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Abstract: Mitochondria play a key role in regulating host metabolism, immunity and cellular home-
ostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association
between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial
event determined that human cell mitochondria share some features with bacteria, namely cardi-
olipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived
damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act
largely through the modulation of mitochondrial activities, and often mitochondria are themselves
immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In
this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobac-
terium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we
show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that
interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also
affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results
help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage
and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated
molecular patterns (PAMPs) in Parkinson’s disease etiology.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder,
characterized by the progressive loss of movement control, gaiting and bradykinesia, in
consequence of substantia nigra pars compacta (SNpc) neuronal degeneration [1]. The
pathophysiological traits of the disease are the presence of Lewy bodies (LBs) in the
brain, mainly composed by aggregated alpha-synuclein (α-Syn) [2], microgliosis [3,4] and
mitochondrial dysfunction [5]. The neuroinflammatory hypothesis for PD is based on
pathological findings showing an increased expression of pro-inflammatory mediators in
affected brain areas, DNA polymorphisms of different pro-inflammatory cytokine genes
that modify the risk of PD, and finally, epidemiological studies demonstrating that nons-
teroidal anti-inflammatory drugs users have a lower risk of developing PD [6]. Additionally,
mitochondria dysfunction also plays a key role in the etiology of sporadic PD [5], acting as
a hub that connects neuroinflammation and α-Syn expression and aggregation [7]. Indeed,
LBs often harbor mitochondrial components [8], which corroborates the fact that neuronal
mitochondria are severely affected in PD patients’ brains. Post-mortem studies in PD pa-
tients identified alterations in the mitochondrial electron transport chain (ETC), highlighted
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by a decrease in complexes I and III activities [9,10]. Moreover, several PD mouse models
induced with mitochondrial toxins recapitulate some PD features [11–13]. Mitochondrial
dysfunction induced by rotenone is sufficient to promote the accumulation of p-S129 α-Syn,
the pathological form of α-Syn, in mice brains [14]. Studies in post-mortem brains of
PD patients revealed that neuronal mitochondria appear to be smaller and swelled [15],
suggesting a more reticulated mitochondrial network than age-matched controls. In fact, it
was observed that treatment with MPTP, a toxin that targets mitochondria, induced phos-
phorylation of DRP1, resulting in mitochondrial fragmentation [16]. Moreover, the proteins
responsible for mitochondrial elongation, mitofusins 1 and 2, were found to be recruited
and sent for degradation by the PINK/Parkin axis in homeostatic conditions [17,18] to
allow mitophagy.

Mitochondria are distinctive organelles that possess their own DNA (mtDNA) and
replication processes independent of their host cellular division. Furthermore, mitochon-
dria harbor unique ribosomes and contain cardiolipin (named after its initial identification
in animal hearts) in the inner membrane, a diphosphatidylglycerol lipid also found in the
membrane of most bacteria [19–21]. This may be explained in light of the endosymbiotic
theory, where mitochondria are proposed to have evolved from ancestor Proteobacteria
that were engulfed by an archaeal or a different proto-eukaryotic host [22,23] but conserved
some of their characteristics during evolution. Since their components are distinct from
the rest of the mammalian cellular elements, they are recognized as damage-associated
molecular patterns (DAMPs) by toll-like receptors (TLRs) and Nod-like receptors (NLRs)
when they are released to the surrounding cytosol [24,25]. In fact, several TLRs are crucial
players in disease modulation in PD. A study revealed that neuronal TLR2 is specifically
upregulated in the anterior cingulate cortex and substantia nigra in PD [26]. It was also
observed that TLR4 expression is essential for the pathogenesis of PD [27,28]. In a mouse
model of PD, it was found that neuronal TLR4 ablation was protective [29], halting inflam-
masome formation and consequent dopaminergic degeneration, thus corroborating the
role of TLR4 in PD.

In PD neurons, the mitochondrial network is fragmented, which leads to prolonged ex-
posure to mitochondrial DAMPs, triggering a chronic inflammatory response denominated
as “sterile inflammation” [30]. Indeed, mitochondrial DAMPs may be released from injured
cells and signal other cells [31]. For instance, in our previous studies, we verified that a
bacterial metabolite induced neuronal immune activation by targeting mitochondria [11,32].
An increased release of cytochrome c in a cellular model of PD using rotenone was also
observed [33]. Cytochrome c can also be recognized by TLR4 and elicit an inflammatory
response [34].

Innate immunity activation generates a multitude of cellular responses. TLR and
NLR activation not only trigger the inflammatory cascade, but also induce the expression
of antimicrobial peptides, a crucial response against bacterial infections. For instance,
it was observed that TLR2 is essential to drive the expression of antimicrobial peptide
human β-defensin 2 [35]. Likewise, the activation of the heterodimer TLR2/1 is essential
in monocytes to activate the production of antimicrobial peptide β-defensin 4 in response
to Mycobacterium tuberculosis infection [36]. Notably, the ablation of TLR4 prevents the
deleterious effects of rotenone, a complex I inhibitor [37]. Interestingly, α-Syn may also be
recognized as a DAMP by astrocytes due to its interaction with TLR4 [38]. Since the innate
immune response is extremely well conserved, it is reasonable to believe that neuronal
α-Syn- and mitochondrial-released DAMPs can induce autocrine or paracrine signaling
pathways [39,40].

Herein we show that an environmental proteobacterium strain can activate innate
immunity in mesencephalic neurons, partly through the activation of TLR4 and NLRP3
signaling pathways. α-Syn is expressed upon exposure of neurons to the bacteria and
aggregates inside mitochondria, whose dysfunction leads to the fragmentation of their
network to promote their degradation by mitophagy. Although we observed activation
of the autophagic pathway, we also detected a decrease in the autophagic flow, which
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potentiated the accumulation of defective mitochondria, thus contributing to the exposure
of additional DAMPs and further activation of innate immunity in a self-amplified cycle
with obvious deleterious effects.

2. Results
2.1. Bacteria-Mediated Neuronal Innate Immunity Activation: The Role of α-Syn

Bacteria invading the gut mucosa or the brain parenchyma can infect multiple neural
cell types, leading to inflammation with dysfunction of neural networks and excitotoxicity,
regional damage and cell death [41,42]. Indeed, Proteobacteria are gram-negative bacteria
that expose lipopolysaccharides (LPS) in their outer membrane and activate innate immu-
nity through TLR4 [43]. To guarantee that we are tackling neuronal contribution to innate
immunity activation, we treated primary neuronal cultures with FDU [44] to keep a low
level of glial cell contamination in primary mesencephalic neuronal cultures (less than 1%
of Iba1, CD11b+ or Trem2-positive cells and less than 20% of GFAP+ cells) [11]. Our data
show that neurons exposed to the bacteria increased TLR4 levels (Figure 1a,b; n = 7). TLR4
can activate NF-κB signaling pathway and regulate pro-inflammatory cytokine expression.
We observed that bacteria led to the activation of NF-kB, although at the time point selected
for the study, we do not see statistical significance (Figure 1c; n = 3). However, we observed
caspase-1 activation (Figure 1d; n = 3) associated with NLRP3 inflammasome, which pro-
motes pro-IL-1β cleavage into its mature form (Figure 1e; n = 5–6) to be released (Figure 1f;
n = 4–5). Indeed, NF-κB is required for the induction of a large number of inflammatory
genes [45], including those encoding IL-1β, TNF-α and IL-6. Additionally, we observed
that these neurons also produce and release other inflammatory cytokines, such as TNF-α
(Figure 1g,h; n = 3) and IL-6 (Figure 1i,j; n = 4), which may mediate innate immunity in the
absence of glial cells. +

Recently, it has been hypothesized that α-Syn expression in neurons could be part of
innate immune response [11,46]. We observed that neurons exposed to the proteobacterium
induced α-Syn expression and aggregation (Figure 2a,b; n = 3 and c; n = 4). Previous reports
indicate that α- Syn also localizes to mitochondria and contributes to the disruption of key
mitochondrial processes [47,48]. We show that α- Syn oligomers also accumulate in the
mitochondria (Figure 2d; n = 7) after bacterial exposure.

2.2. Mitochondrial Dysfunction: A Positive Feedback Loop to Potentiate Innate Immunity Activation

Aberrant α- Syn mitochondrial interaction has been associated with mitochondrial
dysfunction, increased mitochondrial reactive oxygen species (ROS) production and mito-
chondrial fragmentation [49]. We observed an increase in mitochondrial ROS production
in neurons exposed to the bacteria (Figure 3a; n = 4) and a decrease in mitochondrial
membrane potential (Figure 3b; n = 5). Upon dysfunction, the mitochondria network
fragments to allow the removal of damaged components by mitophagy [50]. We detected
an increase in the number of mitochondrial individuals (Figure 3c,d; 16 images from n = 4)
and a decrease in mitochondrial network branches (Figure 3c,e; 16 images from n = 4),
which associates with an increase in mitochondrial levels of the phosphorylated form of
the fission protein Drp1 (Figure 3f,g; n = 4–3). Excessive mitochondrial fission can expose
DAMPs that will contribute to further activation of innate immunity, creating a positive
feedback loop augmenting inflammation [7] unless they are removed by mitophagy.
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Figure 1. Bacterial exposure activates neuronal innate immunity. Primary mesencephalic neuronal cul-
tures from naive mice were exposed to 1 × 106/mL bacteria for 48 hours (a) Representative immunoblot 
for TLR4. Blots were re-probed for β-Tubulin to confirm equal protein loading. (b) Densitometric anal-
ysis of the levels of TLR4 was normalized with β-Tubulin. Data are expressed relatively to untreated 
(Unt) neurons (n = 7, ** p = 0.0065). (c) Nuclear factor kappa-B (NF-κB) levels were calculated using 
NF-κB p65 ELISA kit. Data are expressed relatively to Unt neurons (n = 3, p = 0.0782). (d) Caspase-1 
activation. Data are expressed relatively to Unt neurons (n = 3, * p = 0.0459). (e) IL-1β levels in the 
isolated cytosolic fraction was determined using an IL-1β ELISA kit. Values are pg/mL (n = 5–6, * p = 
0.0399). (f) IL-1β levels released by neurons were determined using an IL-1β ELISA kit. Values are 
pg/mL (n = 4–5, * p = 0.0459). (g) TNFα levels in the isolated cytosolic fraction were determined using 
a TNFα ELISA kit. Values are pg/mL (n = 3, * p = 0.0353). (h) TNFα levels released by neurons were 
determined using a TNFα ELISA kit. Values are pg/mL (n = 3, * p = 0.0372). (i) IL-6 levels in the isolated 
cytosolic fraction were determined using an IL-6 ELISA kit. Values are pg/mL (n = 4, * p = 0.0301). (j) 
IL-6 levels released by neurons were determined using an IL-6 ELISA kit. Values are pg/mL (n = 4, * p 
= 0.0226). Data represent mean + SEM. Unpaired Student’s t-test was performed. 

Recently, it has been hypothesized that α-Syn expression in neurons could be part of 
innate immune response [11,46]. We observed that neurons exposed to the proteobacterium 
induced α-Syn expression and aggregation (Figure 2a,b; n = 3 and c; n = 4). Previous reports 
indicate that α- Syn also localizes to mitochondria and contributes to the disruption of key 

Figure 1. Bacterial exposure activates neuronal innate immunity. Primary mesencephalic neuronal
cultures from naive mice were exposed to 1 × 106/mL bacteria for 48 hours (a) Representative
immunoblot for TLR4. Blots were re-probed for β-Tubulin to confirm equal protein loading. (b) Den-
sitometric analysis of the levels of TLR4 was normalized with β-Tubulin. Data are expressed relatively
to untreated (Unt) neurons (n = 7, ** p = 0.0065). (c) Nuclear factor kappa-B (NF-κB) levels were
calculated using NF-κB p65 ELISA kit. Data are expressed relatively to Unt neurons (n = 3, p = 0.0782).
(d) Caspase-1 activation. Data are expressed relatively to Unt neurons (n = 3, * p = 0.0459). (e) IL-1β
levels in the isolated cytosolic fraction was determined using an IL-1β ELISA kit. Values are pg/mL
(n = 5–6, * p = 0.0399). (f) IL-1β levels released by neurons were determined using an IL-1β ELISA
kit. Values are pg/mL (n = 4–5, * p = 0.0459). (g) TNFα levels in the isolated cytosolic fraction
were determined using a TNFα ELISA kit. Values are pg/mL (n = 3, * p = 0.0353). (h) TNFα levels
released by neurons were determined using a TNFα ELISA kit. Values are pg/mL (n = 3, * p = 0.0372).
(i) IL-6 levels in the isolated cytosolic fraction were determined using an IL-6 ELISA kit. Values are
pg/mL (n = 4, * p = 0.0301). (j) IL-6 levels released by neurons were determined using an IL-6 ELISA
kit. Values are pg/mL (n = 4, * p = 0.0226). Data represent mean + SEM. Unpaired Student’s t-test
was performed.
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Cytosolic α-Syn oligomeric levels from primary mesencephalic neuronal cultures exposed to 1 × 
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Figure 2. Bacterial exposure promotes α-Syn expression and aggregation. (a) Representative im-
munoblot showing α-Syn monomer and oligomers in mesencephalic neuronal cultures infected
with 1 × 106/mL bacteria for 48 h. The blots were re-probed for β-Actin to confirm equal protein
loading. (b) Densitometric analyses of the levels of α-Syn normalized against β-Actin. (n = 3,
*** p = 0.0003). (c) Cytosolic α-Syn oligomeric levels from primary mesencephalic neuronal cultures
exposed to 1 × 106/mL bacteria for 48 h were calculated using an ELISA kit. Values are pg/mL
(n = 4, * p = 0.0346). (d) Mitochondrial α-Syn oligomeric levels from primary mesencephalic neuronal
cultures exposed to 1 × 106/mL bacteria for 48 h were calculated using an ELISA kit. Values are
pg/mL (n = 7, ** p = 0.0028). Data represent mean + SEM. Statistical analysis was performed using
Unpaired Student’s t-test.
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Figure 3. Bacteria induce neuronal mitochondrial dysfunction and fragmentation. Primary mesence-
phalic neuronal cultures were exposed to 1 × 106/mL bacteria (α-Proteobacteria) for 48 hours. (a) Mito-
chondrial ROS production was assessed using the fluorescent dye MitoPY1 (n = 4, ** p = 0.0029). (b) 
Changes in mitochondrial membrane potential (ΔΨm) were assessed using the fluorescent cationic 
dye TMRM (n = 5, *** p = 0.0007). (c) Representative images of mitochondrial network of primary mes-
encephalic neurons immunostained with Tom20. (d,e) Alterations in mitochondrial network were cal-
culated with an ImageJ Macro tool (16 images from n = 4). (d) Number of mitochondrial individuals (n 
= 4, ** p = 0.007). (e) Number of mitochondrial network branches (n = 4, ** p = 0.0043). (f) Representative 
immunoblot for phospho-Drp1 levels. The blots were re-probed for TOM20 to confirm equal protein 
loading and mitochondrial fraction purity. (g) Densitometric analysis of phospho-Drp1 levels. Data 
are expressed relatively to Unt neurons (n = 4–3, * p = 0.0270). Scale bars = 21 µm. Data represent mean 
+ SEM. Statistical analysis was performed using Unpaired Student’s t-test. 

To determine autophagy, we used NH4Cl plus leupeptin (NL) to inhibit lysosomal hy-
drolases and accurately determine autophagic flux. We observed that LC3II levels increased 
upon bacteria exposure (Figure 4a,b; n = 4), but its levels did not increase after intraly-
sossomal protein degradation inhibition, which indicates a decrease in autophagic flux (Fig-
ure 4c; n = 4). Despite the marginal increase in the formation of mitophagosomes (Figure 
4d,e; 6 images from n = 3) and autolysosomes (Figure 4g,h; 6–8 images from n = 3), we clearly 
see deficient signaling either in the formation of mitophagosomes (Figure 4f; n = 3) or their 

Figure 3. Bacteria induce neuronal mitochondrial dysfunction and fragmentation. Primary mesen-
cephalic neuronal cultures were exposed to 1 × 106/mL bacteria (α-Proteobacteria) for 48 h. (a) Mi-
tochondrial ROS production was assessed using the fluorescent dye MitoPY1 (n = 4, ** p = 0.0029).
(b) Changes in mitochondrial membrane potential (∆Ψm) were assessed using the fluorescent cationic
dye TMRM (n = 5, *** p = 0.0007). (c) Representative images of mitochondrial network of primary
mesencephalic neurons immunostained with Tom20. (d,e) Alterations in mitochondrial network
were calculated with an ImageJ Macro tool (16 images from n = 4). (d) Number of mitochondrial
individuals (n = 4, ** p = 0.007). (e) Number of mitochondrial network branches (n = 4, ** p = 0.0043).
(f) Representative immunoblot for phospho-Drp1 levels. The blots were re-probed for TOM20 to
confirm equal protein loading and mitochondrial fraction purity. (g) Densitometric analysis of
phospho-Drp1 levels. Data are expressed relatively to Unt neurons (n = 4–3, * p = 0.0270). Scale
bars = 21 µm. Data represent mean + SEM. Statistical analysis was performed using Unpaired
Student’s t-test.

To determine autophagy, we used NH4Cl plus leupeptin (NL) to inhibit lysosomal
hydrolases and accurately determine autophagic flux. We observed that LC3II levels
increased upon bacteria exposure (Figure 4a,b; n = 4), but its levels did not increase after
intralysossomal protein degradation inhibition, which indicates a decrease in autophagic
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flux (Figure 4c; n = 4). Despite the marginal increase in the formation of mitophagosomes
(Figure 4d,e; 6 images from n = 3) and autolysosomes (Figure 4g,h; 6–8 images from n = 3),
we clearly see deficient signaling either in the formation of mitophagosomes (Figure 4f;
n = 3) or their fusion within the lysosome (Figure 4i; n = 3), which indicates a decreased
turnover of dysfunctional mitochondria.
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Figure 4. Mitophagy is differentially affected by bacterial exposure. Primary mesencephalic neuronal
cultures infected with 1 × 106/mL bacteria for 48 h in the presence or absence of lysosomal inhibitors
(NHCl + leupeptin; NL, last 4 h) were examined by immunoblotting. (a) Representative immunoblot
for LC3B-I and II levels. (b) Autophagic vacuoles basal levels (LC3-II basal densitometric values) were
determined (n = 4, Unt vs. NL,**** p < 0.0001; Unt vs. αProteobact, * p = 0.0473). (c) Autophagic flux
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was determined (ratio of LC3-II densitometric value of NL-treated samples over the corresponding
untreated samples (n = 4, Unt vs. αProteobact, **** p < 0.0001). The blots were re-probed for α-tubulin
to confirm equal protein loading. (d) Co-localization between autophagic vacuoles (labeled in green
with LC3B antibody) and mitochondria (labeled in red with COXII antibody) was visualized by
immunofluorescence (n = 6 images). Hoechst 33342-stained nuclei are in blue. (e) Percentage of LC3B
and COXII co-localization was calculated using Image J as described in Material and Methods (n = 3,
Unt vs. Unt + NL, *** p = 0.0009). (f) Assessment of LC3B and COXII co-localization as the ratio
between +NL/-NL treatments (n = 3, * p = 0.0487). (g), Co-localization between mitochondria (labeled
in green with Tom20 antibody) and lysosomes (labeled in red with Lamp1 antibody) was visualized
by immunofluorescence (n = 6–8 images). Hoechst 33342- stained nuclei are in blue. (h) Percentage
of Tom20 and Lamp1 co-localization was calculated using Image J as described in Material and
Methods. (n = 3, Unt vs. NL, * p = 0.0352; Unt vs. α-Proteobact, * p = 0.0427). (i) Assessment of
Tom20 and Lamp1 co-localization as the ratio between +NL/-NL treatments (n = 3, ** p = 0.0087).
Data represent mean + SEM. Scale bars = 10µm Statistical analysis was performed using Unpaired
Student’s t-test to compare NL treatments vs. respective control group and untreated cells versus
bacterial-exposed cells.

3. Discussions

The goal of this study was to investigate the potential influence of bacteria–mitochondria
communication on PD-related neuronal degeneration. This study reveals that an extracellu-
lar proteobacterium is capable of activating neuronal innate immunity, namely cytokine
production and α-Syn expression that ultimately target the mitochondria. Alterations
of neuronal mitochondria dynamics are crucial to PD neurodegenerative process, which
contributes to creating a positive feedback loop to further activate innate immunity.

Proteobacteria that represent one of the most diverse bacterial phyla are gram-negative
and LPS -producing bacteria [51] that have been proposed to be at the origin of mitochon-
dria [52,53]. Plasma membrane TLR4, also expressed in neurons [54], are activated by LPS
(endotoxin) to induce pro-inflammatory responses to invade pathogens [55]. This signaling
pathway culminates in the activation of NF-kB that will target inflammatory genes, such
as TNFα, Il-1β and IL-6, to trigger neuroinflammation and eliminate the bacterial aggres-
sor [56]. We have exposed mesencephalic neurons to an environmental proteobacterium
and observed an increase in TLR4 expression, which upon activation, induced the release
of pro-inflammatory cytokines, namely IL-1β, TNFα and IL-6. Our group has previously
shown, in pure cortical neurons and mesencephalic neurons, that a bacterial toxin (BMAA)
activated innate immunity through TLR4 signaling [11,32]. Moreover, we observed that
innate immunity activation in cortical neurons also led to an increased expression and ag-
gregation of Abeta peptide [32] and that mesencephalic neurons innate immunity activation
was correlated with an increased expression and aggregation of α-Syn [11]. Using a pro-
teobacterium strain as a challenger, our data clearly show an increase in α-Syn aggregation,
which corroborates the potential key role of α-Syn in neuronal innate immunity responses.
The activation of TLRs in non-immune cells such as neurons has a pivotal role in recog-
nizing exogenous and endogenous stimuli to trigger inflammatory responses that, in the
short run, might have protective effects, namely to clear protein oligomers such as α-Syn in
PD, delaying disease progression [56]. Indeed, an increase of pro-inflammatory markers in
the blood [57,58], brain parenchyma [59,60] and cerebrospinal fluid [61] in PD patients and
patients with other Synucleinopathies was observed, which indicates a chronic activation
of TLRs and neuroinflammation that may lead to neurodegeneration. Additionally, it is
believed that α-Syn misfolding and mitochondrial dysfunction may trigger neuroinflamma-
tion associated with PD [62]. The role of α-Syn is not yet completely understood, but upon
expression, it may oligomerize and translocate into the mitochondria, where it interferes
with mitochondrial respiration [63]. Indeed, mitochondrial dysfunction induced by α-Syn
has been demonstrated [47]. Moreover, in PD patients’ substantia nigra, accumulation of
α-Syn oligomers was correlated with mitochondrial complex I deficiency [64]. Further
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corroborating this data, we show that α-Syn enters the mitochondria after neuronal in-
nate immunity activation by a bacterial strain and induces its dysfunction. Relevant data
also revealed that other stressors, namely the bacteria toxin BMAA, also potentiate the
accumulation of α-Syn in the mitochondria and are associated with its dysfunction and
network fragmentation [11]. One prominent consequence of mitochondrial dysfunction is
the induction of its fragmentation in order to eliminate the defective parts of the network by
mitophagy and keep cellular homeostasis [65]. Mitochondrial dysfunction and consequent
fragmentation will expose DAMPs that initiate multiple inflammatory pathways [62]. Cells
developed efficient mechanisms to prevent auto-inflammatory or auto-immune responses
towards mitochondrial DAMPs, establishing a state of immune tolerance towards mitochon-
dria [53]. Indeed, an efficient mitophagy allows the removal of defective mitochondria [50]
but also plays a role in NLRP3 inflammasome pathway [52]. The activation of NLRP3
inflammasome requires two signals, the first related to TLR activation and production of
pro-IL1β, and the second signal is based on the detection of mitochondrial DAMPs that
leads to the activation of caspase-1 that cleaves the pro-IL1β, thus allowing the release of
these inflammatory cytokines in the extracellular milieu [52]. Our data show that despite
the fragmentation of the mitochondrial network after bacteria-induced innate immunity
activation, mitophagy is not functioning properly to avoid further activation of NLRP3
inflammasome. Previous data in PD models clearly show that mitochondrial dysfunction
impairs mitophagy due to altered microtubule-dependent traffic [13,42,66]. Chung and
coworkers showed that neuronal activation of TLR4 by activated microglia led to neuronal
autophagy impairment and α-Syn aggregate accumulation [67]. Nevertheless, it was previ-
ously demonstrated that neuronal α-Syn may be released to activate microglia. Activated
microglia will then degrade α-Syn by selective autophagy via TLR4 activation, which
induces transcriptional upregulation of p62/SQSTM1 through the NF-κB signaling path-
way [68]. Interestingly, recent data show that mitochondria and α-Syn may be transferred
between microglia cells [69], lowering dysfunctional mitochondria and α-Syn burden, thus
attenuating the inflammatory profile. Although we do not test this hypothesis, we postulate
that neurons may be initially involved in the neuroinflammation signaling pathway by
releasing dysfunctional mitochondria and α-Syn aggregates, eventually through extracel-
lular vesicles, to activate microglia cells. This initial activation of microglia might have
protective effects regarding the clearance of α-Syn, thus delaying disease progression while
chronic activation will lead to neurodegeneration.

Neuronal responses after exposure to proteobacteria clearly show a close interconnec-
tion between innate immunity activation and mitochondrial dysfunction [70], which allows
us to consider the key role of microbes in PD development. Recently, the existence of a
BrainBiota that may play a role in brain development and immunity was proposed [71]. It
was postulated that low-level bacteria would travel through the gut–brain axis and colonize
the brain during fetal development. Later in life, and upon BBB leakage, a characteristic
mark of PD, bacteria would reach the brain, change the BrainBiota and contribute to chronic
inflammation [71]. Our findings tend to support the hypothesis that translocation of PAMPs
(bacteria metabolites, bacterial vesicles or even bacteria) resulting from a dysbiotic leaky
gut in “gut-first” PD cases and their access to neurons of the central nervous system may
affect neuronal function through mitochondrial signaling and eventually trigger cellular
processes characteristic of PD neuropathology.

4. Materials and Methods

Materials are depicted in Table S1 and Experimental Flowchart in Figure S1 in
Supplementary Material.

4.1. Primary Mesencephalic Cultures Preparation and Treatments

Primary mesencephalic neuronal cultures were performed by harvesting the mesen-
cephalon of C57Bl/6 mice embryos brains at gestation day 14/15 and cultured as described
previously [72]. Embryos were collected in Hanks’ balanced salt solution (HBSS) [5.36 mM
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KCl, 0.44 mM KH2PO4, 137 mM NaCl, 4.16 mM NaHCO3, 0.34 mM NaH2PO4.H2O, 5 mM
glucose, 5.36 mM sodium pyruvate, 5.36 mM Hepes, 0.001% Fenol Red, (pH 7.2)] un-
der aseptic conditions. Brains were dissected and the mesencephala were carefully har-
vested and submerged in HBSS. Collected mesencephala were trypsinized (0.5 g/L) for
10 min at 37 ◦C. Trypsin action was halted with the addition of trypsin inhibitor (type
II-S; 0.75 g/L) in HBSS containing DNase I (0.04 g/L), followed by mechanical disso-
ciation. Cells were then centrifugated at 1000 rpm for 5 min at 4 ◦C. The pellet was
resuspended and washed in HBSS and centrifugated again at 1000 rpm for 5 min at 4 ◦C.
The pellet was then suspended in fresh Neurobasal medium supplemented with 2 mM
L-glutamine, 2% B-27 supplement, penicillin (100,000 U/L) and streptomycin (100 mg/L)
and 1% heat-inactivated FBS and seeded on poly-L-lysine (0.1 g/L)-coated dishes at a
density of 1.3 × 106 cells/mL. For mitochondrial membrane potential and mitochondrial
ROS production experiments, neurons were seeded on poly-L lysine (0.1 mg/mL)-coated
24-well plates at a density of 1.3 × 106 cells/mL. Cultures were grown at 37 ◦C in a fully hu-
midified air atmosphere containing 5% CO2. Half of the medium was changed every other
day to serum-free and antibiotic-free medium. At DIV3, cultures were treated with 1:2000
5-Fluoro-2′-deoxyuridine (FDU) to inhibit glial cell proliferation. For autophagy experi-
ments, 20 mM NH4Cl and/or 20 µM Leupeptin (Sigma, St. Louis, MO, USA) were added
to the culture medium 4h prior to protein extracts preparation. NH4Cl in combination with
Leupeptin allows for the blockage of several types of autophagy by increasing lysosomal
lumen pH. This increase halts the activity of lysosomal proteases activity, maintaining the
activity of the intracellular proteolysis systems [73].

4.2. Bacterial Strain, Culture Conditions and Treatment

The alphaproteobacterium strain used in this study belongs to the species Labrys
neptuniae, as confirmed from the 16s rRNA gene sequence (Figure S2 in Supplementary
Material) amplified with primers 27f and 1492R (Table S1) and sequenced (Eurofins). The
strain was streaked on a Tryptic Soy agar (TSA) plate and grown overnight at 35 ◦C. Bacte-
rial biomass (a loopful of cells) was then suspended in sterile PBS to a final OD600nm = 0.1
and administered to the neuronal cultures at a MOI = 10 for 48 h at 37 ◦C in a humidified
chamber with a 95% air/5% CO2 atmosphere. For all experimental procedures, controls
were performed in the absence of bacteria.

4.3. Cellular Extracts Preparation

Protein extracts were prepared for western blotting and assessment of innate immunity
pathway markers by ELISA as described in [11]. Mesencephalic neurons were washed
with PBS 1× and lysed in 1% Triton X-100 containing hypotonic lysis buffer (25 mM
HEPES, 2 mM MgCl2, 1 mM EDTA and 1 mM EGTA, pH 7.5 supplemented with 2 mM
sodium orthovanadate, 50 mM of sodium fluoride, 2 mM DTT, 0.1 mM PMSF and a 1:1000
dilution of a protease inhibitor cocktail from Sigma (St. Louis, MO, USA). Scrapped cellular
suspensions were frozen three times in liquid nitrogen and centrifuged at 20,000× g for
10 min. The supernatants were collected and stored at −80 ◦C until further use.

Mitochondrial fractions were prepared for α-Syn determination using an ELISA kit. To
this end, cell cultures were washed in PBS 1× and scraped in a buffer containing 250 mM
sucrose, 20 mM Hepes, 1 mM EDTA, 1 mM EGTA, supplemented with 2 mM sodium
orthovanadate, 50 mM of sodium fluoride, 0.1 mM PMSF, 2 mM DTT and 1:1000 dilution
of a protease inhibitor cocktail followed by manual homogenization. Cell suspensions
were then centrifuged at 492× g for 12 min at 4 ◦C and the resulting supernatant was
centrifuged again at 11,431× g for 20 min at 4 ◦C. The resulting pellet corresponding to
the mitochondrial fraction was resuspended in buffer solution and frozen three times in
liquid nitrogen.

To analyze innate immunity markers with Elisa kits, cytosolic fractions were prepared
by washing neuronal cultures with PBS 1× and lysing cells with lysis buffer (10 mM HEPES;
3 mM MgCl2; 1 mM EGTA; 10 mM NaCl, pH 7.5, supplemented with 2 mM DTT, 0.1 mM



Int. J. Mol. Sci. 2023, 24, 4339 11 of 16

PMSF and a 1:1000 dilution of a protease inhibitor cocktail) supplemented with 0.1% Triton
X-100. After scraping neurons, the suspensions were incubated on ice for 40 min and then
centrifuged at 2300× g for 10 min at 4 ◦C. The supernatant corresponding to the cytosolic
fraction was stored at −80 ◦C until further use. Protein content was assessed by using
Pierce™ BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) according to the
manufacturer’s instructions.

4.4. Western Blotting

Western blotting was performed as previously described in [13]. Samples were di-
luted in 6× sample buffer (4× Tris-Cl/SDS, pH 6.8, 30% glycerol, 10% SDS, 0.6 M DTT,
0.012% bromophenol blue) and boiled at 95 ◦C for 5 min. For α-Syn oligomers determina-
tion, samples were suspended in 2× PAGE sample buffer (40% glycerol, 2% SDS, 0.2 M
Tris-HCl pH 6.8, 0.005% Coomassie Blue) and loaded under non-denaturing conditions.
Ran gels were transferred onto PVDF membranes (Millipore, Billerica, MA, USA) and
blocked for 1 h with 3% BSA, 0.1% Tween in Tris-buffered solution (TBS) at RT. Primary
antibodies were incubated overnight at 4 ◦C with gentle shaking: 1:100 anti-TLR4 from
Santa Cruz Biotechnology (Santa Cruz, CA, USA), 1:100 monoclonal anti-α- Syn LB509
from Zymed Laboratories Inc. (South San Francisco, CA, USA); 1:1000 anti-phospho-Drp1
from Cell Signaling (Danvers, MA, USA); 1:1000 polyclonal anti-Tom20 from Santa Cruz
Biotechnology (Santa Cruz, CA, USA) and 1:1000 polyclonal anti-LC3B from Cell Signaling
(Danvers, MA, USA). 1:10,000 monoclonal anti-α-tubulin from Sigma (St. Louis, MO, USA),
1:5000 β-tubulin from Sigma (St. Louis, MO, USA) or 1:5000 β-actin from Sigma (St. Louis,
MO, USA) were used to normalize band intensities.

After primary incubation, membranes were washed with TBS-T three times for 5 min
each and then incubated with the appropriate secondary antibody for 2 h at RT. After
three washes with TBS-T, the chemical fluorescence of bands was enhanced with chemical
fluorescence reagent (ECF from GE Healthcare, Piscataway, NJ, USA). Membranes were
revealed using a Bio-Rad Chemidoc System. Western blot band densities were assessed
using Quantity One Software (Bio-Rad).

Band intensities were normalized to housekeeping genes (β-actin and α-tubulin were
used as cytosolic samples loading control and TOM20 for mitochondrial samples) and
relative densities were calculated against control conditions for each membrane.

4.5. Immunocytochemistry and Confocal Microscopy Analysis

For immunocytochemistry experiments, mesencephalic neurons were grown in Ibidi
8-well µ-Slides as described in [11]. Following bacteria exposure, cultures were washed
twice with PBS 1× and fixed with 4% paraformaldehyde for 20 min at RT. After fixation,
cells were washed twice in PBS 1× for 5 min each and permeabilized with 0.2% Triton X-100
in PBS for 20 min at RT. After three washes with PBS 1× for 5 min each, unspecific binding
was blocked with a 10% goat serum solution for 1 h at 37 ◦C. Primary antibodies were then
incubated overnight at 4 ◦C in a 1% goat serum solution: 1:100 polyclonal anti-Tom20 from
Santa Cruz Biotechnology (Santa Cruz, CA, USA); 1:400 rabbit monoclonal anti-LC3 XP®

from Cell Signaling (Danvers, MA, USA); 1:200 anti-SDHA from Abcam (Cambridge, UK)
and 1:100 anti-Lamp1 (clone H4A3) from the Developmental Studies Hybridoma Bank
(University of Iowa, Iowa City, IA, USA). After, cells were incubated with the respective
secondary antibodies: 1:250 Alexa Fluor 488 and 1:250 Alexa Fluor 594 from Molecular
Probes (Eugene, OR, USA). After three washes with PBS 1× for 5 min each, cells were
incubated with Hoechst 15 µg/µL for 15 min at RT. After two washes with PBS 1× for
5 min each, 4-88 Mowiol (Sigma; St. Louis, MO, USA) mounting medium was applied to
the wells.

Images were obtained on a Zeiss LSM 710 confocal workstation (Zeiss Microscopy,
Germany) using a Plan-Apochromat/1.4NA 63 lens. Tom20/Lamp1 and LC3/SDHA
co-localizations were evaluated using the JACoP plug-in of the ImageJ software as previ-
ously described [11]. First, threshold of images was obtained to improve image quality,
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and mitochondrial footprint was calculated. Then, mitochondrial networks were skele-
tonized to calculate the remaining parameters. For each condition, a minimum of 20 cells
were examined.

4.6. Evaluation of Mitochondrial Membrane Potential (∆ψm)

Mitochondrial membrane potential (∆Ψmit) was evaluated by using the tetramethyl-
rhodamine methyl ester dye (TMRM) (Molecular Probes, Eugene, OR, USA) [74]. This dye
enters cells through diffusion and accumulates essentially in the mitochondria due to its
negatively charged lumen. As TMRM is positively charged, functional mitochondria are
able to retain this probe. Thus, a decrease in TMRM retention associates with a decreased
∆ψm. After treatments, neuronal cultures with PBS 1× and loaded with 300 nM TMRM
in Krebs buffer (132 mM NaCl, 4 mM KCl, 1.4 mM MgCl2, 6 mM glucose, 10 mM HEPES,
10 mM NaHCO3 and 1 mM CaCl2, pH = 7.4) for 2 hr at 37 ◦C in a humidified chamber and
protected from light. Basal readings were recorded for the first 5 min at 37 ◦C (λex = 540 nm
and λem = 590 nm). 1 µM FCCP (protonophore) and 2 µg/mL oligomycin (inhibitor of
H+ transporting ATP synthase and an inhibitor of Na+/K+ transporting ATPase) were
then added to each well to allow for maximal mitochondrial depolarization and to prevent
ATP synthase reversal, respectively. Readings were performed for another 3 min at 37 ◦C.
TMRM retention ability determined as the difference between the total fluorescence (after
depolarization) and the basal value of fluorescence. Results were expressed as a percentage
of the dye retained within the untreated WT neurons. Measurements were performed using
a Spectramax Plus 384 spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA).

4.7. Determination of Mitochondrial-Derived Reactive Oxygen Species

MitoPy1 is a fluorescent probe that measures the concentration of hydrogen peroxide
(H2O2) in mitochondria. After treatments, neuronal cultures were incubated with 300 nM
of MitoPY1 dye for 1h in Krebs medium at 37 ◦C as described in [32]. Basal fluorescence
readings were performed for 5 min (λexc = 503 nm; λem = 540 nm). Neurons were
then incubated with 5 µM of rotenone (complex I inhibitor) to determine mitochondrial
vulnerability, and measurements were taken for the following 30 min (λexc = 503 nm;
λem = 540 nm). Amplitudes were obtained by subtracting basal readings from peak values
under rotenone challenge and were expressed in relative values to untreated neurons.

4.8. Caspase-1 Activity Assay

Caspase.1 activation was assessed as described in [32]. Briefly, 40 µg of protein
extracts were incubated in a reaction buffer (25 mM HEPES pH 7.5, 0.1% (w/v) 3[(3-
cholamidopropyl)dimethylammonio]-propanesulfonic acid (CHAPS), 10% (w/v) sucrose,
2 mM DTT) with 100 µM of the colorimetric substrate for caspase-1 from Sigma Chemical
Co. (St. Louis, MO, USA) for 2 h at 37 ◦C. Reaction extent was measured at 405 nm using a
Spectramax Plus 384 spectrophotometer (Molecular Devices, Sunnyvale, CA, USA).

4.9. Inflammatory Markers and α-Syn Oligomers Determination by ELISA

To determine the cytokine levels in neuronal extracts, 25 µg of protein were used
for each ELISA kit. NFκB p65, IL-1β, TNF-α, IL-6 and α-Syn oligomers ELISA kits were
used per the manufacturer’s instructions as described in [11]. Absorbance was assessed at
450 nm in a SpectraMax Plus 384 multiplate reader. Results were expressed as pg/mL for
all markers except results for NFκB, which were expressed as µg/mL protein.

4.10. Statistical Analysis

All the results were obtained from at least 3 independent experiments done in du-
plicates. All data are represented as the mean ± SEM. Normality distribution analysis
(Shapiro-Wilk’s test) was applied to choose the subsequent parametric or non-parametric
tests. Unpaired Student’s t-test was used, and significant values are shown as: * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.
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