
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 04–37

A NEW GEOMETRIC ALGORITHM
TO GENERATE SMOOTH INTERPOLATING CURVES

ON RIEMANNIAN MANIFOLDS

RUI C. RODRIGUES, F. SILVA LEITE AND JANUSZ JAKUBIAK

Abstract: This paper presents a new geometric algorithm to construct a C k-
smooth spline curve that interpolates a given set of data (points and velocities)
on a complete Riemannian manifold. Although based on a modification of the de
Casteljau procedure, our algorithm is implemented in three steps only independently
of the required degree of smoothness, and therefore introduces a significant reduction
in complexity. The key role is played by the choice of an appropriate smoothing
function which is defined as soon as the degree of smoothness is fixed.

Keywords: Riemannian manifold, Lie group, spline functions, geometric algorithm,
Casteljau algorithm.

1. Introduction

We propose a new algorithm, which has a pure geometric interpretation,
in order to address the following interpolation problem.

Generate a C k-smooth (k ≥ 1) curve s : [a, b] ⊂ R → M,
on a complete Riemannian manifold M, which fulfills a set of
interpolation conditions of the form

s(ti) = pi and ṡ(ti) = vi, (1)

for a given partition ∆ : a = t0 < t1 < · · · < tm = b of the time
interval [a, b], given points pi on M and vectors vi tangent to
M at pi, i = 0, 1, . . . ,m.

Many solutions and some efficient algorithms have been proposed to solve
similar interpolation problems (where points and velocities are prescribed),
which were motivated by applications in many areas of engineering, like mo-
tion planning problems in robotics or object animation which is required in
computer graphics. In most cases, M is simply a Lie group or a sphere.

Received December 10, 2004.
All authors were supported by project POSI/SRI/41618/2001 and ISR - Coimbra. R.C. Ro-

drigues was also supported by a PRODEP grant and J. Jakubiak was also supported by Control
Training Site HPMT-CT-2001-00278, during visit to ISRCoimbra.

1



2 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

One development was achieved by Shoemake [18], introducing the idea of
using quaternions to solve interpolation problems such as the one above, in
the sphere S3. This work was mainly motivated by applications in com-
puter animation and the approach may be generalized to higher-dimensional
spheres.

The de Casteljau algorithm [5] is a well known algorithm to generate poly-
nomial curves in Euclidean spaces, based on recursive linear interpolation,
which can be used to solve the proposed interpolation problem when the
required degree of smoothness is equal to one and the manifold is R

n. See
Farin [6] for a general presentation of the de Casteljau method. Other alterna-
tives for Euclidean spaces, proposed by Nagy and Vendel [10] and Rodrigues,
Silva Leite and Rosa [15], are based on convex combinations of rather simple
curves, like line segments and circular arcs.

There are a number of references on works dealing with Bezier/De Castel-
jau algorithms on the manifolds SO(3), S2, S3 and SE(3). In addition to
the work by Shoemake [18], we also mention Barr, Currin, Gabriel and
Hughes [1], Chen [2], Ge and Ravani [7], Kim, Kim and Shin [9], Nielson [11]
and Nielson and Heiland [12]. The objective in most of these papers is to do
interpolation on SO(3) using the fact that rotations in R

3 may be represented
by unit quaternions. This approach doesn’t generalize to higher-dimensional
manifolds. In this paper we develop a general method for m-dimensional
spheres which also includes the particular case of unit quaternions.

Extension of de Casteljau algorithm to Riemannian manifolds, Lie groups
and spheres can be found in the work of Crouch, Kun and Silva Leite [3, 4]
and Park and Ravani [13]. The common idea to such generalizations is the
replacement of linear interpolation by geodesic interpolation. In Jakubiak,
Silva Leite and Rodrigues [8] linear interpolation techniques have been re-
placed by polynomial interpolation, in order to improve the complexity of
the de Casteljau algorithm.

The algorithm we are about to present is performed in three steps only, no
matter the degree of smoothness required. It is based on a modification of the
de Casteljau construction of a C 1-smooth cubic spline and uses some ideas
from the recent work already mentioned. We start with a review of the de
Casteljau construction in section 2. Another important feature, which is also
shared by the de Casteljau procedure, relies on the fact that the calculation
of each spline segment depends only on the local data. This is particularly
useful in applications, since any change in the data at a particular instant of



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 3

time, only requires the re-calculation of two segments of the spline. This is
not the case for some classical interpolating spline schemes for which a single
change in the data will mean the entire re-calculation of the spline curve.

The new geometric algorithm is first presented and discussed for Euclidean
spaces. This will help the visualization of its main features and will motivate
its generalization to other complete Riemannian manifolds. However, the
algorithm is useful as a computational device only when explicit implemen-
tation details of the algorithm are worked out. In general this objective is
not reachable, but for some specific cases, like connected and compact Lie
groups or spheres, we are able to calculate the interpolating curves in closed
form and derive expressions for their derivatives, in order to be able to check
the degree of smoothness at the interpolating points.

This paper is the natural evolution and an extended version of the paper
by Rodrigues and Silva Leite [14], presented in the minisymposium “Geo-
metric optimization with applications in numerical linear algebra, robotics,
and computer vision” at the Conference MTNS2004.

2. The de Casteljau algorithm revisited

The de Casteljau algorithm is a geometric algorithm and one of the most
well known algorithms used to generate polynomial spline curves in general
Euclidean spaces. Its importance also follows from the simple geometric
construction that is performed, which is based on the application of successive
linear interpolation.

The classical de Casteljau algorithm is used to construct parameterized
polynomial curves, of any given degree d, joining two points in R

n. A se-
quence of d− 1 points in R

n is used to implement the algorithm and for that
reason they are called control points. See Farin [6] for details.

We now show how the de Casteljau algorithm can be used to generate a
curve in R

n that fulfills all the interpolation conditions (1). For instance,
from the given points p0, p1 and the given vectors v0, v1 two control points,
x0 and x1, are uniquely determined by

x0 = p0 + 1
3v0 and x1 = p1 − 1

3v1.

In this case the classical de Casteljau algorithm is performed in three steps
and the resulting curve will be a cubic polynomial. For simplicity we may
consider the time interval [0, 1] instead of [t0, t1].



4 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

In the first step, the following three line segments are computed

α0(t) = p0+t (x0−p0), α1(t) = x0+t (x1−x0), α2(t) = x1+t (p1−x1).

Then, two new curves are generated using the curves constructed in the
previous step

β0(t) = (1 − t)α0(t) + t α1(t), β1(t) = (1 − t)α1(t) + t α2(t).

Remark 2.1. We can say that β0 and β1 are generated from a convex com-
bination of the curves α0, α1 and α1, α2 respectively.

These two curves are finally combined in a similar way to generate the
cubic polynomial curve given by

s0(t) = (1 − t)β0(t) + t β1(t) = (1 − t)2α0(t) + 2t(1 − t)α1(t) + t2α2(t).

If the classical de Casteljau construction is repeated for each other interval
[ti, ti+1], one obtains a spline curve t 7→ s(t) in R

n which is the result of the
concatenation of all polynomial segments t 7→ si(t) and has the following
final form

s(t) = si

(

t−ti
ti+1−ti

)

, t ∈ [ti, ti+1], i = 0, 1 . . . ,m− 1.

The spline curve t 7→ s(t) is locally a cubic polynomial, satisfies the interpo-
lation conditions (1), but is only C 1-smooth (at each instant ti).

To generate a C k-smooth curve using the de Casteljau algorithm, one needs
to prescribe k derivatives at each instant ti. The construction of each spline
segment t 7→ si(t) will require 2k control points and the computation of (2k+
1)(k+1) curves performed in 2k+1 steps. It is clear that the computational
cost of this algorithm increases substantially with k.

The de Casteljau algorithm has been generalized to complete Riemannian
manifolds ([4], [13]) and this was mainly due to the fact that the algorithm
is geometrically based. The idea is quite simple. The linear interpolation
procedure in the classical case is simply replaced by geodesic interpolation.
When applied to interpolation problems, the resulting curve has the same
degree of smoothness as in the Euclidean case, but the implementation of
the algorithm is much harder even for low dimensional cases.

3. A new geometric algorithm in R
n

We first consider the case when M is R
n equipped with the Euclidean

metric. The geometric algorithm proposed here is based on a modification of



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 5

the de Casteljau algorithm, but has the ability of generating a spline curve
in three steps only, with any required degree of smoothness. This property
of our algorithm is due to the role played by a smoothing function φ.

We now show how to compute the curve t 7→ si(t) ∈ R
n, which connects

the point pi at t = 0 to pi+1 at t = 1 with initial and final velocities vi and
vi+1 (again, we use [0, 1] instead of [ti, ti+1]). As in the de Casteljau algorithm
we use two control points which are now

xi = pi + vi, xi+1 = pi+1 − vi+1

and three steps. First, we define three line segments:

Step 1











li(t) = pi + t (xi − pi) = pi + t vi,

ci(t) = pi + t (pi+1 − pi),

ri(t) = xi+1 + t (pi+1 − xi+1) = pi+1 + (t− 1) vi+1,

(2)

which will play the role of left, center and right components of the spline
segment t 7→ si(t). Notice that the left and the right components satisfy

li(0) = pi, ri(1) = pi+1,

l̇i(0) = vi, ṙi(1) = vi+1,

l
(j)
i (0) = 0, r

(j)
i (1) = 0, j ≥ 2.

(3)

Remark 3.1. The three components are such that ci(0) = li(0) = pi and
ci(1) = ri(1) = pi+1. This observation helps to visualize the three line seg-
ments.

bi(t)

ai(t)

ri(t)

ci(t)

li(t)

x_{i+1}

x_i

pi

pi+1

vi vi+1

Figure 1: initial data

bi(t)

ai(t) v_{i+1}v_i

pi

pi+1
xi

xi+1

li(t)
ci(t)

ri(t)

Figure 2: step 1 - components



6 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

Next, we introduce a smooth real-valued function φ : [0, 1] → [0, 1] satisfy-
ing

φ(0) = 0, φ(1) = 1,
φ(j)(0) = 0, φ(j)(1) = 0, j = 1, 2, . . . , k − 1, (for k > 1),

(4)

and compute two new curves from convex combinations (using φ) of the ones
previously constructed:

Step 2

{

ai(t) = (1 − φ(t)) li(t) + φ(t) ci(t),

bi(t) = (1 − φ(t)) ci(t) + φ(t) ri(t).
(5)

Remark 3.2. These new curves are such that ai(0) = bi(0) = li(0) = pi,
ai(1) = bi(1) = ri(1) = pi+1, ȧi(0) = l̇i(0) = vi and ḃi(1) = ṙi(1) = vi+1.
These boundary conditions don’t depend on the choice of the function φ, as
long as φ satisfies conditions (4). For the geometric constructions below,
which at this point only helps to visualize the steps of the algorithm, we have
chosen φ(t) = t. Later, we will explain the relationship between the required
degree of smoothness of the spline curve and the choice of the function φ.

ri(t)

ci(t)

li(t)

x_{i+1}

x_i

v_{i+1}v_i

pi

pi+1

ai(t)

bi(t)

Figure 3: step 2 - curves ai and bi

Finally, we combine ai and bi in a similar way to generate the spline seg-
ment:

Step 3

{

si(t) = (1 − φ(t)) ai(t) + φ(t) bi(t)

= (1 − φ(t))2 li(t) + 2φ(t) (1 − φ(t)) ci(t) + φ(t)2 ri(t).

(6)



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 7

bi(t)

ai(t)

ri(t)

ci(t)

li(t)

x_{i+1}

x_i

v_{i+1}v_i

pi

pi+1

Figure 4: step 3 - curve si

bi(t)

ai(t)

ri(t)

ci(t)

li(t)

x_{i+1}

x_i

pi

pi+1

vi vi+1

Figure 5: final segment

The next result presents the main properties of the resulting curve t 7→ s(t).

Theorem 3.1. If φ : [0, 1] → [0, 1] is a smooth function satisfying (4), then

(1) the spline segment t 7→ si(t) defined by (6), (5) and (2) is smooth and
satisfies the following conditions

si(0) = pi, si(1) = pi+1,

ṡi(0) = vi, ṡi(1) = vi+1,

s
(j)
i (0) = 0, s

(j)
i (1) = 0, j = 2, . . . , k;

(7)

(2) the resulting spline curve t 7→ s(t) given by

s(t) = si

(

t−ti
ti+1−ti

)

, t ∈ [ti, ti+1], i = 0, 1 . . . ,m− 1 (8)

is C k-smooth and satisfies the interpolation conditions (1).

Proof : Applying Leibniz’s formula for the jth derivative of a product to the
formula (6) for the spline segment we get

s
(j)
i (t) =

j
∑

l=0

(

j
l

)

(1 − φ(t))(j−l) a(l)
i (t) +

j
∑

l=0

(

j
l

)

φ(j−l)(t) b(l)i (t).

To easily check all the boundary conditions we rewrite s
(j)
i in a more conve-

nient form. Since (1 − φ(t))(j) = −φ(j)(t) for j ≥ 1 the previous formula can
be written as

s
(j)
i (t) =

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (bi(t) − ai(t))
(l) + (1 − φ(t)) a

(j)
i (t) + φ(t) b

(j)
i (t).



8 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

Using the same argument to calculate a
(j)
i (t) and b

(j)
i (t) we have

a
(j)
i (t) =

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (ci(t) − li(t))
(l) + (1 − φ(t)) l

(j)
i (t) + φ(t) c

(j)
i (t).

b
(j)
i (t) =

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (ri(t) − ci(t))
(l) + (1 − φ(t)) c

(j)
i (t) + φ(t) r

(j)
i (t).

Therefore,

s
(j)
i (t) =

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (bi(t) − ai(t))
(l)

+ (1 − φ(t))

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (ci(t) − li(t))
(l)

+ φ(t)

j−1
∑

l=0

(

j
l

)

φ(j−l)(t) (ri(t) − ci(t))
(l)

+ (1 − φ(t))2 l
(j)
i (t) + 2φ(t) (1 − φ(t)) c

(j)
i (t) + φ(t)2 r

(j)
i (t).

Since φ satisfies (4) and ci(0) = li(0), ai(0) = bi(0), ci(1) = ri(1), ai(1) = bi(1)
(see Remarks 3.1 and 3.2) we get

s
(j)
i (0) = l

(j)
i (0) and s

(j)
i (1) = r

(j)
i (1),

for all j = 0, 1, . . . , k. The boundary conditions (7) follow from the properties
given in (3). The second part of the theorem is a direct consequence of
conditions (7).

Remark 3.3 (On the complexity of the algorithm). It is clear that the com-
plexity of our algorithm does not depend on k. Indeed, if we want a C k-
smooth curve (for k ≥ 2), our algorithm produces a spline which also satisfies
s(j)(ti) = 0, i = 0, 1 . . . ,m, for j = 2, . . . , k, in three steps only.
If these conditions were initially prescribed together with conditions (1), the
de Casteljau algorithm could also be used to solve the problem. But, as al-
ready observed, the complexity of this algorithm increases substantially with
k, since 2k + 1 steps are required.
If we choose φ(t) = t then the spline generated by our algorithm is C 1-smooth
and coincides with the one produced by the de Casteljau algorithm. This is



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 9

not a surprise. In fact, by construction, we know that each segment will be a
cubic polynomial in R

n which is uniquely determined since four data points
are given. Each segment of this spline is given by

si(t) = pi + vi t+ (3pi+1 − 3pi − 2vi − vi+1) t
2 + (2pi + vi − 2pi+1 + vi+1) t

3.

Remark 3.4 (The smoothing function). The degree of smoothness of the
spline generated by the new algorithm depends only on the choice of a smooth
function φ : [0, 1] → [0, 1], satisfying (4). This is the reason why we name φ
a “smoothing function” for the spline curve s.
One possible choice for the function φ satisfying all the conditions (4) is the
following polynomial function of degree 2k − 1

φ(t) = γ

k−1
∑

l=0

αk+l
k + l

tk+l (9)

where

αk+l = (−1)l
(

k−1
l

)

and γ−1 =
k−1
∑

l=0

αk+l
k + l

.

One observation that will soon be useful is the following

φ(k)(0) = γ (k − 1)! and φ(k)(1) = (−1)k−1 γ (k − 1)!. (10)

More properties of this smoothing function may be found in [8]. From now
onwards we will always consider this particular smoothing function. For in-
stance,

• for k = 1, we have φ(t) = t;
• for k = 2, we have φ(t) = t2 (3 − 2t);
• and for k = 3, one gets φ(t) = t3 (10 − 15t+ 6t2).

For the function φ given by (9), each segment of the generated spline curve
is a polynomial curve of degree (at most) 4k − 1.
We note that the spline t 7→ s(t), given by (8), when φ is as defined in (9),
will not be C k+1-smooth, except for some degenerate cases. To see this, it is

enough to compute s
(k+1)
i (1) and s

(k+1)
i+1 (0). We have to distinguish between

k = 1 and k > 1, since for k = 1 we get the following formulas

s̈i(1) = 2 (xi − pi+1) + 4 (vi+1 − pi+1 + pi),

s̈i+1(0) = 2 (xi+2 − pi+1) + 4 (pi+2 − pi+1 − vi+1),



10 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

and for k > 1 we have

s
(k+1)
i (1) = 2 (k + 1)φ(k)(1) (vi+1 − pi+1 + pi),

s
(k+1)
i+1 (0) = 2 (k + 1)φ(k)(0) (pi+2 − pi+1 − vi+1).

Now, s̈i(1) = s̈i+1(0), for some i ∈ {0, 1 . . . ,m − 1} if and only if the
following holds

4 vi+1 = (xi − xi+2) + 2 (pi − pi+2) ⇔ vi − 4 vi+1 + vi+2 = 3 (pi+2 − pi),

and for k > 1, we may use the equalities (10) to conclude that s
(k+1)
i (1) =

s
(k+1)
i+1 (0), for some i ∈ {0, 1 . . . ,m− 1}, if and only if

{

2 vi+1 = pi+2 − pi if k is odd,

pi+1 − pi = pi+2 − pi+1 if k is even.

Remark 3.5 (Optimal properties). For k = 1, i.e., φ(t) = t, each component
of the spline function given by (8) is an L-spline (of type I) associated with

the differential operator L = d2

dt2
, the partition ∆ and the incidence vector

Z = (z1, z2, . . . , zm−1) = (2, 2, . . . , 2). See [17] for the definition of L-splines
and its properties.
Consequently, if 〈.,.〉 represents the Euclidean inner product in R

n and Ω
denotes the class of all functions y : [a, b] ⊂ R → R

n which are C 1-smooth
in [a, b] and fulfill the interpolation conditions (1), then the spline function
given by (8) and corresponding to φ(t) = t is the solution of the following
optimization problem

min
y ∈ Ω

∫ b

a

〈ÿ(t), ÿ(t)〉 dt.

For k > 1 the optimal properties of the spline function produced by our
algorithm are still under investigation. However, it is interesting to note
that the smoothing function φ defined by (9) is the unique solution of the
optimization problem

min
f ∈ Ck[0,1]

∫ 1

0

〈f (k)(t), f (k)(t)〉 dt,

subject to the following boundary conditions

f(0) = 0, f(1) = 1,
f (j)(0) = 0, f (j)(1) = 0, j = 1, 2, . . . , k − 1, (for k > 1).



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 11

3.1. Extension to problems with uneven conditions

The new algorithm is easily adapted to the computation of a C k-smooth
(k ≥ 1) curve s which fulfills a more challenging set of interpolation condi-
tions of the form

s(ti) = pi, ṡ(ti) = ṗi, s̈(ti) = p̈i, . . . s(ki)(ti) = p
(ki)
i , (11)

for the partition ∆ : a = t0 < t1 < · · · < tm = b of the time interval [a, b],

points pi in R
n and vectors ṗi, p̈i, . . . , p

(ki)
i tangent to R

n at pi, with 1 ≤ ki ≤ k
and i = 0, 1, . . . ,m.
This extension allows uneven prescribed conditions at each instant ti and is of
particular importance in many applications. The only changes required are
in the left and the right components of each segment si. If ki is the number of
derivatives prescribed at the initial point pi, then the left component for the
segment si is a polynomial of degree ki. If ki+1 is the number of derivatives
prescribed at the end point pi+1, then the right component for the segment
si is a polynomial of degree ki+1. Besides these modifications, all remains
the same, including the center component. More specifically, to compute the
curve t 7→ si(t) that connects the point pi at t = 0 to pi+1 at t = 1 with
prescribed interpolation conditions (11), we use the same control points,
which are now written as

xi = pi + ṗi, xi+1 = pi+1 − ṗi+1

and define the left and right components to be the Taylor polynomials

li(t) =

ki
∑

j=0

p
(j)
i

j ! t
j,

ri(t) =

ki+1
∑

j=0

p
(j)
i+1

j ! (t− 1)j.

(12)



12 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

Notice that li and ri are such that

li(0) = pi, ri(1) = pi+1,

l̇i(0) = ṗi, ṙi(1) = ṗi+1,
...

...

l
(ki)
i (0) = p

(ki)
i , r

(ki+1)
i (1) = p

(ki+1)
i+1 ,

l
(j)
i (0) = 0, j > ki r

(j)
i (1) = 0, j > ki+1.

As before, we use a smoothing function φ satisfying (4) and compute ai,
bi and si as described in (5)-(6). The next result, similar to Theorem 3.1
follows immediately.

Corollary 3.1. If φ : [0, 1] → [0, 1] is a smooth function satisfying (4), then

(1) the spline segment t 7→ si(t) defined by

si(t) = (1 − φ(t))2 li(t) + 2φ(t) (1 − φ(t)) ci(t) + φ(t)2 ri(t),

where li, ri are given by (12) and ci is given by (2), satisfies the
following conditions

si(0) = pi, si(1) = pi+1,

ṡi(0) = ṗi, ṡi(1) = ṗi+1,
...

...

s
(ki)
i (0) = p

(ki)
i , s

(ki+1)
i (1) = p

(ki+1)
i+1 ,

s
(j)
i (0) = 0, s

(j)
i (1) = 0,

j = ki + 1, . . . , k, j = ki+1 + 1, . . . , k.

(2) the resulting spline curve t 7→ s(t) given by

s(t) = si

(

t−ti
ti+1−ti

)

, t ∈ [ti, ti+1], i = 0, 1 . . . ,m− 1

is C k-smooth and satisfies the set of interpolation conditions (11).

4. The new algorithm on complete Riemannian mani-

folds

In this section we combine the ideas just developed to implement the new
algorithm in Euclidean spaces with those used to generalize the de Casteljau



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 13

algorithm to complete Riemannian manifolds (see details in [3]). In this sec-
tion we consider the case when only points and first derivatives are prescribed,
since for higher derivatives the implementation of the algorithm requires the
analogues of higher order polynomials on manifolds. Now, geodesic arcs play
the role of straight line segments and, consequently, the algorithm is gener-
ally applicable as long as the computation of geodesics is tractable. When
the manifold is a compact and connected Lie group G, equipped with the
left and right-invariant Riemannian metric, geodesics are easily expressed
in terms of one-parameter subgroups. When the manifold is a unit sphere,
equipped with the Riemannian metric induced by the Euclidean metric in
the embedding space, geodesics are just great circles. We next describe the
new algorithm for these two special Riemannian manifolds.

4.1. The new algorithm on Lie groups

In this section G is a connected and compact Lie group, equipped with
the unique right and left invariant Riemannian metric, and L denotes its Lie
algebra. Elements in L will be represented by capital letters.

Similarly to the Euclidean case, the construction of the spline curve that
solves the initial problem is local, so that the details will be presented only for
the construction of the spline segment t 7→ si(t) that joins two given points
in G, pi (at t = 0) and pi+1 (at t = 1), with prescribed velocities vi = Vipi
and vi+1 = Vi+1pi+1, where Vi and Vi+1 belong to the Lie algebra of G. The
smoothing function is the same as in the Euclidean case.

We now describe the three basic steps to obtain the required spline segment
t 7→ si(t).

Step 1: We first construct the geodesic segments which are the left,
center and right components and are defined by:

li(t) = etVipi,

ci(t) = etWipi, where Wi = log (pi+1 p
−1
i ),

ri(t) = e(t−1)Vi+1pi+1,



14 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

The following boundary conditions are easily checked:

li(0) = pi, li(1) = eVipi,

l̇i(0) = Vipi, l̇i(1) = Vie
Vipi,

ci(0) = pi, ci(1) = pi+1

ċi(0) = Wipi, ċi(1) = Wie
Wipi,

ri(0) = e−Vi+1pi+1, ri(1) = pi+1,

ṙi(0) = Vi+1e
−Vi+1pi+1, ṙi(1) = Vi+1pi+1.

(13)

Step 2: Now we define t 7→ ai(t) and t 7→ bi(t) by:

ai(t) = eφ(t)Ai(t)li(t), where Ai(t) = log (ci(t) l
−1
i (t)),

bi(t) = eφ(t)Bi(t)ci(t), where Bi(t) = log (ri(t) c
−1
i (t)).

(14)

The following alternative formulas for these two curves will simplify checking
the boundary conditions of the spline curve at t = 1.

ai(t) = e−(1−φ(t))Ai(t)ci(t),

bi(t) = e−(1−φ(t))Bi(t)ri(t).
(15)

Indeed,

e−(1−φ(t))Ai(t)ci(t) = eφ(t)Ai(t)e−Ai(t)ci(t)

= eφ(t)Ai(t)e− log (ci(t) l
−1
i (t))ci(t)

= eφ(t)Ai(t)li(t) c
−1
i (t) ci(t)

= eφ(t)Ai(t)li(t)

= ai(t),



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 15

and similarly for bi.
Now, using the conditions (4) for the smoothing function φ and the bound-

ary conditions (13), we obtain from (14) and (15) the following:

ai(0) = bi(0) = pi, ai(1) = bi(1) = pi+1,

ȧi(0) = Vipi, ȧi(1) = Wie
Wipi,

ḃi(0) = Wipi, ḃi(1) = Vi+1pi+1.

Step 3: Finally, we define the spline segment t 7→ si(t) by

si(t) = eφ(t)Si(t)ai(t), where Si(t) = log (bi(t) a
−1
i (t)),

or, similarly,

si(t) = eφ(t)Si(t)eφ(t)Ai(t)etVipi. (16)

Theorem 4.1. If φ : [0, 1] → [0, 1] is a smooth function satisfying (4), then
the curve t 7→ si(t) defined by (16) satisfies the following boundary conditions

si(0) = pi, si(1) = pi+1,

ṡi(0) = Vipi, ṡi(1) = Vi+1pi+1.

Proof : We first derive, from (16), an expression for the first derivative of si.
Using the Campbell-Hausdorff formula

eA(t)B(t) e−A(t) = eadA(t)B(t) =
+∞
∑

j=0

adjA(t)(B(t)),

where ad denotes the adjoint operator on L defined by adA(B) = [A,B],
and the following formula for the derivative of the exponencial, which may
be found in Sattinger and Weaver [16]

d

dt

(

eA(t)
)

= ΩL
A(t)eA(t), where ΩL

A(t) =

∫ 1

0

eu adA(t)Ȧ(t)du,

we obtain

ṡi(t) =
(

ΩL
φSi

(t) + eφ(t)adSi(t) ΩL
φAi

(t)+

+ eφ(t)adSi(t) eφ(t)adAi(t) Vi

)

si(t).
(17)



16 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

The initial conditions si(0) = pi and ṡi(0) = Vi pi, follow easily from (16)
and (17), if we take into consideration that φ(0) = 0. To prove that the
conditions at t = 1 are also satisfied, we rewrite the expression of si given in
(16), similarly to what has been done for the curves obtained in step 2, to
obtain

si(t) = e−(1−φ(t))Si(t)e−(1−φ(t))Bi(t)e−(1−t)Vi+1pi+1. (18)

Consequently, an alternative expression for the first derivative is now the
following:

ṡi(t) =
(

ΩL
−ψSi

(t) + e−ψ(t)adSi(t) ΩL
−ψBi

(t)+

+ e−ψ(t)adSi(t) e−ψ(t)adBi(t) Vi+1

)

si(t),
(19)

where ψ(t) = 1 − φ(t), so that ψ(0) = 0. The final conditions si(1) = pi+1

and ṡi(1) = Vi+1 pi+1, follow easily from (18) and (19).

To show that piecing together the spline segments, the resulting spline
curve is Ck-smooth, one needs to derive higher order covariant derivatives.
The covariant derivative of a vector field along a curve in G (a manifold
imbedded in some high-dimensional Euclidean space R

n) may be viewed as
a new vector field along that curve, which results from differentiating as a
vector field along a curve in R

n and then projecting it, at each point, onto
the tangent space to G at that point. Details are rather technical and will
be omitted in this paper. Nevertheless, when G is the Lie group of rotations
SO(n), with Lie algebra so(n) consisting of all n×n skew-symmetric matrices,
the Riemannian metric is defined by 〈A,B〉 = trace (ATB), A,B ∈ so(n) and
the tangent space at a point p ∈ SO(n) and its orthogonal complement with
respect to 〈., .〉 are respectively

TpSO(n) = {Ap : A ∈ so(n)} and T⊥
p SO(n) = {Sp : S ∈ s(n)},

where s(n) is the set of all n× n symmetric matrices.
In this case, and after many calculations that are omitted here, we reach

the final conclusion, which is a generalization to the Lie group SO(n) of
Theorem 3.1.

Theorem 4.2. If φ : [0, 1] → [0, 1] is a smooth function satisfying (4), then



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 17

(1) the spline segment t 7→ si(t) ∈ SO(n) defined by (16) satisfies the
following boundary conditions

si(0) = pi, si(1) = pi+1,

ṡi(0) = Vipi, ṡi(1) = Vi+1pi+1,

Dj ṡi
dtj

(0) = 0,
Dj ṡi
dtj

(1) = 0, j = 1, . . . , k − 1;

(2) the resulting spline curve t 7→ s(t) ∈ SO(n) given by

s(t) = si

(

t−ti
ti+1−ti

)

, t ∈ [ti, ti+1], i = 0, 1 . . . ,m− 1

is C k-smooth and satisfies the interpolation conditions (1).

4.2. The new algorithm on spheres

Here we describe the geometric algorithm to construct a C2- smooth spline
curve interpolating a given set of points on the unit sphere Sn, with pre-
scribed velocities through those points. We consider Sn equipped with the
Riemannian metric induced by the Euclidean metric in the embedding space
R
n+1. As before, we start with the construction of a natural spline segment

between two points. This means that the second covariant derivatives are
zero at the boundary, which consequently guarantees the C2- smoothness of
the interpolating curve, as soon as all the spline segments are glued together.
To simplify notations, we avoid the use of indexes for the construction of a
generic spline segment. In order to describe the geometric algorithm that
generates the natural spline segment t ∈ [0, 1] 7→ s(t) ∈ Sn joining two given
points p and q, with prescribed initial and final velocities, we first recall some
properties of geodesics on spheres.

Given a point x0 ∈ Sn and a vector v0 tangent to the sphere at x0, there
exists a unique geodesic t 7→ x(t) that passes through x0 at time τ , with
velocity v0:

x(t) = cos ((t− τ) ‖ v0‖)x0 + sin ((t− τ)‖v0‖) v̂0, (20)

where v̂0 = v0
‖v0‖ .



18 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

Also, given two (not antipodal) points y0, y1 ∈ Sn, the geodesic arc t 7→ y(t)
which joins y0 (at t = 0) to y1 (at t = 1) is given by:

y(t) =
sin ((1 − t)θy0,y1)

sin θy0,y1
y0 +

sin (tθy0,y1)

sin θy0,y1
y1, (21)

where θy0,y1 = cos−1 (y0
Ty1) is the angle between the vectors y0 and y1.

The formula (20) is used to generate the left component t 7→ l(t) and
the right component t 7→ r(t) of the natural spline segment t 7→ s(t) that
joins the points p (at t = 0) to q (at t = 1) with prescribed initial and
final velocity v and w respectively. The formula (21) is used to generate
the center component t 7→ c(t) and the intermediate curves in the algorithm
below. Taking into consideration that the left component (respectively the
right component) is a geodesic satisfying the same conditions as the spline
segment at t = 0 (respectively at t = 1) and that the center component joins
the points p (at t = 0) and q (at t = 1), the algorithm is performed in the
following three steps:

Step 1: Construct the left, center and right components, defined by:

l(t) = cos (t‖v‖) p+ sin (t‖v‖) v̂,

c(t) =
sin ((1 − t)θp,q)

sin θp,q
p+

sin (tθp,q)

sin θp,q
q,

r(t) = cos ((t− 1)‖w‖) q + sin ((t− 1)‖w‖) ŵ.
Step 2: Now define t 7→ a(t) and t 7→ b(t) using convex combinations

(parameterized by the smoothing function φ) of the geodesics in the previous
step:

a(t) =
sin ((1 − φ(t))θl(t),c(t))

sin θl(t),c(t)
l(t) +

sin (φ(t)θl(t),c(t))

sin θl(t),c(t)
c(t),

b(t) =
sin ((1 − φ(t))θc(t),r(t))

sin θc(t),r(t)
c(t) +

sin (φ(t)θc(t),r(t))

sin θc(t),r(t)
r(t).

Step 3: Finally, we obtain the required curve:

s(t) =
sin ((1 − φ(t))θa(t),b(t))

sin θa(t),b(t)
a(t) +

sin (φ(t)θa(t),b(t))

sin θa(t),b(t)
b(t). (22)



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 19

In order to check that the last curve satisfies all the requirements, it is
enough to compute the first and second derivatives, and evaluate them at
t = 0 and t = 1. This is a tedious calculation that we omit, but can be easily
checked using the following boundary conditions for the curves constructed
in this algorithm and for the smoothing function φ:

s(0) = a(0) = l(0) = p, s(1) = b(1) = r(1) = q,

ṡ(0) = ȧ(0) = l̇(0) = v, ṡ(1) = ḃ(1) = ṙ(1) = w,

s̈(0) = ä(0) = l̈(0) = −‖v‖2 p, s̈(1) = b̈(1) = r̈(1) = −‖w‖2 q.

(23)

The last two expressions imply that that s̈(0) and s̈(1) are orthogonal to Sn

at p and q respectively, so that the second covariant acceleration vanishes
at the boundary points. This observation, together with the other boundary
conditions (23), are enough to conclude the following.

Theorem 4.3. If φ : [0, 1] → [0, 1] is any smooth function satisfying (4), then
the spline segment t 7→ s(t) defined by (22) satisfies the following boundary
conditions

s(0) = p, s(1) = q,

ṡ(0) = v, ṡ(1) = w,

D2ṡ

dt2
(0) = 0,

D2ṡ

dt2
(1) = 0.

The next figure illustrates the result of applying the algorithm above, to
generate a natural spline segment satisfying the following data:

p = (
√

3/2,−
√

3/4, 1/4),

q = (1/2,
√

3/4,−3/4),

v = (1/2,
√

3, 3 −
√

3),

w = (1/10, 9/5, (9
√

3 − 1)/15).



20 R.C. RODRIGUES, F.S. LEITE AND J. JAKUBIAK

Figure 6: segment si

References
[1] A. Barr, B. Currin, S. Gabriel, and J. Hughes. Smooth interpolation of orientations with

angular velocity constraints using quaternions. In Proc. Computer Graphics (SIGRAPH 92),
pages 313–320, July 1992.

[2] Chao-Chi Chen. Interpolation of orientation matrices using sphere splines in computer ani-
mation. Master of science thesis, Arizona State University, 1990.

[3] P. Crouch, G. Kun, and F. Silva Leite. De Casteljau algorithm for cubic polynomials on the
rotation group. In Proceedings of the Second Portuguese Conference on Automatic Control,
pages 547–552, Porto, Portugal, September 11-13 1996.

[4] P. Crouch, G. Kun, and F. Silva Leite. The De Casteljau algorithm on Lie groups and spheres.
J. Dynam. Control Systems, 5(3):397–429, 1999.

[5] P. De Casteljau. Outillages méthodes calcule. Technical report, Citroen, A., Paris, 1959.
[6] Gerald Farin. Curves and surfaces for computer aided geometric design. Computer Science

and Scientific Computing. Academic Press Inc., Boston, MA, third edition, 1993.
[7] Q. J. Ge and B. Ravani. Computer aided geometric design of motion interpolants. In Proceed-

ings of ASME Design Automation Conf., pages 33–41, Miami, September 1991.
[8] J. Jakubiak, F. Silva Leite, and R. C. Rodrigues. A two-step algorithm to generate smooth

interpolating splines on Riemannian manifolds. 2004. Submitted for publication.
[9] M. J. Kim, M. S. Kim, and Shin S. Y. A general construction scheme for unit quaternion

curves with simple high order derivatives. In Proc. Computer Graphics, annual conf. series,
(SIGRAPH 95), pages 369–376, Los Angeles, 1995.

[10] M. S. Nagy and T. P. Vendel. Generating curves and swept surfaces by blended circles. Com-
puter Aided Geometric Design, 17:197–206, 2000.

[11] G. Nielson. Smooth Interpolation of Orientations, pages 75–93. Models and Techniques in
Computer Animation. Springer Verlag, Tokyo, magnenat thalmann, N. and thalmann, D. eds.
edition, 1993.

[12] G. Nielson and R. Heiland. Animated Rotations using Quaternions and Splines on a 4D sphere,
pages 17–27. Programming and Computer Software. Plemum Pub. N.Y., procgrammirovanie
(Russia) springer verlag, english edition edition, 1992.

[13] F. C. Park and B. Ravani. Bézier curves on Riemannian manifolds and Lie groups with kine-
matic applications. ASME Journal of Mechanical Design, 117:36–40, 1995.

[14] R. C. Rodrigues and F. Silva Leite. A new geometric algorithm to generate spline curves. In
Proceedings of the Sixteenth International Symposium on Mathematical Theory of Networks



A NEW GEOMETRIC ALGORITHM ON RIEMANNIAN MANIFOLDS 21

and Systems (MTNS2004), Katholieke Universiteit Leuven, Belgium, July 5-9 2004. CD-ROM
paper 311.PDF.

[15] R. C. Rodrigues, F. Silva Leite, and S. Rosa. On the generation of a trigonometric interpo-
lating curve in R

3. In Proceedings of the 11th International Conference on Advanced Robotics,
ICAR2003, Coimbra, Portugal, 30/06-03/07 2003. CD-ROM paper N1629.PDF.

[16] D. H. Sattinger and O. L. Weaver. Lie groups and algebras with applications to physics, geom-
etry, and mechanics, volume 61 of Applied Mathematical Sciences. Springer-Verlag, New York,
1993. Corrected reprint of the 1986 original.

[17] M. H. Schultz and R. S. Varga. L-splines. Numer. Math., 10:345–369, 1967.
[18] K. Shoemake. Animating rotation with quaternion curves. ACM SIGGRAPH’85, 19(3):245–

254, 1985.

Rui C. Rodrigues

Departamento de F́ısica e Matemática, Instituto Superior de Engenharia, Rua Pedro

Nunes, 3030-199 Coimbra, Portugal

E-mail address: ruicr@isec.pt
URL: http://www.isec.pt/∼ruicr

F. Silva Leite

Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal

E-mail address: fleite@mat.uc.pt
URL: http://www.mat.uc.pt/∼fleite

Janusz Jakubiak

Institute of Engineering Cybernetics, Wroclaw University of Technology, Poland

E-mail address: Janusz.Jakubiak@pwr.wroc.pl


