a > 0 and so the pair above belongs to Plex; if b � 0, then
x � 0 and aC b � a � 0, and so y C 'a.x/ � 'aCb�a.y/ � y C 'a.x/ � y � 0.

(iii))(i) is trivial.

Corollary 3.3. If the order in B is antisymmetric, then there is a compatible order
in (3.i) if and only if 'b is monotone for every b 2 B .
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We may consider now the set P of compatible positive cones for (3.i). We have
just shown that either P is empty or it has a top element, Plex, when ordered by
inclusion. A split extension (3.i) where X Ì' B has the lexicographic order will be
called maximal.

Proposition 3.4. Either P D ; or P is a complete lattice.

Proof. It is easily checked that the meet of compatible orders is a compatible order.

Hence, if P ¤ ;, there is a least compatible order, which we call minimal and
describe next.

Proposition 3.5. Let P ¤ ;.

(1) The positive cone of the least compatible order for (3.i) is hPprodi, that is, the
one generated by PX � PB .

(2) Moreover, it coincides with Pprod if and only if 'b � id for every positive
element b of B .

Proof. (1) is obvious. To show (2) we use [10, Proposition 5.2], which assures that
Pprod is compatible if and only if 'b.x/ � x for all b 2 PB and x 2 X . But this,
together with 'b.�x/ � �x gives 'b � id as claimed.

Remark 3.6. On one hand there are examples of (3.i) with no compatible order, like
for instance

.Z;N/
h1;0i

// Z Ì Z
�2

// .Z;Z/
h0;1i
oo

with 'b.x/D.�1/bx, since 'b is not monotone. On the other hand, [10, Example 5.8]
shows that there may be plenty of possible positive cones, even in the case when both
X and B are abelian and have antisymmetric orders: it is shown there that, for the
split extension

.Z;N/
h1;0i

// Z � Z
�2

// .Z;N/;
h0;1i
oo

P is an uncountable set. Indeed, a positive cone P on Z � Z can be determined
by a family of sets .Xj D ¹n 2 ZI .n; j / 2 P º/j2Z, with Xj D ; if j < 0 and
Xj D" �xn � Z for j � 0 so that x0 D 0 and .xn/n2N is a sequence in N [ ¹1º

such that xnCm � xn C xm.

Next we present a characterization of compatible orders inspired by the latter
example. We say that family of subsets .Xb/b2B of X is compatible if P D ¹.x; b/I
b 2 B; x 2 Xbº is a compatible positive cone.
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Proposition 3.7. A family .Xb/b2PB
of subsets of X is compatible if and only if it

satisfies the following conditions:

(1) Xb ¤ ; , b 2 PB , 0 2 Xb;

(2) X0 D PX ;

(3) .8b; b0 2 PB/Xb C 'b.Xb0/ � XbCb0;

(4) .8a 2 B/ .8b 2 PB/ .8x 2 X/ x C 'a.Xb/ � XaCb�a C 'aCb�a.x/.

Proof. (1) and (2) guarantee that �B is monotone and the order of X is inherited
from the order of X Ì' B , while (3) and (4) are equivalent to the closure of P under
addition and conjugation, respectively.

Remark 3.8. Although the previous result is just a way of formulating the closure
under addition and conjugation of P , it gives interesting information on the behaviour
of Xb under the action 'a. Indeed, one concludes that, if .Xb/b2B is compatible, then

.8a 2 B/ .8b 2 PB/ 'a.Xb/ D XaCb�a:

This gives that, in particular, for all b 2 PB , 'b.Xb/ D Xb , and that, for conjugate
positive elements b; b0 of B , Xb is isomorphic to Xb0 , via the action '.

4. On �-protomodularity

The existence of different compatible orders shows that the Split Short Five Lemma
fails in OrdGrp, and so this category is not protomodular. One may then ask whether
OrdGrp is �-protomodular (cf. [7, Definition 3.1]), for a suitable class � of split exten-
sions, which in this context are usually called points, due to the fact that a split
epimorphism f W A ! B in a category C, together with its splitting sW B ! A, is
nothing but a morphism from the terminal object idWB ! B into f WA! B in the
slice category C=B over B , which we will refer to as a point over B . We will denote
by Pt.B/ the category of points .f WA! B; sWB ! A/ over B where a morphism
hW .f; s/! .f 0; s0/ is a morphism hWA! A0 in C such that f 0 � hD f and h � s D s0;
Pt� .B/ is its full subcategory of points in � .

We recall that a split extension

X
k // A

f
// B

soo (4.i)

or, equivalently, a point .f; s/ with kernel k, is strong if k and s are jointly strongly
epimorphic. It is stably strong if every pullback of it along any morphism gWC ! B

is a strong point.
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As in every protomodular category, in Grp every point is strong, hence also stably
strong, but that is not the case in OrdGrp. Below we identify the strong points in
OrdGrp. Also, one may wonder whether they are related to the points .f; s/ such
that .f; s/ is a rali (f is right adjoint and left inverse to s) with respect to the Ord-
enrichment of OrdGrp studied in [11]: given two morphisms g; hWX ! Y in OrdGrp,
g � h if g.x/ � h.x/ for every positive element x of X .

Lemma 4.1. Given a point (4.i) in OrdGrp, where we identify A with X Ì' B as
usual, and P is its positive cone,

(1) .f; s/ is a rali if and only if P D Pprod;

(2) .f; s/ is strong if and only if P is minimal (i.e., P is generated by Pprod).

Proof. (1) Assume that .f; s/ is a rali, i.e., f � s D idB and s � f � idA. Then, for
every .x; b/ 2 P , .0; b/ D s.f .x; b// � .x; b/, and therefore .0; 0/ � .x; 0/, which
is equivalent to x � 0 since k is an extremal monomorphism.

(2) Since .f; s/ is always strong as a point in Grp, we only have to show that, if k
and s factor through a bijective morphism, then it is an isomorphism, and this is easily
seen to be the case exactly when P is minimal.

Remark 4.2. As a side remark we mention that a point (4.i) is a rali exactly when the
split extension

PX
h1;0i

// P
�2

// PB
h0;1i
oo

is a Schreier point (see [6]) in the category of monoids.

In [10, Proposition 6.2], it is shown that OrdGrp is �-protomodular when � is
the class of split extensions with the product order, i.e., rali points. Here we analyse
whether there is a larger class � of points that makes OrdGrp an �-protomodular cat-
egory. Denoting the classes of rali, strong and stably strong points by Rali, Strong and
Strong� respectively, we know that

Rali � Strong� � Strong and that we must have Rali � � � Strong�:

First we show that the two inclusions on the left are strict.

Proposition 4.3. (1) Strong points are not stable under pullback.

(2) There is a stably strong point which is not a rali.

Proof. (1) With Z0 and Z the group of integers, respectively with P D ¹0º and with
the usual order, and 'WZ0 �Z!Z defined by '1.x/D�x, consider the strong point

Z0
h1;0i

// Z0 Ì' Z
�2

// ZI
h0;1i
oo
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that is, Z0 Ì' Z is equipped with the minimal order. This point is not stably strong,
as we show next.

Indeed, for any strong point (4.i) such that there exists b � 0 with 'b � id but
'm
b
� id for some natural number m ¤ 0 (here by 'm

b
we mean 'b computed m

times), we may consider its pullback along f WZ! B with f .n/ D nmb,

X Ì Z //

�2

��

X Ì' B

�2

��

Z

h0;1i

OO

f
// B:

h0;1i

OO

Then the action of the point on the left is given by 'm
b

, hence the product order is the
minimal compatible order inX Ì Z. However, this point is not ordered by the product
order: for x 2 X such that 'b.x/ � x one has, since b � 0,

.�x; 0/C .0; b/C .x; 0/C .0; .m � 1/b/ D .�x C 'b.x/;m b/ � 0I

hence .�x C 'b.x/; 1/ is positive in X Ì Z although �x C 'b.x/ is not positive, by
assumption.

(2) Consider now the point

Q
h1;0i

// Q Ì' Z
�2

// Z
h0;1i
oo (4.ii)

with 'n.x/ D 2nx (hence monotone for every n 2 Z), equipped with the minimal
order, and let gWA! Z be any morphism in OrdGrp. In its pullback Q Ì A as in the
diagram

Q Ì A //

��

Q Ì' Z

��

A
g

// Z;

the positive cone is given by P D ¹.x; a/I a � 0 and .x; g.a// � 0º, and the action
 is given by  a.x/ D 'g.a/.x/. Let us check that Q Ì A has the minimal order: if
.x; a/ � 0 and g.a/ D 0, then both a and x are positive; if .x; a/ � 0 and g.a/ ¤ 0,
then, for r D x

1�2g.a/ one gets, by closure of P under conjugation,

.r; 0/C .0; a/ � .r; 0/ D .r �  a.r/; a/ D .r � 'g.a/.r/; a/ D .x; a/ 2 P:

Therefore, every pullback of the point (4.ii) is a strong point, as claimed.

Lemma 4.4. The class Strong� of stably strong points in OrdGrp is closed under finite
products in the category of points.
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Proof. Strong� contains the terminal object and is closed under binary products be-
cause they commute with pullbacks.

Theorem 4.5. Let � D Strong� be the class of stably strong points in OrdGrp. Then:

(1) The Split Short Five Lemma holds with respect to �; that is, for any commut-
ative diagram

0 // X
k //

a
��

A
f
//

b
��

B
soo

c
��

// 0

0 // X 0
k0
// A0

f 0
// B 0

s0
oo // 0

(4.iii)

in the sense that b � k D k0 � a, c � f D f 0 � b and b � s D s0 � c, if the rows
are split extensions belonging to � and a and c are isomorphisms, then b is
an isomorphism as well.

(2) For any morphism hW Y ! B , the change of base functor h�W Pt� .B/ !
Pt� .Y / is conservative.

Proof. (1) Given diagram (4.iii), we know that b is an isomorphism of groups, because
the Split Short Five Lemma holds in Grp. Since both orders are minimal, b is in fact
an isomorphism in OrdGrp.

(2) Adapting the classical proof that the change of base functor between points is
conservative provided that the Split Short Five Lemma holds, it is enough to observe
that the change of base functor between points restricts to Pt� since � is pullback
stable.

Remark 4.6. We point out that our argument for the validity of the Split Short Five
Lemma can also be applied to the (larger) class Strong of strong points.

It is an open problem to know whether Strong� is stable under equalizers in the
category of points, and consequently whether OrdGrp is Strong�-protomodular in the
sense of [6, Definition 8.1.1], [7, Definition 3.1], although the previous theorem shows
that OrdGrp has the desired properties for relative protomodularity with respect to
Strong�. Moreover, OrdGrp is Strong�-protomodular in the sense of [5, Definition 8.5],
where the author only imposes that � is a stable class of strong points, and therefore
this weaker notion does not assure that the change of base functor, restricted to � , is
conservative (hence neither the Split Short Five Lemma). To assure that the change
of base functor, restricted to Pt� , is conservative, the authors of [7] impose that � is
stable under equalizers in the category of points. However, this property seems quite
complicated to check, as it is the case of our example and, for instance, of the class of
points studied in [12, Section 7.14].
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Henceforth, we propose the following definition, which is in fact a translation
of the notion of (absolute) protomodularity [1, Definition 3.1.3], not making use of
equalizers but instead focussing on the key property of protomodularity.

Definition 4.7. If � is a class of strong points of the category C, C is said to be proto-
modular with respect to � if

(1) C has pullbacks of points in � along any morphism, which belong also to � .

(2) For any morphism hWY!B , the change of base functor h�WPt� .B/!Pt� .Y /
reflects isomorphisms.

Then we can compare these notions using [7, Proposition 3.2]:

Theorem 4.8. If C is �-protomodular in the sense of [7], then the change of base
functor is conservative when restricted to Pt� , and so C is protomodular with respect
to � .

5. On the existence of �-classifiers

Unlike the category TopGrp of topological groups (see [8]), OrdGrp has no split exten-
sion classifiers, as we show in Theorem 5.7. Still, it is interesting to analyse the
existence, in OrdGrp, of split extension classifiers for special classes of points, as
we discuss in this last section.

Given a class � of split extensions in OrdGrp, we denote by �X the category of split
extensions in � with kernelX with morphisms triples .a; b; c/ as in (2.ii) with aD id.

Definition 5.1. If � is a class of split extensions in OrdGrp, we say that OrdGrp has
�-classifiers if the category �X has a terminal object; that is, for every ordered group
X there exists a split extension with kernel X

X
h1;0i

// X Ì A.X/
�2

// A.X/
h0;1i
oo (5.i)

in � such that, for each split extension in � with kernel X , there exists exactly one
morphism in �X from it into (5.i).

Given an ordered group X , let AutP .X/ be the group

Aut.X/ D ¹˛WX ! X I ˛ is a monotone automorphismº

equipped with an order with positive cone P . Then, by Theorem 3.2, there is an order
in X Ì Aut.X/ making

X
h1;0i

// X Ì AutP .X/
�2

// AutP .X/
h0;1i
oo (5.ii)
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a split extension if and only if when ˛ � id in AutP .X/ also ˛ � id pointwise in X .
We call such orders in Aut.X/ admissible.

Proposition 5.2. Let � be a class of split extensions, X an ordered group and P an
admissible positive cone in Aut.X/ such that (5.ii) belongs to � . If

X
h1;0i

// X Ì A.X/
�2

// A.X/
h0;1i
oo

is a classifier for �X , then A.X/ is isomorphic, as a group, to Aut.X/, and its positive
cone PA contains P .

Proof. By definition of classifiers, there exists a unique morphism 
 making the fol-
lowing diagram commute:

X
h1;0i

// X Ì AutP .X/

��

�2

// AutP .X/




��

h0;1i
oo

X
h1;0i

// X Ì A.X/
�2

// A.X/:
h0;1i

oo

On the other hand, being a split extension in Grp, there is a group homomorphism
 WA.X/! AUT.X/ as in diagram (2.iv). Since we are in OrdGrp, the image of  
has only monotone automorphisms, i.e.,  factors through Aut.X/ as x WA.X/ !
Aut.X/. Clearly x � 
 D id and 
 � x D id, hence we may assume that A.X/, as a
group, is Aut.X/; moreover, from the monotonicity of 
 it follows that its positive
cone PA contains the positive cone P of AutP .X/.

Theorem 5.3. For every ordered group X , let zP D ¹˛I ˛.x/ � x for all x 2 Xº. The
rali point

X
h1;0i

// X Ì Aut zP .X/ �2

// Aut zP .X/
h0;1i
oo (5.iii)

is a terminal object of RaliX .

Proof. First of all it is easy to check that the product order in X Ì Aut zP .X/, which in
fact coincides with the lexicographic order, is compatible in (5.iii). So (5.iii) is a rali
point.

Given a rali point

X Ì' B
�2

// B
h0;1i
oo

with kernelX , we know that there is a unique group homomorphism x'WB!AUT.X/,
which factors through Aut.X/, making diagram (2.iv) commute. Moreover, its co-
restriction z'WB ! Aut zP .X/ is monotone – since X Ì' B has the product order, by
Proposition 3.5 (2), 'b � id for every b � 0 – and 1 � z'WX Ì' B ! X Ì Aut zP .X/
is also clearly monotone. Uniqueness of x' guarantees uniqueness of z'.
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Corollary 5.4. OrdGrp has Rali-classifiers.

This result can be naturally extended in the following way.

Proposition 5.5. Let X be an ordered group and P an admissible positive cone in
Aut.X/. Then the maximal point

X
h1;0i

// X Ì AutP .X/
�2

// AutP .X/
h0;1i
oo

classifies the class �X of split extensions X Ì' B
�2

// B
h0;1i
oo with kernel X such that

(1) for all b 2 PB , 'b 2 P ;

(2) for all x 2 X , x � 0 provided that there exists b 2 PB with .x; b/ � 0 in
X Ì' B and 'b � id in AutP .X/.

Proof. Given a point in �X , we know that there is a unique group homomorphism
x'WB ! Aut.X/ making the diagram

X
h1;0i

// X Ì' B
�2

//

1�x'

��

B
h0;1i

oo

x'

��

X
h1;0i

// X Ì AutP .X/
�2

// AutP .X/
h0;1i
oo

commute. Then condition (1) guarantees that x' is monotone, and (2) gives monoton-
icity of 1 � x'.

Remark 5.6. Given an ordered group X such that, for every x 2 X , either x � 0 or
�x � 0, consider in Aut.X/ the admissible order defined by

PC D ¹˛I .8x 2 PX / ˛.x/ � xº:

We denote by AutC.X/ this ordered group and by �C the class of split extensions
defined as in the proposition above, that is, �C is the union of �CX for all such ordered
groups X . The split extensions classified by AutC.X/ depend very much on the
action '. For instance, AutC.Q/ classifies a split extension

Q
h1;0i

// Q Ì' Z
�2

// Z
h0;1i
oo

when ' D id only if it is a rali, while when 'n.x/ D 2nx it classifies any such split
extension.

We could use analogously, for example, the order in Aut.X/ defined by P� D
¹˛I .8x � 0/ ˛.x/ � xº.
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Theorem 5.7. OrdGrp has no split extensions classifiers.

Proof. For each ordered group X , assume that X Ì AutP .X/
�2

// AutP .X/
h0;1i
oo clas-

sifies the split extensions with kernelX . As we remarked above, whenX is an ordered
group such that each x 2 X is either positive or negative, both PC and P� are
admissible positive cones in Aut.X/. Hence, both PC and P� are contained in P .
Since ˛ 2 PC if and only if its inverse ˛�1 2 P�, this shows that if ˛ 2 PC then
˛ � id in P , and so ˛ � id pointwise in X because P must be admissible. But this
is not true in general: for instance, for X D Q and n a natural number larger than 1,
˛.x/ D nx 2 PC but pointwise ˛ œ id.
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