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Abstract

The physical properties of diet and oral health throughout childhood play an important role in

the development of human dentition, and differed greatly before the industrial revolution. In

this study we examined dental wear and oral pathology in a sample of children from the

Early Bronze-Age to investigate the physical and mechanical properties of childhood diet

and related oral health. We explore cross-sectional age and sex-based variation of children

in the sample. The analysis was carried out on the dentitions of 75 children, 978 teeth, exca-

vated from the Early Bronze-Age cemetery Franzhausen I in Lower Austria. Presence of

dental caries and calculus was recorded. Dental wear was measured using dentine expo-

sure, occlusal topography, and dental microwear texture analysis. Sex determination was

carried out using amelogenin peptide analysis. Caries were found in only 4 individuals

(crude prevalence rate—5%, 95% CI 1% to 13%), affecting only 5 teeth (true prevalence

rate—less than 1%). Dentine exposure was observed in over 70% of deciduous molars and

dental wear measurements indicate a comparatively strong dental wear accumulation espe-

cially, among younger children, when compared to modern-day and later pre-industrial pop-

ulations. Microwear textures presented a high complexity (Asfc > 2)/low anisotropy (epLsar

< 1) profile, especially in older children. Differences between male and female children were

not generally significant but increased dentine exposure was observed in the lower molars

of younger female children. Our results suggest that the Early Bronze-Age children at Franz-

hausen I consumed a non-cariogenic diet, more abrasive and inclusive of harder/polyhedral

foodstuffs than present-day children and some later Medieval children. Differences in dental

wear accumulation were observed between children within the population, but with minimal

variation between the sexes mostly occurring among younger children.
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Introduction

The amount and nature of dental wear and the prevalence of pathological conditions among

the dental remains of children from before the Industrial Revolution differ from children in

industrialized societies today. Indeed, diet, environment, and food preparation influence mac-

roscopic and microscopic dental wear as well as the prevalence of several pathological condi-

tions of the oral cavity among human populations [1–5]. In many regions of the world, the

accumulation of abrasive dental wear among adults has decreased and the prevalence of tooth

decay and erosive dental wear has increased since the Palaeolithic. These observations are

explained by technology-related increases in extra-oral food processing that have resulted in

less chewing, the introduction of novel environmental abrasives into food, and a simultaneous

increase in sugar consumption [6–8]. The recent decrease in dietary hardness and masticatory

load during childhood in conjunction with the increased mechanisation of food processing

has been suggested as a factor behind the high malocclusion rates in present-day populations

[9–12]. However, the diversity of pre-industrial childhood masticatory behaviour and load,

reflected in dental wear, remains poorly documented. The analysis of dental wear and patho-

logical conditions provides information about physical properties of childhood diet in past

populations [13–15], as such, childhood dental wear has been documented in several past and

present non-industrialized populations [16–19], with more recent studies also focused on

reconstructing childhood dietary transitions and documenting intra-population childhood

dietary variation using dental microwear analysis [14, 15, 20–22]. The description of dental

macrowear, microwear and pathology among children in past populations is not just crucial to

improve our understanding of diet and quality of life during childhood within the specific con-

texts studied, but also to understand past diversity of human dental wear and pathological con-

ditions in comparison to present-day populations.

The first objective of this study is to document childhood macroscopic and microscopic

dental wear as well as dental caries and dental calculus in non-adults buried at Franzhausen

I—(a large cemetery excavated in Lower Autria in the early 80s), focused on individuals with

preserved dentitions having died before the age of 12 years—to reconstruct and document

aspects of childhood diet and oral health in an Early Bronze Age agriculturalist community

from Central Europe.

Several studies of intra-population childhood diet based on isotope ratio analyses have also

highlighted gendered differences in childhood diet in past populations [23, 24]. Strongly gen-

dered burial practices, even among younger children in the context of Franzhausen I, suggest

gender was an important component of childhood identity in the community [25]. Recent

developments in amelogenin peptide-based sex determination provide a reliable means to

determine the sex of non-adult human remains [26–28]. Such methods allow the further com-

parison of dental wear and the prevalence of dental pathological conditions among male and

female children to discuss potential gendered differences in childhood diet among prehistoric

populations.

The second objective is therefore to compare the described aspects of dental wear and

pathology between male and female children within the population and discuss the possibility

of gender-based differences in childhood dietary provisioning.

Materials and methods

Sample

The 75 individuals under the age of 12 in this study derive from the Early Bronze Age cemetery

of Franzhausen I, Austria. The cemetery was excavated between 1981 and 1983 in the course
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of large-scale road developments and comprises 716 published grave contexts [29]. The

remains are stored at the Natural History Museum of Vienna, Austria, where they can be

examined upon request. The individuals buried at Franzhausen I are understood to be mem-

bers of a small, rural Bronze Age community that settled in the Traisen river valley close to the

Danube, approximately 50 km west of Vienna. The cemetery was in use for 300 to 400 years

and was radiocarbon dated from 2050 to 1680 cal. BC. Individuals were placed in the grave

according to gender, with girls and women placed on the right side of the body, head south,

whereas boys and men were placed on the left side of the body, head north. That gendered

treatment of bodies extended to children has recently been confirmed via peptide-based sex

determination [25]. Grave good selection is also gender based, and differences in the amount

and value of grave goods suggest socio-economic inequalities within the community [30].

Age and sex estimations of the skeletal remains were performed [31, 32] and are published

in the grave catalogue [29]. A combination of methods was used to provide an age range for

each individual, including the development of the dentition [33], and long bones metrics [34].

Based on these data, several further anthropological and archaeological studies on the popula-

tion have been carried out [e.g. 35–38].

Out of 757 individuals buried, 278 (36.7%) belonged to children having died before the

age of 12 years corresponding to two previously established age groups: Infans I: 0–6 and

Infans II: 7–12 years old at death [37]. We selected 75 individuals from these two age groups,

34 from Infans I and 41 from Infans II. The mortality pattern for this site is U-shaped or

non-catastrophic, our sample is therefore understood to represent children having died

before reaching adulthood under the “normal” living conditions at the time and over a

period of several centuries, and not as the result of a single event, crisis or disaster. Selection

for this study was based on the preservation of the dentition and includes individuals from

across the spatial distribution of the cemetery, however individuals buried with bronze arte-

facts are generally better preserved, perhaps due to the antibacterial properties of copper

[39]; therefore, the sample may disproportionately represent children of higher status

within the community.

Sex estimation using amelogenin peptides in human dental enamel is currently gaining

momentum [26, 27, 40–42]. We applied nanoflow liquid chromatography-tandem mass spec-

trometry (nanoLC-MS/MS) to identify sex-specific peptides in the teeth of the same 75 chil-

dren from Franzhausen I selected for this study [25], using a previously published protocol

[28]. This procedure returned a reliable sex identification in 70 individuals and confirmed that

the sex of the children corresponds to the gendered burial position in 98.4% of cases. We there-

fore used the gendered burial position as a proxy for sex for the remaining individuals (Fig 1).

Palaeopathological conditions of the oral cavity and linear enamel

hypoplasia

Dental caries, dental calculus, and linear enamel hypoplasia (LEH) were identified visually and

by probing based on established criteria [43] and scored as present or absent. All teeth (both

deciduous and permanent) were considered for a total of 978 teeth. Due to staining and tapho-

nomic alteration of dental surface, only dental caries sufficiently advanced to form a cavitation

were identified with the help of a dental explorer. Calculus was identified on the lingual and

buccal surfaces. Calculus prevalence in our sample is expected to be under-estimated due to

sample exposure to taphonomic erosive processes and cleaning. LEH was identified visually

and by running a probe across the enamel surface to find a series of grooves generally observed

on multiple teeth.
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Dentine exposure

Dentine exposure (DE) (Fig 2A) on the occlusal surface can be observed visually as dentine has

a distinct appearance to enamel (darker and less shiny, sometimes stained green by bronze

artefacts). Only deciduous molars were considered, the upper first molars (Udm1), the upper

second molars (Udm2), the lower first molars (Ldm1) and the lower second molars (Ldm2).

The percentage of the occlusal surface with exposed dentine was quantified following a stan-

dard procedure outlined in previous studies [16, 19, 44, 45]. A top-down photo of the occlusal

surfaces was taken using a digital camera (Canon EOS 5D MARK IV) at a resolution

Fig 1. Burial of a 7-9-year old boy at Franzhausen I, Austria (Verf. 290) in flexed body position typical for males

(left body side, north-south orientation) © Bundesdenkmalamt Wien/NÖ.

https://doi.org/10.1371/journal.pone.0280769.g001
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6720 × 4480, 72 dpi. Images were first processed using Digital Photo Professional 4 to remove

any lens distortion. Then images were opened in ImageJ (FIJI) 1.53c [46], where a series of

manual area measurements were made using the polygon tool to trace area outlines, the first

measurement for each molar corresponded to the area of the occlusal surface, the subsequent

measurements to area of exposed dentine on the surface. A python script was then used to

automatically calculate the percentage of exposed dentine for each molar from the series of

measurements.

Dental occlusal topography

The mesial interior slope angle (MISA)—the angle between the two mesial cusps (Fig 2B)—of

the upper second deciduous molar (Udm2) was used as a dentine independent estimate of

dental wear progression for 21 individuals (based on sample and scanner availability). An STL

tessellation model of each dentition was produced using a Planmeca Emerald intraoral scanner

and Planmeca Romexis 5.3.2.13 acquisition software. Models were processed in Mesh Lab

Fig 2. Dental wear measurement methods used. (A) Quantification of dentine exposure, left overview of dentition in occlusal view, centre

occlusal area selection for measurement, right area selection and measurement of a dentine patch. (B) Mesial interior slope angle (MISA)

measurement on a 2D profile extracted from a 3D model of the occlusal surface. (C) Dental microwear texture analysis using a confocal

microscope, reconstructions of a 200 × 200 μm area of the enamel surface in 2D and 3D.

https://doi.org/10.1371/journal.pone.0280769.g002
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v2016.12 [47] following the methodology of Bas and colleagues [48] to extract a 2D profile run-

ning through the mesial cusp tips. The angle was then manually measured in ImageJ (FIJI)

1.53c using the angle tool.

Dental microwear texture analysis

Occlusal dental microwear texture analysis (DMTA) using a confocal microscope and scale

sensitive fractal analysis (SSFA) (Fig 2C) was carried out using the standard approach outlined

in previous publications [21, 49–51]. To increase sample size, either the upper second decid-

uous or first permanent molar was used as microwear formation is understood to be compara-

ble between the two [21]. Teeth were cleaned using cotton soaked in water or acetone. Three

impressions of the occlusal surface were made using President MicroSystemTM (Coltene) reg-

ular body polyvinylsiloxane. The first two impressions were used to remove impurities and

were discarded, and measurements were taken from the third impression. 3D images of the

microscopic surface over an area of 333.21 × 250.78 μm were made using a Sensofar S Neox

confocal microscope piloted by SensoSCAN 6.2 acquisition software. Surfaces were then pro-

cessed in Digital Surf surface imaging and metrology software (Mountains Map 8), where a

custom macro was applied to prepare the surface (removing outlier points/measurement

errors) and extract a 200 × 200 μm surface for measurement. Two surface texture parameters

were calculated, complexity (Asfc) and anisotropy (epLsar), using Toothfrax. Complexity

(Asfc) indicates the presence of features (pits, scratches) on the surface as observed at multiple

scales which generally increases when opposing teeth crush food vertically during the mastica-

tory phase two. Complexity increases with the consumption of hard or polyhedral (non-flat)

foodstuffs. Anisotropy on the other hand refers to the alignment of features (scratches) and

generally results from opposing teeth grinding and shearing food in repetitive jaw movements

during masticatory phase two. Anisotropy increases with the consumption of soft, tough or

flat foodstuffs [50–52].

Statistical analysis and data visualization

Statistical analyses and data visualizations were carried out in R 4.0.3 [53]. Confidence inter-

vals for prevalences were calculated using binomial tests performed with the binom.test func-

tion. Prevalences are provided both as crude prevalence rates (CPR–the proportion of

individuals affected by the condition) and true prevalence rates (TPR–the proportion of

observable elements, in this case teeth, affected by the condition), when relevant. Continuous

variables were compared between groups using non-parametric Wilcoxon-Mann-U tests

using the function wilcoxon.test to avoid assumptions of the normal distribution of variables

within our samples. The relationship between variables were modelled with a linear model and

linear correlation tested by Pearson’s test. Data visualization was carried out using the ggplot2

R package.

Results

1. Paleopathological conditions of the oral cavity and linear enamel

hypoplasias

The prevalences of caries, calculus and linear enamel hypoplasias among the children are sum-

marized in Table 1.

Dental caries were observed in only 4 individuals out of 75. Of these 4 individuals only one

presented tooth decay on multiple teeth. Only 5 teeth out the 978 considered by the study were

found to be carious, less than 1% of teeth. Almost all carious teeth belonged to Infans II
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children, over the age of 6 years. Observed caries were generally small and occurred on the

occlusal or interproximal surface of deciduous and permanent molars.

Dental calculus formation was observed across the molars and incisors of 11 out of 75 chil-

dren, less than a fifth, a majority of which were also over the age of 6 years.

Linear enamel hypoplasia was also rare in the sample, observed in 5 of the 75 children, less

than 10%, on the apical portion of developing or developed permanent incisors, canines and

in two cases premolars.

2. Dental wear

The prevalence of dentine exposure among deciduous molars is summarized in Table 2.

Table 1. Crude prevalence rate (CPR) and true prevalence rate (TPR) of caries, calculus and linear enamel hypoplasia (LEH) separated by age group.

individuals cases CPR (%)—CI� teeth teeth affected TPR (%)—CI�

Caries

All ages 75 4 5% (CI 1% - 13%) 978 5 <1% (CI 0% - 1%)

Infans I 34 1 3% (CI 0% - 15%) 415 1 <1% (CI 0% - 1%)

Infans II 41 3 7% (CI 2% - 20%) 563 4 <1% (CI 0% - 2%)

Calculus

All ages 75 11 15% (CI 8% - 25%)

Infans I 34 3 9% (CI 2% - 24%)

Infans II 41 8 20% (CI 9% - 35%)

LEH

All ages 75 5 7% (CI 2% - 15%)

Infans I 75 1 1% (CI 0% - 7%)

Infans II 75 4 5% (CI 1% - 13%)

� 95% confidence interval

https://doi.org/10.1371/journal.pone.0280769.t001

Table 2. Prevalence of dentine exposure for each deciduous molar.

Teeth Teeth affected Prevalence (%)—CI�

Udm1—Dentine exposure

All ages 36 31 86% (CI 71% - 95%)

Infans I 20 15 75% (CI 51% - 91%)

Infans II 16 16 100% (CI 79% - 100%)

Udm2- Dentine exposure

All ages 56 39 73% (CI 56% - 81%)

Infans I 28 14 50% (CI 31% - 69%)

Infans II 28 27 96% (CI 82% - 100%)

Ldm1- Dentine exposure

All ages 41 39 95% (CI 83% - 99%)

Infans I 22 20 91% (CI 71% - 99%)

Infans II 19 19 100% (CI 82% - 100%)

Ldm2- Dentine exposure

All ages 56 48 86% (CI 74% - 94%)

Infans I 26 18 69% (CI 46% - 86%)

Infans II 30 30 100% (CI 88% - 99%)

� 95% confidence interval

https://doi.org/10.1371/journal.pone.0280769.t002
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Over half of the young children’s (Infans I) molars present exposed dentine. With the

exception of a single upper second deciduous molar, all molars present exposed dentine

among older children (Infans II). Among younger children, the lower first deciduous molar

most commonly shows exposed dentine followed by the upper first deciduous molar. The

upper second deciduous molar is the tooth that most commonly does not show any exposed

dentine. Dentine exposure on the second deciduous molars is significantly more likely among

older children (based on 95% confidence intervals).

With respect to the quantified proportion of exposed dentine on the occlusal surface, we

observe a greater difference in dentine exposure between the first and second upper molars

than between the lower molars. The rate of dentine exposure appears highest in Udm1, similar

in Ldm1 and Ldm2, and lowest in Udm2 (Fig 3). For all four deciduous molars dentine expo-

sure has a strong positive linear relationship with mean estimated age (Pearson coefficient:

Udm1 0.69, Udm2 0.66, Ldm1 0.50, Ldm2 0.72). However, the mean estimated age explains

only between 25% and 52% of the variation in dentine exposure depending on the molar (Lin-

ear model R2: Udm1 0.48, Udm2 0.43, Ldm1 0.25, Ldm2 0.52) (Fig 3B–3E).

Measurement values for the Udm2 mesial interior slope angle (MISA) in degrees are sum-

marized in Table 3. The angle among unworn teeth is between 90˚ and 100˚, as during Infans I
over a period of three to four years Udm2 MISA increases to about 130˚, up to 153˚. During

Infans II this increase continues reaching up to 166˚.

MISA measurements indicate that changes to the occlusal surface are occurring at different

rates within the population, with some children showing a MISA angle 20˚ wider than some

Infans II. Udm2 MISA has a strong positive linear correlation with mean estimated age, with

57% of the variation of MISA explained by age (Pearson coefficient: 0.75, R2 = 0.57) (Fig 4A).

Udm2 MISA also has strong positive linear correlation with Udm2 dentine exposure (Pearson

correlation: 0.71) (Fig 4B).

Measurement of dental microwear texture is summarized in Table 4.

Microwear texture analysis suggests a generally high complexity (Asfc above 2) and low

anisotropy (epLsar below 0.0020) profile for both age groups with extensive variation in com-

plexity among sampled individuals. Complexity (Asfc) and anisotropy (epLsar) have a strong

negative linear correlation (Pearson coefficient: -0.62) but are only moderately predictive of

each other (R2 = 0.39) (Fig 5A). Complexity is moderately negatively correlated, and anisot-

ropy weakly correlated with mean estimated age (Pearson coefficient: Asfc -0.43, epLsar -0.14).

19% of Asfc and 2% of epLsar can be explained by mean estimated age (Asfc R2 = 0.19, epLsar

R2 = 0.02). The youngest child between 4 and 5 years old shows a high complexity and low

anisotropy. Four children between the ages of 4 and 9 years old show high anisotropy, and the

three children between 7 and 9 years old exhibit low complexity. Three of the oldest children

between 8 and 12 show low anisotropy and higher complexity. The general trend among

children above the age of 5 years is of decreasing anisotropy around the age of 8 or 9 years

(Fig 5B, 5C).

3. Intra-population male—female comparisons

Differences in the prevalence of caries, calculus, and dentine exposure (by tooth position)

between male and female children are summarized in Table 5.

Exposed dentine is more prevalent among female children for all deciduous molars. How-

ever, 95% confidence intervals indicate that these differences are uncertain given the sample

size (the 95% CI of prevalence for each variable overlaps between the sexes).

Differences in measurements of dentine exposure, occlusal topography and dental micro-

wear texture are summarized in Table 6.
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Fig 3. Dentine exposure on deciduous molars varies depending on the position of the molar. (A) Illustration of the

distribution of dentine exposure among deciduous molars (darker red signifies a higher mean percent (%) of exposed

dentine on the occlusal surface). (B) Scatterplot of Udm1 the area of dentine exposure as a % of the occlusal surface by

mean estimated age with a linear model. (C) Scatterplot of Udm2 the area of dentine exposure as a % of the occlusal

surface by mean estimated age with a linear model. (D) Scatterplot of Ldm1 the area of dentine exposure as a % of the

occlusal surface by mean estimated age with a linear model. (E) Scatterplot of Ldm2 the area of dentine exposure as a %

of the occlusal surface by mean estimated age with a linear model.

https://doi.org/10.1371/journal.pone.0280769.g003
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No significant differences were identified between male and female children for dentine

exposure, occlusal topography, and microwear texture, when all ages are considered together.

When Infans I and Infans II age groups are considered separately, dentine exposure is signifi-

cantly higher in Infans I female lower molars (Wilcoxon test between sexes: Ldm1 p = 0.023,

Ldm2 p = 0.008) (Fig 6A–6D). Udm2 MISA measurements are similar between both sexes,

with some older mostly female children showing smaller than average topographic changes

due to wear (Fig 6E). The two microwear measurements show variation between sexes

(Fig 6F), however, these differences remain uncertain as they may also be explained by differ-

ences in age (Fig 6G).

Discussion

Caries: Dental caries are found in only a small proportion of children (4 out of 75–5%) and

teeth (5 out of 978 –less than 1%) at Franzhausen I, despite the lack of modern dentistry and

oral hygiene standards. This compares well with existing data on another sample from the

same site, in which with caries affected only 8 out of 173 (a little under 5%) children and 10

molars and 1 canine in a sample of 1606 teeth [32]. Dental caries remain uncommon even

among children with well-preserved dentitions within the sample, with only one case of multi-

ple caries within a single dentition observed. For comparison, among industrialized societies

today a broad survey of the prevalence of childhood caries in Europe from the 1990s found a

prevalence of caries in primary teeth for children 5 to 7 typically ranging from 40% to 70%,

occasionally as high as 87% in Slovenia in the late 1980s [54] and 40% among 6 to 7 year old

Table 3. Upper second deciduous molar occlusal topography (Mesial interior slope angle—(MISA) in degrees).

n Mean SD Minimum Maximum

All ages 21 141 17.6 90 166

Infans I 12 134 18.2 90 153

Infans II 9 151 11.7 136 166

https://doi.org/10.1371/journal.pone.0280769.t003

Fig 4. Occlusal topography (MISA) also indicates both age dependent and independent intra-population dental wear

variation. (A) Scatterplot of MISA in degrees by mean estimated age with age estimation uncertainty error bars. (B) Scatter plot

of MISA in degrees by dentine exposure %.

https://doi.org/10.1371/journal.pone.0280769.g004
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children in Germany in 2015 [55]. Among pre-industrial European populations the prevalence

of caries among children is generally found to be much lower, a study of childhood caries in

both Early Iron-Age and Medieval Ukraine found caries in around 2% for Early Iron-Age chil-

dren and 8% for Medieval children with caries affecting less than 1% of teeth [56]. Another

study of Early Medieval children from multiple sites in Central Europe also found that caries

affected around 1% of teeth examined [57]. A quick survey of a sample from the nearby medie-

val cemetery of Sankt Pölten located in the same valley as Franzhausen I found 39 out of 92

children– 42% experienced caries, with many individuals experiencing multiple caries across

the dentition, however true prevalence rates have yet to be established for this sample. The

prevalence of dental caries among the children of Franzhausen I is therefore low but not

uncommon among pre-industrial European populations, and is indicative of a low sugar diet

during childhood with few cariogenic elements. It is also possible that occlusal dental wear

caused by abrasives found in food contributed by wearing away occlusal caries faster than they

could develop [58]. However, the relationship between dental wear and caries remains contro-

versial, with some studies suggesting instead that wear when resulting in dentine exposure

increases the risk of caries [59, 60].

Calculus: Dental calculus formed among 8% to 25% of children in our sample, this figure is

possibly an underestimation due to sample preservation but nonetheless reflects the limited

extent of available oral hygiene practices with calculus being more prevalent than in developed

countries today and in a similar range to parts of developing countries like India in the early

2000s [61, 62]. This suggests that diet and perhaps occlusal dental wear rather than oral

hygiene played the most important role in the prevention of caries. However, the inverse rela-

tionship between the mineralization of dental calculus and demineralization of caries [63, 64]

Table 4. Upper second deciduous and first permanent molar facet nine microwear texture.

Complexity (Asfc) Anisotropy (epLsar)

n Mean SD Mean SD

All ages 8 4 2.95 0.0019 0.0006

Infans I 2 7.05 2.82 0.0019 0.0009

Infans II 6 2.04 2.37 0.002 0.0006

https://doi.org/10.1371/journal.pone.0280769.t004

Fig 5. Dental microwear analysis also indicates both age dependent and independent intra-population dental wear variation. (A)

Scatterplot of surface anisotropy (epLsar) by surface complexity (Asfc). (B) Scatterplot of surface complexity (Asfc) by mean estimated

age with age estimation uncertainty error bars, a loess curve is used to better represent the non-linear relationship between the variables.

(C) Scatterplot of surface anisotropy (epLsar) by mean estimated age with age estimation uncertainty error bars, a loess curve is used to

better represent the non-linear relationship between the variables.

https://doi.org/10.1371/journal.pone.0280769.g005
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may also partially explain the disproportionate rate of dental caries versus calculus among the

Franzhausen I children.

Linear enamel hypoplasia: With a prevalence between 2% and 15%, linear enamel hypopla-

sia (LEH) can be considered uncommon among the Franzhausen I children by historical stan-

dards [65–68]. This low LEH prevalence alone only provides limited insight into experienced

stress events and childhood living conditions more broadly, however, when considered along-

side the quality of child grave goods it provides further indication that the individuals buried

at Franzhausen I and perhaps in particular those sample in this study came from a relatively

wealthy and stable community.

Macrowear analysis: The prevalence of dentine exposure is high and varies somewhat

depending on molar position, with most molars exhibiting prevalence between about 70% and

100%, with exception of the Udm2 with a lower prevalence of only 56% to 81%. This variation

between tooth positions can in part be explained by differing eruption times between first, sec-

ond, lower, and upper deciduous molars, but also their morphology and occlusion, which

influences where enamel is removed and how much needs to be removed before dentine is

exposed. Indeed, lower dentine exposure in Udm2 is expected as Udm2 erupts last out of the

four and is known to have a thicker enamel layer than other deciduous molars [69]. In children

of present-day industrialized societies, dentine exposure generally occurs at the earliest around

the age of 6 or 7 years and even among children aged 12 to 14, dentine exposure is only

observed in a few children (sometimes less than 10%) [18, 70, 71]. This contrasts strongly with

the children of Franzhausen I, where more than half of the Infans I children show exposed

dentine on deciduous molars. When compared to Mays and Pett’s (2014) study of medieval

Table 5. Comparison of crude prevalence rate (CPR) and true prevalence rate (TPR) of caries, calculus and deciduous molar dentine exposure between male and

female children.

individuals cases CPR (%)—CI� teeth teeth affected TPR (%)—CI�

Caries

female 34 2 6% (CI 1% - 20%) 434 2 <1% (CI 0% - 2%)

male 38 2 5% (CI 1% - 18%) 501 3 <1% (CI 0% - 2%)

Calculus

female 34 5 9% (CI 2% - 24%)

male 38 6 20% (CI 9% - 35%)

LEH

female 34 1 3% (CI 0% - 15%)

male 38 4 11% (CI 3% - 25%)

Udm1—Dentine exposure

female 16 15 94% (CI 70% - 100%)

male 18 14 78% (CI 52% - 94%)

Udm2- Dentine exposure

female 24 20 83% (CI 63% - 95%)

male 29 19 66% (CI 46% - 82%)

Ldm1- Dentine exposure

female 19 19 100% (CI 82% - 100%)

male 20 18 90% (CI 68% - 99%)

Ldm2- Dentine exposure

female 26 25 96% (CI 80% - 100%)

male 27 21 78% (CI 58% - 91%)

� 95% confidence interval

https://doi.org/10.1371/journal.pone.0280769.t005
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childhood dental wear, Ldm1 and Ldm2 dentine exposure is similar, with slightly more wear

in the Franzhausen I population, most noticeably with more Ldm1 dentine exposure among

younger children of Franzhausen I [16]. Another study of medieval children finds that more

than 50% of Udm2 present exposed dentine from the age of 5 years onwards, similar for the

prevalence of dentine exposure in Udm2 estimated for the Infans I age group as a whole (0 to 6

years old) at Franzhausen I [17]. Compared to previously published data on childhood dental

wear in individuals from the medieval Sankt Pölten cemetery located in the same valley as

Franzhausen I, the prevalence of Infans I dentine exposure for Udm2 is about 30%, a little

lower than the 31% to 69% estimate for the Franzhausen I population, but the prevalence then

becomes similar in older children.

For Infans I children MISA measurements are also on average higher for Franzhausen I

(mean MISA 134˚) than Sankt Pölten (mean MISA 119˚), but similar for Infans II children [48].

These comparisons of dentine exposure and MISA provided above suggest that the amount

of dental wear experienced by Franzhausen I children was not only high by today’s standards;

and, among younger children, but also a little higher than experienced by later pre-industrial

children from the same region. Within the sample it also seems that some individuals accumu-

late dental wear faster than others. One explanation for the existence of variation between indi-

viduals in the amount of dental wear experienced after accounting for age and the uncertainty

of age estimation are differences in the physical and material properties of childhood diet

within the population, either at a given time, or as a result of changes in childhood diet over

the period the cemetery was in use. Despite the small size (~60 concurrent individuals), dental

wear would therefore indicate that diet varied substantially between children within this Early

Bronze-Age community. A caveat to this interpretation however is that measured macroscopic

Table 6. Comparison of dentine exposure (area of exposed dentine in % of the occlusal surface), occlusal topogra-

phy (MISA, mesial interior slope angle), and dental microwear texture (Asfc and epLsar) between male and female

children.

n teeth mean SD

Udm1—Dentine exposure (%)

female 17 26.0% 22.4%

male 13 31.6% 24.4%

Udm2—Dentine exposure (%)

female 24 9.3% 8.2%

male 22 9.1% 8.0%

Ldm1—Dentine exposure (%)

female 20 17.3% 13.0%

male 16 16.7% 13.8%

Ldm2—Dentine exposure (%)

female 26 13.5% 12.6%

male 22 15.8% 14.1%

Udm2—MISA

female 11 145 12.7

male 7 134 25.6

Udm2/M1—microwear complexity (Asfc)

female 3 2.51 2.21

male 5 4.88 3.19

Udm2/M1—microwear anisotropy (EpLsar)

female 3 0.0025 0.0000

male 5 0.0017 0.0005

https://doi.org/10.1371/journal.pone.0280769.t006
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Fig 6. Sex-based differences in dental wear. (A) Boxplot with jitter of the area of dentine exposure as a % of the occlusal

surface of Udm1 divided by sex and coloured by age group. (B) Boxplot of the area of dentine exposure as a % of the

occlusal surface of Udm1 divided by sex and coloured by age group. (C) Boxplot with jitter of the area of dentine exposure

as a % of the occlusal surface of Udm1 divided by sex and coloured by age group. (D) Boxplot of the area of dentine

exposure as a % of the occlusal surface of Udm1 divided by sex and coloured by age group. (E) Scatterplot of MISA by

mean estimated age with age estimation uncertainty error bars coloured by sex. (F) Scatterplot of surface anisotropy

(epLsar) by surface complexity (Asfc) coloured by sex. (G) Scatterplot of surface anisotropy (epLsar) by mean estimated

age with age estimation uncertainty error bars, a loess curve is used to better represent the non-linear relationship between

the variables, coloured by sex.

https://doi.org/10.1371/journal.pone.0280769.g006
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dental wear variation results both from differences in environment, diet, and food preparation

(discussed here), and innate differences in enamel thickness and dental tissue proportions of

unworn teeth (requiring further imaging of internal structures and not considered in the

scope of this study). It is therefore conceivable that some innate differences also contributed to

some degree to the observed dental wear variation described here. Despite this, variation in

dental wear among children within the Franzhausen I population can be observed both in

terms of dentine exposure and occlusal topography, both correlated yet dependent on different

underlying innate features, therefore the use of multiple measurements of dental wear lends

support to the idea that some variation of childhood diet occurred within the population.

Dental microwear analysis: Although dental microwear analysis is limited to a small subset

of 8 individuals due to taphonomy, among the individuals that could be measured, the micro-

wear signature is generally one of high complexity (mean Asfc above 2) and low anisotropy

(mean epLsar below 0.0020). The traditional interpretation of such a signature based on the

physical properties of food would suggest a coarse diet with notable harder elements—either

the food itself or exogenous particles consumed with food—especially among older children.

Another approach to the interpretation of microwear based instead on mechanical properties

of diet would suggest a diet containing a high proportion of polyhedral particles (as opposed to

one dominated by “flat” foodstuffs) [52]. When compared to children from ancient Rome and

Medieval England, the children of Franzhausen I have more complex and less anisotropic

microwear textures, suggesting diet was harder/polyhedral and required less repetitive jaw

movements [15, 21, 72]. The results suggest that children before the age of 8 or 9 may have

consumed fewer hard food components commonly found outside the domestic setting than

their older counterparts, similarly to the observations for medieval children made by Mahoney

et al. [21]. However, bite force does increase throughout ontogeny [73] and may at least par-

tially explain the differences in on dental microwear (and macrowear) formation between

Infans I and II age groups.

Dietary interpretation: People buried at Franzhausen I likely cultivated a rich spectrum of

crops including barley, einkorn and emmer wheats, spelt and lentils [74], and raised domesti-

cated animals such as cattle, caprids, and pigs [75, 76]. The processing of cereals would be car-

ried out with small grinding stones [77] and foods could be cooked in ceramic pots. Studies of

childhood diet in other pre-industrial agrarian communities suggest that younger children

(Infans I) would have consumed a relatively soft, semi-liquid diet of gruels, paps, or broths

[21, 22, 78], and older children from the age of five to six more solid foods with a diet closer to

that of adults [22]. Based on our analysis of oral pathology and dental wear, we suggest that in

general rather than softer chewy and cariogenic, or sugary foods like porridges, soft fruits, and

honey, the children of Franzhausen I consumed a coarser and low sugar diet/low cariogenic

meals such as vegetable, lentil and meat broths and stews, with the regular inclusion of more

polyhedral foodstuffs especially among older children such as dried foods, meats, hazelnuts,

chestnuts, acorns, and likely harder foodstuffs such as wild root vegetables. We also suggest

that this diet could vary substantially between children.

Sex-based differences: Variations in dental wear between male and female children are

minor, but there is a slightly higher rate of dentine exposure among younger female children,

especially on the lower molars. The exact causes of this discrepancy is unclear, we can only

suggest some possible explanations that require further investigation. More wear accumulating

on the teeth that erupt first could be explained by differences in diet during early childhood

between male and female children, with female children consuming a more abrasive diet

(including more abrasives likely found in ground cereals and/or requiring more chewing);

alternatively, the weaning process might have started earlier for female children with solid

foods being introduced earlier on and becoming more common by the time the molars erupt.
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Follow up studies of nitrogen isotopes comparing male and female children could corroborate

this hypothesis. Dental microwear does not provide clear information on dietary differences

between the sexes, as the well-preserved teeth from a few individuals vary simultaneously in

both sex and age. If observed differences were caused by dietary differences between the sexes

and not due to age as previously suggested, they would indicate that female children consumed

a softer diet with more repetitive jaw movements (i.e. surface would present higher anisotropy

and lower complexity values), consuming perhaps fewer hard or unprocessed foodstuffs that

are often sourced away from the domestic environment.

Conclusion

This study of 75 non-adult dentitions from Early Bronze-Age Franzhausen I found that the

estimated prevalence of caries, calculus, and exposed dentine, as well as the quantitative mea-

surement of occlusal dentine exposure, topography (MISA), and microwear texture (Asfc, epL-

sar) are indicative of a significantly less cariogenic, coarser, and more abrasive diet than

consumed by children today. The properties of this Early Bronze Age diet were found to be

similar, but a little more coarse and abrasive than the diet of children in later pre-industrial

(medieval) European populations. This result fits with the general trends observed in adults of

decreasing dental wear since the Palaeolithic, up until the development of modern dentistry.

The non-pathological nature of observed dental wear and the low prevalence of caries suggest

relatively good oral health during childhood at Franzhausen I, and the low prevalence of LEH

reflects positively on childhood health in general (despite a high childhood mortality by mod-

ern standards). Age independent dental wear variation suggests that childhood diet likely

changed over the centuries the cemetery was in use, and possibly differed between children

within the community at any given time. Results also highlight the possibility of modest die-

tary differences during childhood between younger children of different sexes. However, limi-

tations of our dental wear analysis highlight the need for more information on the variation of

internal dental structure in past populations, to further untangle the genetic and environmen-

tal factors behind macroscopic dental wear variation. Further studies of non-adult dentitions

from skeletal remains, both pre- and post-Neolithic and pre- and post-industrial, will confirm

or question the assumed general trends and our understanding of the co-evolution of food

preparation technologies and the human dentition, as well as provide a clearer picture of the

past diversity of childhood dental wear and oral pathology.
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suchung am frühbronzezeitlichen Gräberfeld Franzhausen I, Niederösterreich. Wien: Berger; 1999.
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