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THE N-MEMBRANES PROBLEM FOR QUASILINEAR
DEGENERATE SYSTEMS

ASSIS AZEVEDO, JOSÉ-FRANCISCO RODRIGUES AND LISA SANTOS

Abstract: We study the regularity of the solution of the variational inequal-
ity for the problem of N -membranes in equilibrium with a degenerate operator
of p-Laplacian type, 1 < p < ∞, for which we obtain the corresponding Lewy-
Stampacchia inequalities. By considering the problem as a system coupled through
the characteristic functions of the sets where at least two membranes are in contact,
we analyze the stability of the coincidence sets.

1. Introduction

In an open bounded subset Ω of R
d, d ≥ 1, we consider the quasi-linear

operator

Av = −∇ · a(x,∇v) in D
′(Ω),

where a : Ω × R
d −→ R

d is a Carathéodory function, and the following
variational inequality for the N -membranes problem

(u1, . . . , uN) ∈ KN :
N

∑

i=1

∫

Ω

a(x,∇ui) · ∇(vi − ui) ≥
N

∑

i=1

∫

Ω

fi(vi − ui), (1)

∀ (v1, . . . , vN) ∈ KN .

Here we shall consider the convex subset KN of the Sobolev space
[

W 1,p(Ω)
]N

,
1 < p <∞, defined by

KN =
{

(v1, . . . , vN) ∈
[

W 1,p(Ω)
]N

: v1 ≥ · · · ≥ vN , a. e. in Ω, (2)

vi − ϕi ∈W
1,p
0 (Ω), i = 1, . . . , N

}

,
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2 ASSIS AZEVEDO, JOSÉ-FRANCISCO RODRIGUES AND LISA SANTOS

where we give ϕ1, . . . , ϕN ∈ W 1,p(Ω), such that KN 6= ∅. For instance, if
∂Ω ∈ C0,1 is a Lipschitz boundary, it suffices to assume, in the trace sense,
that

ϕ1 ≥ · · · ≥ ϕN on ∂Ω.

In (1) we shall assume the N forces given by the functions

f1, . . . , fN ∈ Lq(Ω) ⊂ W−1,p′(Ω) (3)

where W−1,p′(Ω) denotes the dual space of W 1,p
0 (Ω), so that p′ = p

p−1 is the
conjugate exponent of p and, by Sobolev imbeddings, q = 1 if p > d, q > 1
if p = d or q = dp

dp+p−d if 1 < p < d. Under the following assumptions for a.e.

x ∈ Ω and ξ, η ∈ R
d:

a(x, ξ) · ξ ≥ α |ξ|p, 1 < p <∞, (4)

|a(x, ξ)| ≤ β |ξ|p−1, (5)

[

a(x, ξ) − a(x, η)
]

· (ξ − η) > 0, if ξ 6= η, (6)

for given constants α, β > 0, the general theory of variational inequalities for
strictly monotone operators (see [14], [9]) immediately yields the existence
and uniqueness of solution to the N -membranes problem (1). If we choose
as a model for the N -membranes in equilibrium, each one under the action
of the forces fi and attached to rigid supports at height ϕi, the minimization
functional

E(u1, . . . , uN) =
N

∑

i=1

∫

Ω

[

1

p
|∇ui|

p − fiui

]

in the convex set of admissible displacements given by (2), we obtain the
variational inequality (1) associated with the p-Laplacian

Av = −∆pv = −∇ ·
(

|∇v|p−2∇v
)

, 1 < p <∞.

The N -membranes problem was considered in [4] for linear elliptic operators,
where for differentiable coefficients the regularity of the solution in Sobolev
spaces W 2,p(Ω) was shown for p ≥ 2 (hence also in C1,λ(Ω) for 0 < λ =
1 − d

p < 1) extending earlier results of [23] for the two membranes problem.

Noting the analogy (and relation) with the one obstacle problem, it was
observed in those problems that the C2-regularity of the solution cannot be
expected in general, even with very smooth data. Considering the analogy
of the two and three membranes problem, respectively with the one and the
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two obstacle problems, in [1] we have shown the Lewy-Stampacchia type
inequalities

i
∧

j=1

fj ≤ Aui ≤
N
∨

j=i

fj a.e. in Ω, i = 1, . . . , N, (7)

for general second order linear elliptic operators with measurable coefficients
and, in cases N = 2 and N = 3 we have established sufficient conditions on
the external forces for the stability of the coincidence sets

{x ∈ Ω : uj(x) = uj+1(x)}, j = 1, . . . , N − 1, (8)

where two consecutive membranes touch each other. In (7) we use the nota-
tion

k
∨

i=1

ξi = ξ1 ∨ . . . ∨ ξk = sup{ξ1, . . . , ξk}

and
k

∧

i=1

ξi = ξ1 ∧ . . . ∧ ξk = inf{ξ1, . . . , ξk}

and we also denote ξ+ = ξ ∨ 0 and ξ− = −(ξ ∧ 0). In order to prove (7)
we shall approximate, in Section 2, the solution (u1, . . . , uN) of (1) by solu-
tions (uε1, . . . , u

ε
N) of a suitable system of Dirichlet problems for the operator

A associated to a particular new monotone perturbation that extends the
bounded penalization, as ε → 0, of obstacle problems (see [9] or [19] and
their references). Under the further assumptions on the strong monotonicity
of the vector field a(x, ξ) with respect to ξ, i.e., if for some α > 0,

[

a(x, ξ) − a(x, η)
]

· (ξ − η) ≥







α|ξ − η|p if p ≥ 2,

α (|ξ| + |η|)p−2 |ξ − η|2 if 1 < p < 2,
(9)

we are able to establish that the error of the approximating solutions in the
W 1,p(Ω)-norm is of order ε1/p, if p > 2, and of the order ε1/2, if 1 < p ≤ 2, with
a constant that depends only on α > 0 and on the Lq-norms of f1, . . . , fN .
This type of estimate that appears in [20] for the obstacle problem in case
p ≥ 2 seems new for 1 < p < 2. The inequalities (7) are a consequence
of the fact that each Aui is a Lq function and we can regard u1 and uN
as solutions of one obstacle problems and all the other ui, 1 < i < N , as
solutions of two obstacles problems, to which we can apply the well-known
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Lewy-Stampacchia inequalities (see, for instance [19], [22], [20] or [17] and
their references). Another important consequence of these properties is the
reduction of the regularity of the solution of the N -membranes problem to
the regularity of each equation

Aui = hi a.e. in Ω, i = 1, . . . , N. (10)

Therefore, in Section 3, we conclude from the well-known properties for weak
solutions of quasilinear elliptic equations (see [11] and [16]) that the solutions
ui are in fact Hölder continuous, provided q > d

p in (3), or have Hölder

continuous gradient (see [5]) if q > dp
p−1 and the operator A has the stronger

structural properties, for a.e. x ∈ Ω,

d
∑

i,j=1

∂ai

∂ηj
(x, η) ξiξj ≥ α0|η|

p−2|ξ|2 (11)

∣

∣

∣

∣

∂ai

∂ηj
(x, η)

∣

∣

∣

∣

≤ α1|η|
p−2 and

∣

∣

∣

∣

∂ai

∂xj
(x, η)

∣

∣

∣

∣

≤ α1|η|
p−1 (12)

for some positive constants α0, α1 and all η ∈ R
d \ {0}, ξ ∈ R

d and all
i, j = 1, . . . , d. We may even conclude that each

ui ∈ C0,λ(Ω) or ui ∈ C1,λ(Ω), i = 1, . . . , N,

provided the Dirichlet data ϕi and ∂Ω have the corresponding required reg-
ularity (see Section 3). Finally in Section 4 we study the stability of the
coincidence sets (8) in terms of the convergence of their characteristic func-
tions. For this purpose, we define, for a.e. x ∈ Ω and for 1 ≤ j < k ≤ N ,

the following N(N−1)
2 coincidence sets

Ij,k = {x ∈ Ω : uj(x) = · · · = uk(x)} (13)

and notice that the coincidence sets defined in (8) are simply Ij,j+1. Besides
that, Ij,k = Ij,j+1 ∩ . . . ∩ Ik−1,k. Set

χ
j,k(x) = χ

Ij,k(x) =







1 if uj(x) = · · · = uk(x)

0 otherwise .
(14)
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In [1] we have shown that the solution (u1, u2, u3) of (1) for N = 3 with a
linear operator in fact satisfies a.e. in Ω














Au1 = f1 + 1
2(f2 − f1)χ1,2 + 1

6(2f3 − f2 − f1)χ1,3

Au2 = f2 − 1
2(f2 − f1)χ1,2 + 1

2(f3 − f2)χ2,3 + 1
6(2f2 − f1 − f3)χ1,3

Au3 = f3 − 1
2(f3 − f2)χ2,3 + 1

6(2f1 − f2 − f3)χ1,3

(15)

which extends the remark of [24] for the case N = 2 that corresponds to the
first two equations of (15) with χ2,3 ≡ 0 (and consequently also χ1,3 ≡ 0). As

f1 6= f2 a.e. in Ω

is a sufficient condition for the convergence of the unique coincidence set I1,2
in case N = 2, additionally

f2 6= f3, f1 6=
f2 + f3

2
, f3 6=

f1 + f2

2
a.e. in Ω

in case N = 3 are sufficient conditions for the convergence of the three
coincidence sets I1,2, I2,3 and I1,3, with respect to the perturbation of the
forces f1, f2, f3 (see [1] for a direct proof). In section 4 we extend to arbitrary
N the system (15) by showing that, for given forces (f1, . . . , fN) the solution
(u1, . . . , uN) of (1) solves a system of the form

Aui = fi +
∑

1≤j<k≤N, j≤i≤k

b
j,k
i [f ]χj,k a.e. in Ω, i = 1, . . . , N, (16)

where, in (16), each b
j,k
i [f ] represents a certain linear combination of the

forces. We denote the average of fj, . . . , fk by

〈f〉j,k =
fj + · · · + fk

k − j + 1
, 1 ≤ j ≤ k ≤ N, (17)

and we shall establish the following assumption on the averages of the forces

〈f〉i,j 6= 〈f〉j+1,k a.e. in Ω, for all i, j, k ∈ {1, . . . , N} with i ≤ j < k, (18)

as a sufficient condition for the stability of the coincidence sets Ij,k in the
N -membranes problem.
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2. Approximation by bounded penalization

In this section we approximate the variational inequality using a bounded
penalization. Defining

ξ0 = max
{

f1+···+fi

i : i = 1, . . . , N
}

ξi = i ξ0 − (f1 + · · · + fi), for i = 1, . . . , N ,

(19)

we observe that






ξi ≥ 0 if i ≥ 1

(ξi−1 − ξi−2) − (ξi − ξi−1) = fi − fi−1 if i ≥ 2.
(20)

For ε > 0, let θε be defined as follows:

θε : R −→ R

s 7→















0 if s ≥ 0

s
ε if −ε < s < 0

−1 if s ≤ −ε.

(21)

The approximated problem is given by the system






Auεi + ξiθε(u
ε
i − uεi+1) − ξi−1θε(u

ε
i−1 − uεi ) = fi in Ω,

uεi |∂Ω
= ϕi, i = 1, · · · , N,

(22)

with the convention uε0 = +∞, uεN+1 = −∞.

Proposition 2.1. If the operator A satisfies the assumptions (4), (5) and

(6), problem (22) has a unique solution (uε1, . . . , u
ε
N) ∈

[

W 1,p(Ω)
]N

. This
solution satisfies

uεi ≤ uεi−1 + ε, for i = 2, . . . , N. (23)

Proof : Existence and uniqueness of solution of the problem (22) is an imme-
diate consequence of the theory of strictly monotone and coercive operators
(see [14]). In fact, summing the N equations of the system, each one multi-
plied by a test function wi, problem (22) implies that

N
∑

i=1

∫

Ω

〈Auεi , wi〉+〈Bv,w〉 =
N

∑

i=1

∫

Ω

fiwi, ∀w = (w1, . . . , wN) ∈
[

W 1,p(Ω)
]N
,
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where

〈Bv,w〉 =
N

∑

i=1

∫

Ω

(

ξiθε(vi − vi+1) − ξi−1θε(vi−1 − vi)
)

wi

with the same convention vε0 = +∞, vεN+1 = −∞, satisfies

〈Bv −Bw, v − w〉 =

N−1
∑

i=1

∫

Ω

ξi

(

θε(vi − vi+1) − θε(wi − wi+1)
)

(

(vi − vi+1) − (wi − wi+1)
)

≥ 0,

since ξi ≥ 0, for i = 1, . . . , N and θε is monotone nondecreasing.
To prove (23), multiplying the i−th equation of (22) by (uεi − uεi−1 − ε)+

and integrating on Ω, noticing that (uεi − uεi−1 − ε)+
|∂Ω

= 0 we obtain,
∫

Ω

Auεi (u
ε
i − uεi−1 − ε)+ =
∫

Ω

[fi − ξiθε(u
ε
i − uεi+1) + ξi−1θε(u

ε
i−1 − uεi )] (u

ε
i − uεi−1 − ε)+

=

∫

Ω

[fi − ξiθε(u
ε
i − uεi+1) − ξi−1] (u

ε
i − uεi−1 − ε)+

since θε(u
ε
i−1−u

ε
i )(u

ε
i −u

ε
i−1−ε)

+ = −(uεi −u
ε
i−1−ε)

+. In particular, because
θε(u

ε
i − uεi+1) ≥ −1, we have

∫

Ω

Auεi (u
ε
i − uεi−1 − ε)+ ≤

∫

Ω

[fi + ξi − ξi−1] (u
ε
i − uεi−1 − ε)+. (24)

With similar arguments, if we multiply, for i ≥ 2, the ( i− 1)−th equation of
(22) by (uεi − uεi−1 − ε)+ and integrate on Ω we obtain,

∫

Ω

Auεi−1(u
ε
i − uεi−1 − ε)+ ≥

∫

Ω

[fi−1 + ξi−1 − ξi−2] (u
ε
i − uεi−1 − ε)+. (25)

From inequalities (24) and (25) we have, using (20),
∫

Ω

(

a(x,∇uεi ) − a(x,∇uεi−1)
)

· ∇(uεi − uεi−1 − ε)+ =
∫

Ω

(Auεi − Auεi−1) (uεi − uεi−1 − ε)+

≤

∫

Ω

[

fi − fi−1 +
(

ξi − ξi−1

)

−
(

ξi−1 − ξi−2

)]

(uεi − uεi−1 − ε)+ = 0.
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From the strict monotony (6) of a, it follows that uεi ≤ uεi−1 + ε a.e. in Ω.

Proposition 2.2. If (uε1, . . . , u
ε
N) and (u1, . . . , uN) are respectively the solu-

tion of the problem (22) and the solution of the problem (1) then

(uε1, . . . , u
ε
N) −−⇀ (u1, . . . , uN) in

[

W 1,p(Ω)
]N

-weak, when ε→ 0.

Proof : Multiplying the i-th equation of (1) by vi−u
ε
i , where (v1, . . . , vN) ∈ K

and uε = (uε1, . . . , u
ε
N), integrating over Ω and summing, we obtain

N
∑

i=1

∫

Ω

a(x, uεi ) · ∇(vi − uεi ) + 〈Buε, v − uε〉 =
N

∑

i=1

∫

Ω

fi(vi − uεi ).

Noticing that 〈Bv, v − uε〉 = 0 and due to the monotonicity of the operator
B proved in (24),

N
∑

i=1

∫

Ω

a(x,∇uεi ) · ∇(vi − uεi ) ≥
N

∑

i=1

∫

Ω

fi(vi − uεi ) (26)

and using (6) we conclude that

N
∑

i=1

∫

Ω

a(x,∇vi) · ∇(vi − uεi ) ≥
N

∑

i=1

∫

Ω

fi(vi − uεi ). (27)

From (4) and (5) we easily deduce the uniform boundedeness of {(uε1, . . . , u
ε
N)}ε

in
[

W 1,p(Ω)
]N

. So, there exists (u∗1, . . . , u
∗
N) ∈

[

W 1,p(Ω)
]N

such that

(uε1, . . . , u
ε
N) −−⇀ (u∗1, . . . , u

∗
N) in

[

W 1,p(Ω)
]N

-weak, when ε→ 0

and, letting ε→ 0 in (27) we obtain

N
∑

i=1

∫

Ω

a(x,∇vi) · ∇(vi − u∗i ) ≥
N

∑

i=1

∫

Ω

fi(vi − u∗i ) ∀ (v1, . . . , vN) ∈ K.

Besides that, using (23), u∗1 ≥ · · · ≥ u∗n. Since we also have u∗i |∂Ω = ϕi, for i =

1, . . . , N , then (u∗1, . . . , u
∗
N) ∈ K. The hemicontinuity of the operator A allows

us to conclude that (u∗1, . . . , u
∗
N) actually solves the variational inequality

(1) and the uniqueness of solution of the variational inequality implies that
u∗i = ui, i = 1, . . . , N .

We present now two lemmas that will be used to prove the next theorem.
The first lemma states that, under certain circunstancies, weak convergence
implies strong convergence. The second lemma is a reverse type Hölder
inequality.



THE N -MEMBRANES PROBLEM FOR QUASILINEAR DEGENERATE SYSTEMS 9

Lemma 2.3. ([3], p. 190) Under the assumptions (4), (5) and (6), when
ε→ 0, if

uε − u −−⇀ 0 in W
1,p
0 (Ω) (28)

and
∫

Ω

[a(x,∇uε) − a(x,∇u)] · ∇(uε − u) −→ 0 (29)

then

uε − u −→ 0 in W
1,p
0 (Ω)-strong.

Lemma 2.4. ([21], p. 8) Let 0 < r < 1 and r′ = r
r−1. If F ∈ Lr(Ω),

FG ∈ L1(Ω) and

∫

Ω

|G(x)|r
′

dx <∞ in a bounded domain Ω of R
d, then one

has
(

∫

Ω

|F (x)|rdx

)
1

r

≤

(
∫

Ω

|F (x)G(x)|dx

)(
∫

Ω

|G(x)|r
′

dx

)− 1

r′

. (30)

Theorem 2.5. Let (uε1, . . . , u
ε
N) and (u1, . . . , uN) denote, respectively, the

solutions of the problems (22) and (1). Under the assumptions (4), (5) and
(6),

i) (uε1, . . . , u
ε
N) −−→

ε→0
(u1, . . . , uN) in

[

W 1,p(Ω)
]N

.

ii) If, in addition, a is strongly monotone, i.e., satisfies (9), then there
exists a positive constant C, independent of ε, such that, for all i =
1, . . . , N ,

‖∇(uεi − ui)‖Lp(Ω) ≤







Cε
1

p if p ≥ 2,

Cε
1

2 if 1 < p ≤ 2.

Proof : i) Choose, for i = 1, . . . , N , vi =
N
∨

k=i

uεk in (1). Indeed, since vi−1 ≥ vi

a.e. in Ω and vi − ϕi ∈W
1,p
0 (Ω), (v1, . . . , vN) ∈ K and we have

N
∑

i=1

∫

Ω

a(x,∇ui) · ∇

(

N
∨

k=i

uεk − ui

)

≥
N

∑

i=1

∫

Ω

fi

(

N
∨

k=i

uεk − ui

)

.
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So,

N
∑

i=1

∫

Ω

a(x,∇ui) · ∇ (uεi − ui) ≥
N

∑

i=1

∫

Ω

fi (u
ε
i − ui)

+
N

∑

i=1

∫

Ω

a(x,∇ui) · ∇

(

uεi −
N
∨

k=i

uεk

)

+
N

∑

i=1

∫

Ω

fi

(

N
∨

k=i

uεk − uεi

)

.

On the other hand, by (26),

N
∑

i=1

∫

Ω

a(x,∇uεi ) · ∇(uεi − ui) ≤
N

∑

i=1

∫

Ω

fi(u
ε
i − ui),

and we conclude that
N

∑

i=1

∫

Ω

[

a(x,∇uεi ) − a(x,∇ui)
]

· ∇(uεi − ui) ≤

N
∑

i=1

∫

Ω

a(x,∇ui) · ∇

(

N
∨

k=i

uεk − uεi

)

−
N

∑

i=1

∫

Ω

fi

(

N
∨

k=i

uεk − uεi

)

=
N

∑

i=1

∫

Ω

(

Aui − fi
)

(

N
∨

k=i

uεk − uεi

)

.

(31)

Here we have used the fact that Aui ∈ Lq(Ω), for i = 1, . . . , N , since we know
that

fi − ξi−1 ≤ Auεi = −ξiθε(u
ε
i − uεi+1) + ξi−1θε(u

ε
i−1 − uεi ) + fi ≤ fi + ξi,

by (22) and −1 ≤ θε ≤ 0. Noticing that, from (23),

0 ≤
N
∨

k=i

uεk − uεi ≤ uεi + (N − i+ 1)ε− uεi ≤ (N − i+ 1) ε (32)

it is immediate to conclude that

0 ≤
N

∑

i=1

∫

Ω

[

a(x,∇uεi ) − a(x,∇ui)
]

· ∇(uεi − ui) ≤ Cε. (33)

and, since (28) and (29) hold, then, by Lemma 2.3, for each i = 1, . . . , N ,

uεi −→ ui when ε→ 0 in W 1,p(Ω).

ii) From (33) and using the strong monotonicity of the operator a, we have
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• if p ≥ 2,

α

N
∑

i=1

∫

Ω

|∇(uεi − ui)|
p ≤

N
∑

i=1

∫

Ω

[

a(x,∇uεi ) − a(x,∇ui)
]

· ∇(uεi − ui) ≤ Cε,

• if 1 < p < 2, using also the strong monotonicity of the operator a and
(33),

α

N
∑

i=1

∫

Ω

(

|∇uε| + |∇ui|
)p−2

|∇(uεi − ui)|
2 ≤

N
∑

i=1

∫

Ω

[

a(x,∇uεi ) − a(x,∇ui)
]

· ∇(uεi − ui) ≤ Cε,

(34)

Let Ω̂i = {x ∈ Ω : |∇uεi | + |∇ui| 6= 0}. We may use the reverse
inequality (30) with r = p

2 , noticing that 0 < r < 1 and r′ = p
p−2 ,

setting F = |∇(uεi − ui)|
2 and G =

(

|∇uεi | + |∇ui|
)p−2

. Then we
obtain, for i = 1, . . . , N ,

(
∫

Ω̂i

|∇(uεi − ui)|
p

)
2

p

dx ≤

(
∫

Ω̂i

|∇(uεi − ui)|
2
(

|∇uεi | + |∇ui|
)p−2

dx

) (
∫

Ω̂i

(

|∇uεi | + |∇ui|
)p
dx

)
2−p

p

.

Since by (34)
∫

Ω̂i

|∇(uεi − ui)|
2
(

|∇uεi | + |∇ui|
)p−2

dx ≤
1

α
Cε

and

∃Mp > 0 :

(
∫

Ω̂i

(

|∇uεi | + |∇ui|
)p
dx

)
2−p

p

≤ Mp,

the conclusion follows immediately summing the N inequalities above.
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3. Lewy-Stampacchia inequalities and regularity

As a consequence of the approximation by bounded penalization we know
already that each

Aui ∈ Lq(Ω), i = 1, . . . , N

and so, we can use the analogy with the obstacle problem to show further
regularity of the solution ui. In [12] Lewy and Stampacchia have shown
that the solution of the obstacle problem for the Laplacian satisfies a dual
inequality, which in fact holds in more general cases, as it was observed in
[7] or [2] for nonlinear operators. Summarizing the known results for the
one and the two obstacles problem that we shall apply to the N -membranes
problem, the following theorem may be proved as in [19] or [17].

Theorem 3.1. Given ϕ, ψ1, ψ2 ∈W 1,p(Ω), (1 < p <∞), with f , (Aψ2 − f)+

and (Aψ1 − f)− in Lq(Ω) ⊂ W−1,p′(Ω), (q = 1 if p > d, q > 1 if p = d or
q = dp

dp+p−d if 1 < p < d) such that

K
ψ1

ψ2
=

{

v ∈ W 1,p(Ω) : ψ1 ≥ v ≥ ψ2 a.e. in Ω, v − ϕ ∈ W
1,p
0 (Ω)

}

6= ∅, (35)

the unique solution to the variational inequality

u ∈ K
ψ1

ψ2
:

∫

Ω

a(x,∇u) · ∇(v − u) ≥

∫

Ω

f(v − u), ∀v ∈ K
ψ1

ψ2
(36)

under the assumptions (4), (5) and (6) satisfies the Lewy-Stampacchia in-
equality

f ∧ Aψ1 ≤ Au ≤ f ∨ Aψ2 a.e. in Ω. (37)

Remark 3.2. Setting ξ1 = (Aψ1 − f)− and ξ2 = (Aψ2 − f)+ and using the
penalization function θε of the previous section we may approach, as ε → 0,
the solution of (36) by the solutions uε of the equation

Auε + ξ2θε (uε − ψ2) − ξ1θε (ψ1 − uε) = f in Ω (38)

with the Dirichlet boundary condition uε = ϕ on ∂Ω. Noting that

f ∧ Aψ1 = f − (Aψ1 − f)− and f ∨ Aψ2 = f + (Aψ2 − f)+

we easily conclude (37) from the analogous inequalities that are satisfied for
each uε.
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Remark 3.3. We may consider that Theorem 3.1, although stated for two
obstacles problem, also contains the case of only one obstacle. Indeed, by
taking ψ1 ≡ +∞, (36) is a lower obstacle problem and (37) reads

f ≤ Au ≤ f ∨ Aψ2, for u ≥ ψ2, a.e. in Ω (39)

and by taking ψ2 ≡ −∞, (36) is an upper obstacle problem for which (37)
reads

f ∧ Aψ1 ≤ Au ≤ f, for u ≤ ψ1, a.e. in Ω. (40)

Remark 3.4. In [17], for more general operators and under a strong mono-
tonicity assumption of the type (9), which however is not necessary in our
Theorem 3.1, it was shown that each inequality of (37) still holds indepen-
dently of each other in the duality sense, provided Aψ1 − f and/or Aψ2 − f

are in V ∗
p′ =

[

W−1,p′(Ω)
]+

−
[

W−1,p′(Ω)
]+

, i.e., in the ordered dual space of

W
1,p
0 (Ω).

Theorem 3.5. The solution (u1, . . . , uN) of the N-membranes problem, un-
der the assumptions (4), (5) and (6), satisfies the following Lewy-Stampacchia
type inequalities

f1 ≤ Au1 ≤ f1 ∨ · · · ∨ fN
f1 ∧ f2 ≤ Au2 ≤ f2 ∨ · · · ∨ fN

...
f1 ∧ · · · ∧ fN−1 ≤ AuN−1 ≤ fN−1 ∨ fN
f1 ∧ · · · ∧ fN ≤ AuN ≤ fN























a.e. in Ω (41)

Proof : Observe that choosing (v, u2, . . . , uN) ∈ KN , with v ∈ Ku2
, we see

that u1 ∈ Ku2
(as in (35) with ψ1 = +∞) solves the variational inequality

(36) with f = f1, and so by (39) we have

f1 ≤ Au1 ≤ f1 ∨ Au2 a.e. in Ω.

Analogously, we see that uj ∈ K
uj−1

uj+1
solves the two obstacles problem (36)

with f = fj, j = 2, . . . , N − 1, and satisfies, by (37),

fj ∧ Auj−1 ≤ Auj ≤ fj ∨ Auj+1 a.e. in Ω.

Since uN ∈ K
uN−1, by (40), also satisfies

fN ∧ AuN−1 ≤ AuN ≤ fN a.e. in Ω,

(41) is easily obtained by simple iteration.
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Although for p > d, the Sobolev inclusion W 1,p(Ω) ⊂ C0,λ(Ω) for 0 < λ =
1 − d

p < 1, immediately implies the Hölder continuity of the solutions ui of
the N -membranes problem, this property still holds for 1 < p ≤ d by using
the fact that each Aui is in the same Lq(Ω) as the forces fi, i = 1, . . . , N .
So under the classical assumptions of [11] (see also [16]) we may state for
completeness the following regularity result.

Corollary 3.6. Under the assumptions (3)-(6) for 1 < p ≤ d with q > d
p in

(3), the solution (u1, . . . , uN) of (1) is such that,

ui ∈ C0,λ(Ω) for some 0 < λ < 1, i = 1, . . . , N

and is also in C0,λ(Ω) if, in addition, each ϕi ∈ C0,λ(∂Ω) and ∂Ω is smooth,
for instance, of class C0,1.

Remark 3.7. The above classical result for equations was also shown to hold
for the one obstacle problem, for instance, in [6] or in [15], or for the two
obstacles problems in [10], under more general assumptions on the data. It
would be interesting to obtain the Hölder continuity of the solution of (1) di-
rectly under the classical and more general assumptions of each fi ∈W−1,s(Ω)
for s > d

p−1.

A more interesting regularity is the Hölder continuity of the gradient of
the solution, by analogy with the results for solutions of degenerate elliptic
equations. For instance, as a consequence of the inequalities (41) and the
results of [5] on the C1,λ local regularity of weak solutions, as well as in the
regularity up to the boundary of [13], we may also state the following results.

Corollary 3.8. Under the stronger differentiability properties (11), (12), if
(3) holds with q > dp

p−1, the solution (u1, . . . , uN) of (1) is such that

ui ∈ C1,λ(Ω) for some 0 < λ < 1, i = 1, . . . , N

and is also in C1,λ(Ω) if, in addition, each ϕi ∈ C1,γ(∂Ω), for some γ (λ ≤
γ < 1) and fi ∈ L∞(Ω) for all i = 1, . . . , N .

For differentiable strongly coercive vector fields satisfying the assumptions
(11), (12), with p = 2, there is no degeneration of the operator A and stronger
regularity in W 2,s(Ω) may be obtained also from the fact that (41) holds for
the solution of the N -membranes problem. For instance, as in Theorem 3.3
of [9], page 114 (see also Remark 4.5 of [19], page 244), we may prove the
following result.
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Corollary 3.9. Let (11), (12) hold for p = 2, suppose ∂Ω ∈ C1,1 and each
fi ∈ L∞(Ω), ϕi ∈ W 2,∞(Ω), i = 1, . . . , N . Then the solution (u1, . . . , uN) of
(1) is such that

ui ∈ W 2,s(Ω) ∩ C1,γ(Ω), i = 1, . . . , N, for all 1 ≤ s <∞ and 0 ≤ γ < 1.
(42)

Remark 3.10. For N linear operators of the form

aki (x, ξ) =
d

∑

j=1

akij(x)ξj k = 1, . . . , N,

the regularity (42) was shown in [4] for every s ≥ 2 and, with the same
operators with lower order terms in [1] for s > 1 if d = 2 and s ≥ 2d

d+2 if
d ≥ 3. For the case of two membranes with linear operators, earlier results
were shown in [23], by using similar regularity results for the one obstacle
problem. In spite of this analogy, the optimal W 2,∞ regularity of solutions to
obstacle problems is an open problem for the N-membranes system.

Remark 3.11. In the case of two membranes with constant mean curvature,
i.e., when A is the minimal surface operator and f1 and f2 are constants in a

smooth domain with mean curvature H∂Ω of ∂Ω larger or equal to |f1|∨|f2|
d−1 , in

[24] it was shown the existence of a unique solution with the regularity (42).
The N-membranes problem for the minimal surface operator, in general, is
an open problem.

4. The convergence of the coincidence sets

In this section we prove that, if (un1 , . . . , u
n
N) is the solution of the N -

membranes problem, under the assumptions (4), (5) and (6) with given data

(fn1 , . . . , f
n
N), n ∈ N, if (fn1 , . . . , f

n
N) converges in [Lq(Ω)]N to (f1, . . . , fN),

we have the stability result in Ls(Ω), 1 ≤ s < ∞, for the corresponding
coincidence sets

χ
{un

k=···=un
l }

−−→
n

χ
{uk=···=ul}, for 1 ≤ k < l ≤ N.

We begin presenting a lemma that will be needed.

Lemma 4.1. [20] Given functions u, v ∈ W 1,p(Ω), 1 < p < ∞, such that
Au,Av ∈ L1(Ω), we have

Au = Av a.e. in {x ∈ Ω : u(x) = v(x)}.
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In what follows we continue using the convention u0 = +∞ and uN+1 =
−∞. Given 1 ≤ j ≤ k ≤ N , we define the following sets

Θj,k = {x ∈ Ω : uj−1(x) > uj(x) = · · · = uk(x) > uk+1(x)}. (43)

The first part of the following proposition identifies the value of Aui a.e. on
each coincidence set Ij,k defined in (13). The second part states a necessary
condition satisfied by the forces in order to exist contact among consecutive
membranes.

Proposition 4.2. If j, k ∈ N are such that 1 ≤ j ≤ k ≤ N , we have

i) Aui =







〈f〉j,k a.e. in Θj,k if i ∈ {j, . . . , k}

fi a.e. in Θj,k if i 6∈ {j, . . . , k}

ii) if j < k then for all i ∈ {j, . . . , k} 〈f〉i+1,k ≥ 〈f〉j,i a.e. in Θj,k.

Proof : i) Suppose i ∈ {j, . . . , k} (the other case has a similar and simpler
proof). For a.e. x ∈ Θj,k we have uj−1(x) − uj(x) = α > 0 and uk(x) −
uk+1(x) = β > 0, for some α = α(x), and β = β(x). Since x belongs to the
open set {y ∈ Ω : uj−1(y)−uj(y)−

α
2 > 0}∩{y ∈ Ω : uk(y)−uk+1(y)−

β
2 > 0},

there exists δ > 0 such that, for all ϕ ∈ D(B(x, δ)), there exists ε0 > 0 such
that, if 0 < ε < ε0, then uj−1 ≥ uj ± εϕ and uk ≥ uk+1 ± εϕ. Choose for test
functions

vr =







ur if r 6∈ {j, . . . , k}

ur ± εϕ if r ∈ {j, . . . , k}.

Then

±ε
k

∑

r=j

∫

Ω

a(x,∇ur) · ∇ϕ ≥ ±ε
k

∑

r=j

∫

Ω

fr ϕ, ∀ϕ ∈ D(B(x, δ))

and
k

∑

r=j

∫

Ω

a(x,∇ur) · ∇ϕ =
k

∑

r=j

∫

Ω

fr ϕ, ∀ϕ ∈ D(B(x, δ)).

So we conclude that
k

∑

r=j

Aur =
k

∑

r=j

fr, a.e. in B(x, δ).
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We know that Aui ∈ L1(Ω), for all i = 1, . . . , N . So, using Lemma 4.1, we
have

Auj = · · · = Aui = · · · = Auk in Θj,k

and we conclude then that

(k − j + 1)Aui = fj + · · · + fk a.e. in Θj,k.

ii) The proof of this item is analogous to the previous one. We choose for
test functions

vr =







ur if r 6∈ {j, . . . , i}

ur + εϕ if r ∈ {j, . . . , i}

with ϕ ∈ D(B(x, δ)), ϕ ≥ 0, ε > 0 such that (v1, . . . , vN) ∈ K. We conclude
then that

i
∑

r=j

∫

Ω

a(x,∇ur) · ∇ϕ ≥
i

∑

j=r

∫

Ω

fr ϕ, ∀ϕ ∈ D(B(x, δ)), ϕ ≥ 0,

and so, we have Aui ≥ 〈f〉j,i a.e. in Θj,k. Then using the first part of this
proposition we conclude that

〈f〉j,k ≥ 〈f〉j,i a.e. in Θj,k

or equivalently, that

〈f〉i+1,k ≥ 〈f〉j,i a.e. in Θj,k.

Our goal is to determine a system of N equations, coupled by the charac-

teristic functions of the N(N−1)
2 coincidence sets, which is equivalent to the

problem (1). This was done in [23] for the case N = 2 and in [1] for the case
N = 3. The system for N = 2 is simply







Au1 = f1 + f2−f1
2
χ
{u1=u2}

Au2 = f2 −
f2−f1

2
χ
{u1=u2}

and for N = 3 is the system (15). From these two examples we see that the
determination of the coefficients of this system is not a very simple problem
of combinatorics. We present the result for the case N in Theorem 4.5.
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Definition 4.3. Given f1, . . . , fN ∈ Lq(Ω) we define, for j, k, i ∈ {1, . . . , N},
with j < k and j ≤ i ≤ k,

b
j,k
i [f ] =























〈f〉j,k − 〈f〉j,k−1 if i = j

〈f〉j,k − 〈f〉j+1,k if i = k

2
(k−j)(k−j+1)

(

〈f〉j+1,k−1 −
1
2(fj + fk)

)

if j < i < k.

Observe that, if j < i < k, then b
j,k
i [f ] does not depends on i. It is also

not difficult to see that
k

∑

i=j

b
j,k
i [f ] = 0. We notice first some auxiliary results

concerning the coefficients bj,ki [f ] that will be needed. From now on we drop

the dependence of bj,ki [f ] on f .

Lemma 4.4.

i) If j ≤ l < r then

r
∑

k=l+1

b
j,k
j =

r − l

r − j + 1

(

〈f〉l+1,r − 〈f〉j,l
)

;

In particular
r

∑

k=l+1

b
j,k
j is positive if and only if the average of fl+1, . . . , fr

is greater or equal then the average of fj, . . . , fl.
ii) If m < i then

∀ r ∈ {i, . . . , N}
r

∑

k=i

b
m,k
i = bm,rr .
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Proof : i) We have

r
∑

k=l+1

b
j,k
j =

r
∑

k=l+1

(

〈f〉j,k − 〈f〉j,k−1

)

= 〈f〉j,r − 〈f〉j,l

=
fj + · · · + fr

r − j + 1
−
fj + · · · + fl

l − j + 1

=
fj + · · · + fl

r − j + 1
+
fl+1 + · · · + fr

r − j + 1
−
fj + · · · + fl

l − j + 1

=
fl+1 + · · · + fr

r − j + 1
−

(r − l)(fj + · · · + fl)

(r − j + 1)(l − j + 1)

=
r − l

r − j + 1

(

fl+1 + · · · + fr

r − l
−
fj + · · · + fl

l − j + 1

)

=
r − l

r − j + 1

(

〈f〉l+1,r − 〈f〉j,l
)

.

ii) We prove the equality by induction over r. If r = i, the equality is trivial.
For r > i

r+1
∑

k=i

b
m,k
i =

r
∑

k=i

b
m,k
i + b

m,r+1
i

= bm,rr + b
m,r+1
i , by induction hypothesis,

= 〈f〉m,r − 〈f〉m+1,r +
2

(r −m+ 1)(r −m+ 2)

(

〈f〉m+1,r −
1

2

(

fm + fr+1

)

)

=
fm + · · · + fr

r −m+ 1
−
fm+1 + · · · + fr

r −m
+

2(fm+1 + · · · + fr)

(r −m)(r −m+ 1)(r −m+ 2)
−

fm + fr+1

(r −m+ 1)(r −m+ 2)
.



20 ASSIS AZEVEDO, JOSÉ-FRANCISCO RODRIGUES AND LISA SANTOS

Then
r+1
∑

k=i

b
m,k
i =

(

1

r −m+ 1
−

1

(r −m+ 1)(r −m+ 2)

)

fm −
1

(r −m+ 1)(r −m+ 2)
fr+1 +

(

1

r −m+ 1
−

1

r −m
+

2

(r −m)(r −m+ 1)(r −m+ 2)

)

(

fm+1 + · · · + fr

)

=
fm

r −m+ 2
−

fr+1

(r −m+ 1)(r −m+ 2)
−

fm+1 + · · · + fr

(r −m+ 1)(r −m+ 2)

=
fm + · · · + fr+1

r −m+ 2
−
fm+1 + · · · + fr+1

r −m+ 1

= b
m,r+1

r+1 .

We are now able to deduce the system of equations involving the charac-
teristic functions of the coincidence sets which is equivalent to the problem
(1).

Theorem 4.5.

Aui = fi +
∑

1≤j<k≤N, j≤i≤k

b
j,k
i
χ
j,k a.e. in Ω. (44)

Proof : We prove that the equality is valid a.e. in Θm,r for m, r such that 1 ≤

m ≤ r ≤ N . This is enough because
⋃

1≤m≤r≤N

Θm,r = Ω. If i 6∈ {m, . . . , r},

then (44) results immediately from Proposition 4.2– i). Supposing then that
i ∈ {m, . . . , r}, using Lemma 4.2, the equality (44), for x ∈ Θm,r becomes

fi +
∑

m≤j<k≤r, j≤i≤k

b
j,k
i = 〈f〉m,r.

We prove now this equality by induction on i−m.
If i−m = 0, then

fi +
∑

m≤j<k≤r, j≤i≤k

b
j,k
i = fm +

∑

m<k≤r

bm,km

= fm +
∑

m<k≤r

(

〈f〉m,k − 〈f〉m,k−1

)

= 〈f〉m,r.
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By the induction step, if i−m > 0, then

fi +
∑

m≤j<k≤r, j≤i≤k

b
j,k
i = fi +

∑

m+1≤j<k≤r, j≤i≤r

b
j,k
i +

∑

i≤k≤r

b
m,k
i

= 〈f〉m+1,r +
r

∑

k=i

b
m,k
i by induction hypothesis

= 〈f〉m+1,r + bm,rr by Lemma 4.4–ii)

= 〈f〉m,r.

We have now the main result of this section.

Theorem 4.6. Given n ∈ N, let (un1 , . . . , u
n
N) denote the solution of problem

(1) with given data (fn1 , . . . , f
n
N) ∈ [Lq(Ω)]N , with q as in (3). Suppose that

fni −−→
n

fi in Lq(Ω), i = 1, . . . , N. (45)

Then

uni −−→
n

ui in W 1,p(Ω), i = 1, . . . , N. (46)

If, in addition, the limit forces satisfy

〈f〉i,j 6= 〈f〉j+1,k, for all i, j, k ∈ {1, . . . , N} with i ≤ j < k, (47)

then, for any 1 ≤ s <∞,

∀ j, k ∈ {1, . . . , N}, j < k χ
{un

j =···=un
k}

−−→
n

χ
{uj=···=uk} in Ls(Ω). (48)

Before proving the theorem we need another auxiliary lemma:

Lemma 4.7. Let n ∈ N and a1, . . . , an ∈ R be such that
n

∑

r=j

ar > 0 for all

j = 1, . . . , n. Then the inequality

a1 Y1 + · · · + an Yn ≤ 0,

with the restrictions 0 ≤ Y1 ≤ · · · ≤ Yn, has only the trivial solution Y1 =
· · · = Yn = 0.

Proof : If n = 1 the conclusion is immediate. Supposing the result proved for
n, let us prove it for n+ 1:

0 ≥ a1 Y1 + · · · + an Yn + an+1 Yn+1

≥ a1 Y1 + · · · + an Yn + an+1 Yn
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since Yn+1 ≥ Yn ≥ 0 and an+1 > 0. Then

0 ≥ a1 Y1 + · · · + (an + an+1) Yn

and, because the result is true for n, then Y1 = · · · = Yn = 0 and, therefore,
since an+1 > 0, we also have Yn+1 = 0.

Proof of Theorem 4.6: The convergence (46) of the solutions is an immediate
consequence of a theorem due to Mosco. For simplicity, we write χ{uj=···=uk} =
χ
j,k and we denote χ{un

j =···=un
k}

by χnj,k Let j, k ∈ {1, . . . , N} with j < k. Since

0 ≤ χ
j,k ≤ 1, there exists χ∗

j,k ∈ Lq(Ω) such that
(

χn
j,k

)

n∈N
converges to χ∗

j,k

in Lq(Ω)-weak. Of course we have






0 ≤ χ∗
j,k ≤ 1, because 0 ≤ χn

j,k ≤ 1

χ∗
m,r ≤ χ∗

j,k (if m ≤ j < k ≤ r), because χnm,r ≤ χn
j,k.

(49)

Besides that, letting n→ ∞ in the equality χnj,k
(

unj − unk
)+

≡ 0, we conclude

χ∗
j,k (uj − uk)

+ = 0 a.e. in Ω. (50)

Consider now the system (44), with the coefficients b substituted by bn, for
data fn1 , . . . , f

n
N , with n ∈ N,

Auni = fni +
∑

j<k≤N, j≤i≤k

(

bn
)j,k

i
χn
j,k a.e. in Ω, i = 1, . . . , N.

Passing to the weak limit in Lq(Ω), when n→ ∞, we have

Aui = fi +
∑

j<k≤N, j≤i≤k

b
j,k
i
χ∗
j,k a.e. in Ω, i = 1, . . . , N.

Subtracting the equality (44) for the limit solution from this one, we obtain
∑

j<k≤N, j≤i≤k

b
j,k
i

(

χ
j,k − χ∗

j,k

)

= 0 a.e. in Ω, i = 1, . . . , N. (51)

For k > j, let Yj,k denote χj,k − χ∗
j,k. To complete the proof we only need to

show that, for j < k, Yj,k ≡ 0, i.e.,
(

χn
j,k

)

n∈N
converges to χj,k in Lq(Ω)-weak.

From equation (50) we know that

∀ j < k Yj,k ≡ 0 in {uj 6= uk} = {uj > uk}. (52)
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Fix j0 and k0 such that j0 < k0. Using (52), we only need to see that
Yj0,k0

≡ 0 in Ij0,k0
= {uj0 = · · · = uk0

}. It is enough then to prove it in two
cases: i) Θj0,r, for r ≥ j0; ii) Θm,r for m < j0 and r ≥ k0.

In the first case, using (52), we have Yj,k ≡ 0 in Θj0,r, if j < j0 or k > r.
So, letting i = j0 on equation (51), we have, in Θj0,r,

0 =
∑

j<k≤N, j≤j0≤k

b
j,k
j0
Yj,k

=
∑

j0≤j<k≤N, j≤j0≤k≤r

b
j,k
j0
Yj,k

=
r

∑

k=j0+1

b
j0,k
j0

Yj0,k.

We can apply now Lemma 4.7 to conclude that Yj0,k = 0 in Θj0,r for k ∈
{j0 + 1, . . . , r}, since

• for x ∈ Θj0,r, Yj0,r(x) = 1−χ∗
j0,k

(x) and, using (49), Yj0,j0+1(x) ≤ · · · ≤
Yj0,r(x);

• for l ≥ j0, by Lemma 4.4–i),

r
∑

k=l+1

b
j0,k
j0

=
r − l

r − j0 + 1

(

〈f〉l+1,r − 〈f〉j0,l
)

,

which is positive, by Lemma 4.2–ii), as x ∈ Θj0,r, and (47).

In the second case, in Θm,r (m < j0 and r ≥ k0)

0 ≤ Yj0,k0
= χ

j0,k0
− χ∗

j0,k0

= 1 − χ∗
j0,k0

since m < j0 < k0 ≤ r

≤ 1 − χ∗
m,k0

by (49)

= χ
m,k0

− χ∗
m,k0

= Ym,k0

= 0 as in the previous case.

Notice that, since χj0,k0
is a characteristic function,

(

χn
j0,k0

)

n∈N
converges in

fact to χj0,k0
in Ls(Ω)-strong, for all 1 ≤ s <∞.
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Remark 4.8. Notice that, arguing as in Theorem 2.5, under the strong
monotonicity assumption (9), it is easy to show the following continuous
dependence result on the data,

N
∑

i=1

‖uni − ui‖W 1,p
0 (Ω ≤ Cq

N
∑

i=1

‖fni − fi‖Lq(Ω),

for q defined as in (3). However, a corresponding L1 estimate for the char-
acteristic functions of the coincidence sets, similar to the obstacle problem
([19], [20]) seems more difficult to obtain.
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[23] Vergara-Caffarelli, G., Regolarità di un problema di disequazioni variazionali relativo a due

membrane, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 50 (1971) 659–662.
[24] Vergara-Caffarelli, G., Variational inequalities for two surfaces of constant mean curvature,

Arch. Rational Mech. Anal. 56 (1974/75) 334–347.

Assis Azevedo
Department of Mathematics, University of Minho, Campus de Gualtar, 4710–057 Braga,
Portugal

E-mail address: assis@math.uminho.pt
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