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1. Introduction
The problem of approximating density or regression functions is in data

analysis, and there exists an extensive literature both for independent and
dependent data. These problems are usually addressed in IRd, where the
Lebesgue measure plays an essential role, particularly for the density esti-
mation, but it also appears indirectly in some approaches of regression es-
timation. In infinite dimensional spaces there is no Lebesgue measure nor
any analogue that may be suitable to replace it. As a matter of fact, the
invariance under translations of the Lebesgue measure plays an important
role in the treatment of the kernel estimators. An abstracts measure ana-
logue with this property would be a Haar measure, but this does not gen-
erally exists in an infinite dimensional space, even if it is a Hilbert space.
So, even mathematically, there are some intrinsic features to be addressed
when approaching these estimation problems in infinite dimensional spaces.
Moreover, in recent years, there has been increasing interest in estimation
based on functional data (see Ramsay, Silverman [17] for some case stud-
ies), so this framework has received more attention from the statisticians:
for example, Ferraty, Vieu [6, 7] considered regression estimation and time
series prediction for dependent functional data, Dabo-Niang [5] studied den-
sity estimation in Banach space with an application to the estimation of the
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density of a diffusion process with respect to the Wiener measure, here for
independent functional data, or Masry [16] who proved the mean square con-
vergence and the asymptotic normality for the regression for strong mixing
functional data. The above mentioned articles always considered kernel esti-
mators. There exist older approaches to these problems using histograms is
abstract metric spaces: Geffroy [10] for the regression with independent data,
and later Jacob, Oliveira [13, 15] using an approach through point processes
with independent data for the first reference and associated functional data
for the second, and BenSäıd, Oliveira [2] using the same framework but for
strong mixing data. In [2, 13, 15] the approach used dealt simultaneously
with density estimation and regression estimation.

The present article uses the approach suggested by the point process frame-
work of [2, 13, 15] to prove the almost complete convergence and the as-
ymptotic normality of the kernel estimator for the density and also for the
regression. This means proving the asymptotic unbiasedness of the estima-
tors and prove the convergence to zero of the centered estimator. For the
regression this is complemented with a suitable decomposition of the quo-
tient defining the estimator, that reduces the analysis to the treatment of
two terms, one of which is a density estimator and the other is, in fact, quite
similar. This decomposition has been used in Bensäıd, Fabre [1], Bensäıd,
Oliveira [2], Ferrieux [8] and Jacob, Oliveira [13, 15]. We assume some mild
conditions on the kernel function, which does not have to be a density but
will be supposed nonnegative, some regularity on conditional first and second
moments, and a suitable representation of the distribution of the functional
variables. When dealing with dependent samples, we assume the strong mix-
ing coefficients decrease polynomially with convenient decrease rate. The
almost complete convergence is proved under assumptions that are similar
to those known for the finite dimensional framework, both for independent or
mixing samples. The asymptotic normality assumes a Lindeberg hypothesis,
for independent samples, and a convenient decrease rate on the mixing coeffi-
cients, that depends only on the behaviour of a volume parameter associated
to the representation of the distribution of the functional variables.

2. Definitions and assumptions
On the sequel, let (Xi, Yi), i ≥ 1, be a random process of equally distributed

random elements, where the variables Yi, i ≥ 1, are nonnegative real valued,
and the variables Xi, i ≥ 1, take values in some normed space S. Let as
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define, for each x ∈ S, the estimators

f̂n(x) =
1

nφ(h)

n∑
i=1

K

(
‖x−Xi‖

h

)
,

ĝn(x) =
1

nφ(h)

n∑
i=1

YiK

(
‖x−Xi‖

h

)
,

where K is a real valued function, h is bandwidth parameter depending on n
(we should have written hn, but we choose to drop the subscript for simplicity
of the notation) and φ is a function to be described later. The analogy with
the IRd framework is obvious, and makes clear the role this function φ plays.
Further, let

r̂n(x) =
ĝn(x)

f̂n(x)
.

This estimator, that does no longer depend on φ, is the Nadaraya-Watson
estimator proposed by Ferraty, Vieu [7], and also studied by Masry [16].

The following lemma is used to separate the numerator and the denomina-
tor of r̂n(x).

Lemma 2.1 (Jacob, Niéré [12]). Let Z1 and Z2 be nonnegative integrable
random variables. Then, for ε > 0 small enough,{∣∣∣∣Z1

Z2
− IEZ1

IEZ2

∣∣∣∣ > ε

}
⊂
{∣∣∣∣ Z1

IEZ1
− 1

∣∣∣∣ > ε

4

IEZ2

IEZ1

}
∪
{∣∣∣∣ Z2

IEZ2
− 1

∣∣∣∣ > ε

4

IEZ2

IEZ1

}
.

Using the lemma it follows that, for ε > 0 small enough,{∣∣∣∣∣ ĝn(x)

f̂n(x)
− IEĝn(x)

IEf̂n(x)

∣∣∣∣∣ > ε

}
⊂
{
|ĝn(x)− IEĝn(x)| >

ε

4
IEf̂n(x)

}
∪

{∣∣∣f̂n(x)− IEf̂n(x)
∣∣∣ > ε

4

(IEf̂n(x))
2

IEĝn(x)

}
.

(1)

This means that, as the almost complete convergence is regarded, it is enough
to establish the almost complete convergence to zero of ĝn(x)− IEĝn(x) and

f̂n(x)− IEf̂n(x).
We now introduce the main assumptions to be used throughout the article.
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(K1): The function K is bounded nonnegative with support [0, 1]; we
denote M = supu∈[0,1]K(u).

(D1): There exist functions φ(h), differentiable and satisfying
limh→0 φ(h) = 0, and f(x) such that P(‖x−X ‖ ≤ h) = f(x)φ(h).

Assumption (D1), without the differentiability of φ, has been used in Gasser,
Hall, Presnell [9], Masry [16] and, in a stronger form, in Ferraty, Vieu [7].
The function f(x) is interpreted as a probability density, while φ may be
interpreted as a volume parameter. This representation holds when S = IRd,
where φ(h) ∼ hd.

In order to prove the asymptotic unbiasedness of the estimators we need
to assume the following, linking the kernel and the volume parameter.

(K2):

h

φ(h)

∫
[0,1]

K(u)φ′(uh) du −→ 1,

h

φ(h)

∫
[0,1]

K2(u)φ′(uh) du −→ c2.

The fact the we require the convergence to 1 in the first of these two con-
ditions, is just a matter of a convenient normalization of K. Note that this
assumption is independent of the dimension of the space. This means that
our results, remaing true for finite dimensional spaces, permit different nor-
malizations of the kernel estimator other than the usual ones. It is easy to
check that these assumptions on K can deal with a polynomially decreas-
ing φ, as is the case for IRd with the euclidean norm, but can also resist to
exponentially decreasing φ, as it might happen in infinite dimension.

Regarding the conditional moments of the variable Y we will assume the
following.

(R1): The functions r(x) = IE(Y |X = x) and g2(x) = IE(Y 2|X = x)
are continuous.

(M1): There exists a constant M1 > 0 such that, for every l ≥ 2,

IE(Y l|X = x) ≤M l
1l!g2(x).

Assumption (M1) is a conditional Cramer hypothesis. It has been used in
the context of regression in Geffroy [11], for example.
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We start by stating and proving some asymptotic results for the first and
second moments of f̂n(x). This first lemma will play the role of the classical
Bochner Lemma in finite dimension.

Lemma 2.2. Suppose (K1), (K2) and (D1) hold. Then

IEf̂n(x) =
1

φ(h)
IEK

(
‖x−X ‖

h

)
−→ f(x),

1

φ(h)
IEK2

(
‖x−X ‖

h

)
−→ c2f(x).

If we suppose further that

nφ(h) −→ +∞, (2)

then

Var
(
f̂n(x)

)
−→ 0.

Proof: Write the mathematical expectations as integrals over [0, 1]. Then

1

φ(h)
IEK

(
‖x−X ‖

h

)
=

h

φ(h)

∫
[0,1]

K(z)f(x)φ′(zh) dz,

from which the result is immediate. The other convergence follows analo-
gously and the convergence of the variance follows now readily.

The next lemma states similar results concerning ĝn(x).

Lemma 2.3. Suppose (K1), (K2), (D1) and (R1) hold. Then

IEĝn(x) =
1

φ(h)
IE

[
Y K

(
‖x−X ‖

h

)]
−→ r(x)f(x),

1

φ(h)
IE

[
Y 2K2

(
‖x−X ‖

h

)]
−→ c2g2(x)f(x).

If we suppose further that (2) is satisfied, then

Var
(
ĝn(x)

)
−→ 0.
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Proof: The proof follows the same arguments as the proof of the previous
lemma, by writing

IEĝn(x) =
1

φ(h)
IE

[
r(X)K

(
‖x−X ‖

h

)]
=

1

φ(h)

∫
r(x)K

(
‖x− u‖

h

)
PX(du)

+
1

φ(h)

∫
(r(x)− r(u))K

(
‖x− u‖

h

)
PX(du),

and remarking that

1

φ(h)

∫
(r(x)− r(u))K

(
‖x− u‖

h

)
PX(du)

≤ sup
‖x−u‖≤h

|r(x)− r(u)| 1

φ(h)

∫
K

(
‖x− u‖

h

)
PX(du) −→ 0,

as r is continuous.

These two lemmas imply the asymptotic unbiasedness of r̂n(x) = ĝn(x)
f̂n(x)

.

3. Asymptotics for independent samples
Suppose throughout this section, that the random elements (Xi, Yi), i ≥

1, are independent. We prove the almost complete convergence, and the
asymptotic normality of the estimators.

In order to prove the almost complete convergence we will apply a conve-
nient exponential inequality. For easier reference we quote here its general
form. For details we refer the reader to Lemma 1 in Jacob, Oliveira [14]

Lemma 3.1. Let Z be a nonnegative valued random variable with finite
Laplace transform on [−δ, δ]. Suppose Z1, Z2, . . . are independent copies of
Z. Then, for every u > 0,

P

(
1

n

∣∣∣∣∣
n∑

i=1

Zi − IEZ

∣∣∣∣∣ > u

)
≤ 2 exp

(
−ntu

2

)
, (3)

where t = min
(
δ, u

2c

)
and c =

∑∞
l=2

δl−2

l! IEZ
l.

Note that assumption (M1) implies the existence of Laplace transforms of
each term intervening in the definition of ĝn(x), as K is supposed bounded.
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3.1. Almost complete convergence. We will prove the almost complete
convergence to zero of f̂n(x)− IEf̂n(x), which corresponds to the estimation
of the density, and ĝn(x) − IEĝn(x), from which follows the convergence of
r̂n(x), using the inclusion (1).

Theorem 3.2. Suppose the functional density f(x) > 0, that (K1), (K2),
(D1), (R1) and (M1) hold. If

nφ(h)

log n
−→ +∞, (4)

then f̂n(x)− IEf̂n(x) and ĝn(x)− IEĝn(x) both converge almost completely to
zero. The same holds for r̂n(x)− IEr̂n(x)(x).

Proof: Note that the Laplace transforms of K
(
‖x−X‖

h

)
and Y K

(
‖x−X‖

h

)
both

exist on any interval of the form [−δ, δ], as follows from (K1) and (M1).
Now, writing

P
(∣∣∣f̂n(x)− IEf̂n(x)

∣∣∣ > ε
)

= P

(
1

n

∣∣∣∣∣
n∑

i=1

K

(
‖x−Xi‖

h

)
− IEK

(
‖x−Xi‖

h

)∣∣∣∣∣ > εφ(h)

)
,

we may apply Lemma 3.1, where, for n large enough, we will have t = εφ(h)
2c ,

where c =
∑∞

l=2
δl−2

l! IEK
l
(
‖x−X‖

h

)
. As

IEK l

(
‖x−X ‖

h

)
=

∫
[0,h]

K l

(
t

h

)
f(x)φ′(t) dt ≤M lf(x)φ(h),

we have εφ(h)
2c > ε

2c(x)f(x) , where c(x) =
∑∞

l=2
δl−2

l! M
l. These choices lead to

the inequality

P
(∣∣∣f̂n(x)− IEf̂n(x)

∣∣∣ > ε
)
≤ exp

(
− nε2φ(h)

4c(x)f(x)

)
,

so the almost complete convergence follows from (4).
As what regards ĝn(x)− IEĝn(x) the arguments are similar, excepting the

control of the argument of the exponential when applying Lemma 3.1. A
direct application of Lemma 3.1 would lead to the choice of the constant
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c =
∑∞

l=2
δl−2

l! IE
[
Y lK l

(
‖x−X‖

h

)]
. Now, using (M1) we have

IE

[
Y lK l

(
‖x−X ‖

h

)]
= IE

[
IE(Y l|X = x)K l

(
‖x−X ‖

h

)]
≤M l

1l!IE

[
g2(X)K l

(
‖x−X ‖

h

)]
≤M l

1l!

(
g2(x) + sup

‖u−x‖≤h

|g2(u)− g2(x)|

)
f(x)φ(h)

≤ 2M l
1l!g2(x)f(x)φ(h),

so the arguments of the previous case still hold, with the c(x) replaced by
g2(x)(MM1)2

1−δMM1
, provided that δMM1 < 1, which is always possible.

The previous theorem identifies an almost sure convergence rate. In fact,
it suffices to suppose that ε also depends on n and define it so that we find
a convergent series. It is easily checked that the rate obtained is of order(

log n
nφ(h)

)1/2
.

3.2. Asymptotic normality. We will start by proving the asymptotic
normality of the random vector√

nφ(h)
(
f̂n(x)− IEf̂n(x), ĝn(x)− IEĝn(x)

)
. (5)

The corresponding result for the estimator r̂n(x) will then follow by applying
the δ-method to the function θ(u, v) = v

u .

Theorem 3.3. Suppose that (K1), (K2), (D1) and (R1) hold and that
IEY 2 <∞. If, for every constant c > 0,

1

φ(h)

∫
{Y 2>cnφ(h)}

Y 2 dP −→ 0, (6)

and

nφ2(h) −→ +∞, (7)
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then, the random vector (5) converges in distribution to a centered Gaussian
random vector with covariance matrix

Γ = c2f(x)

 1 r(x)

r(x) g2(x)

 . (8)

Proof: The proof consists on applying the Cramer-Wold Theorem to the
random vector (5). For this purpose, let a, b ∈ IR, and define

Zi,n =
1√
nφ(h)

[
a

(
K

(
‖x−Xi‖

h

)
− IEK

(
‖x−Xi‖

h

))

+b

(
YiK

(
‖x−Xi‖

h

)
− IE

[
YiK

(
‖x−Xi‖

h

)])]
,

so that
∑n

i=1 Zi,n is the linear combination of the coordinates of (5) needed
to apply the Cramer-Wold Theorem. We first verify that the variance of this
sum is convergent. In fact,

Var

(
n∑

i=1

Zi,n

)

=
1

φ(h)
Var

[
aK

(
‖x−X ‖

h

)
+ bY K

(
‖x−X ‖

h

)]
=

a2

φ(h)
Var

[
K

(
‖x−X ‖

h

)]
+

b2

φ(h)
Var

[
Y K

(
‖x−X ‖

h

)]
+

2ab

φ(h)
Cov

(
K

(
‖x−X ‖

h

)
, Y K

(
‖x−X ‖

h

))
.

The terms with the variances converge to c2f(x) and c2g2(x)f(x), respec-
tively, repeating the arguments used in the proofs of Lemmas 2.2 and 2.3.



10 P. E. OLIVEIRA

As for the remaining term,

1

φ(h)
Cov

(
K

(
‖x−X ‖

h

)
, Y K

(
‖x−X ‖

h

))

=
1

φ(h)
IE

[
Y K2

(
‖x−X ‖

h

)]
−φ(h)

1

φ(h)
IE

[
K

(
‖x−X ‖

h

)]
1

φ(h)
IE

[
Y K

(
‖x−X ‖

h

)]
.

Again, it is easy to check that the first term converges to c2r(x)f(x) while
the second one converges to zero. Thus, we finally have,

Var

(
n∑

i=1

Zi,n

)
−→ c2f(x)

(
a2 + b2g2(x) + 2ab r(x)

)
.

So, to apply the Lindeberg Theorem, it is enough to verify that, for every
ε > 0,

n∑
i=1

∫
{Z2

i,n>ε2Var(
∑n

i=1 Zi,n)}
Z2

i,n dP −→ 0. (9)

Using the Cauchy-Schwarz inequality, we have

Z2
i,n ≤

4 max(a2, b2)

nφ(h)

[
K2
(
‖x−Xi‖

h

)
+ IE2

(
K

(
‖x−Xi‖

h

))
+Y 2K2

(
‖x−Xi‖

h

)
+ IE2

(
Y K

(
‖x−Xi‖

h

))]
(10)

Let us first simplify the integration set appearing in (9). For simplicity, put

ε′ = ε2c2f(x)(a2+b2g2(x)+2ab r(x))
8 max(a2,b2) , and let A(Xi) represent the expression within

square brackets in (10). Then, the integration set of (9) is included in

{A(Xi) > ε′nφ(h)} .

We may neglect the terms with the mathematical expectations. In fact,
rewriting

1

nφ(h)
IE2
(
K

(
‖x−Xi‖

h

))
=
φ(h)

n

(
1

φ(h)
IEK

(
‖x−Xi‖

h

))2

−→ 0.
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Analogously, we conclude that

1

nφ(h)
IE2
(
Y K

(
‖x−Xi‖

h

))
−→ 0

This means that the integration set of (9) is still included in{
K2
(
‖x−Xi‖

h

)
+ Y 2K2

(
‖x−Xi‖

h

)
>
ε′

2
nφ(h)

}
⊂
{
K2
(
‖x−Xi‖

h

)
>
ε′

4
nφ(h)

}
∪
{
Y 2K2

(
‖x−Xi‖

h

)
>
ε′

4
nφ(h)

}
.

As K is bounded, and (7) implies that nφ(h) −→ +∞, the first of these two
sets is, for n large enough, empty. The second one is included in{

Y 2 >
ε′

4M 2 nφ(h)

}
.

Now we seek for a convenient upper bound for the integrand function in (9),
using again (10). For the same reason as before, the terms involving the
mathematical expectations converge to zero, so we are left with

1

φ(h)

∫
{Y 2>c′′nφ(h)}

K2
(
‖x−X ‖

h

)
+ Y 2K2

(
‖x−X ‖

h

)
dP,

where c′′ = ε′

4M2 . As K is bounded by M , this integral is less or equal than

M 2

φ(h)
P
(
Y 2 > c′′nφ(h)

)
+

M 2

φ(h)

∫
{Y 2>c′′nφ(h)}

Y 2 dP.

The second term converges to zero according to (6). Finally, using Markov’s
inequality,

1

φ(h)
P
(
Y 2 > c′′nφ(h)

)
≤ IEY 2

c′′nφ2(h)
−→ 0,

according to (7).

Applying now the δ-method to the function θ(u, v) = v
u , we get the asymp-

totic normality for the regression estimator r̂n(x).

Theorem 3.4. Suppose all the assumptions of Theorem 3.3 are satisfied.
Then √

nφ(h)
(
r̂n(x)− IEr̂n(x)

)
d−→ N

(
0, c2

(
g2(x)−

r2(x)

f(x)

))
.
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4. Strong mixing samples
Suppose in this section that the random elements (Xi, Yi), i ≥ 1, are strong

mixing with coefficients α(n). To prove the almost complete convergence and
the asymptotic normality as before, we need some further assumptions and
a suitable version of the exponential inequality quoted in Lemma 3.1.

Let us introduce some assumptions needed to take care of the dependence.

(D2): There exist functions ψ(h), satisfying limh→0 ψ(h) = 0, and f2(x)
such that, for every distinct i, j ≥ 1,

P(‖x−Xi‖ ≤ h, ‖x−Xj ‖ ≤ h) = f2(x)ψ(h).

(R2): For each i, j ≥ 1, let sij(u, v) = IE(YiYj|Xi = u,Xj = v) and
s∗ij(u, v) = IE(Yj|Xi = u,Xj = v). Each of these set of functions is
equicontinuous with respect to i, j, that is, for each x ∈ S fixed,

sup
i,j≥1

sup
‖x−u‖≤h,‖x−v‖≤h

|sij(u, v)− sij(x, x)| −→ 0,

sup
i,j≥1

sup
‖x−u‖≤h,‖x−v‖≤h

∣∣s∗ij(u, v)− s∗ij(x, x)
∣∣ −→ 0.

(α1): The mixing coefficients satisfy α(n) ∼ n−β, for some β > 0.

As before, we now quote the version of the exponential inequality we will
be using. For details we refer the reader to Bensäıd, Fabre [1].

Lemma 4.1. Let Zi, i ≥ 1, be a strong mixing sequence of real random
variables with Laplace transforms uniformly bounded on some interval [−δ, δ].
Then, for every n ≥ 2, γ ≥ 2, ε > 0 and p ≤ n/2, we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

Zi − IEZi

∣∣∣∣∣ > ε

)

≤ 6 exp

(
−ntε

30p

)
+ 6

n

p

(
10Mγ

ε
+ 1

)γ/(2γ+1)

(α(p))2γ/(2γ+1),

(11)

where Mγ = supi≥1 ‖Zi‖γ, t = min
(

δ
2 ,

ε
3c

)
and c = 4 supi≥1

∑∞
l=2

δl−2

l! IE |Zi|l.

Finally, we quote one more general result concerning strong mixing se-
quences of random vectors, that will be used when proving the asymp-
totic normality. This a modification of the well known Bradley’s coupling
Lemma [4], due to Rhomari [18] (see Lemma 1.2 in Bosq [3] for an easier to
find reference).
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Lemma 4.2. Let (T,W ) be a IRd × IR valued random vector such that W ∈
Lθ, for some θ ∈ [1,+∞]. Let c ∈ IR be such that ‖W + c‖θ > 0 and
u ∈ (0, ‖W + c‖θ]. Then, there exists a random variable W ∗ such that

(a) W ∗ has the same distribution as W and is independent of T ,

(b) P(|W ∗ −W | > u) ≤ 11
(
‖W+c‖θ

u

)θ/(2θ+1)
(α(σ(T ), σ(W ))2θ/(2θ+1),

where α(σ(T ), σ(W )) is the strong mixing coefficient between the two given
σ-algebras.

We may now proceed to the proof of the convergence and asymptotic nor-
mality

4.1. Almost complete convergence. The guiding line of the approach is
the same as the one used for the independent case. That is, using the inclu-
sion (1) we reduce the convergence of r̂n(x)− IEr̂n(x) at the convergence of

both f̂n(x)−IEf̂n(x) and ĝn(x)−IEĝn(x), and use the exponential inequality
of Lemma 4.1.

Theorem 4.3. Suppose the functional density f(x) > 0, that (K1), (K2),
(D1), (R1), (M1) and (α1) hold, with β > 15/4, for the later. If φ(h) ∼
n−1+η with η > 24/(9+4β), then f̂n(x)−IEf̂n(x) and ĝn(x)−IEĝn(x) converge
almost completely to zero. The same holds for r̂n(x)− IEr̂n(x).

Proof: As the assumptions imply the Laplace transforms exist on every in-
terval, we may fix δ, defined in Lemma 4.1, as it suits our needs. To apply

(11) we choose γ = 2, so that Mγ ≤ 2M . Also, for n large enough, t = εφ(h)
3c

and c = 4
∑∞

l=2
δl−2

l! IEK
l
(
‖x−X‖

h

)
≤ 4f(x)φ(h)

∑∞
l=2

δl−2M l

l! =: φ(h)c′. Finally,

in order to use the exponential inequality (11), choose p =
√
nφ(h), to find

P(
∣∣∣f̂n(x)− IEf̂n(x)

∣∣∣ > ε)

≤ 6 exp

(
−n

1/2 ε2φ1/2(h)

90c′

)
+ 6

n1/2

φ1/2(h)

(
10M

εφ(h)
+ 1

)2/5

n−2β/5φ−2β/5(h).

The second term on the right behaves like n
5−4β

10 φ−
9+4β

10 . It is now easy to
check that, with the choice made for the sequence φ(h), this defines a con-
vergent series. Also nφ(h) −→ +∞, so that the first term also defines a
convergent series. The assumption made on β allows the choice of some η
such that φ(h) −→ 0. The convergence of ĝn(x) − IEĝn(x) follows the same
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arguments with slightly different control on Mγ and the constant c, which is
accomplished using (M1).

4.2. Asymptotic normality. In this section we prove the asymptotic nor-
mality of the random vector (5) following the approach used in the proof of
Theorem 1.7 in Bosq [3], based on a large-block small-block decomposition
of the sum and a coupling argument for the large-blocks using Lemma 4.2.
As for the independent case, the result for the estimator r̂n(x) follows using
the δ-method.

Let us introduce some notation used for the block decomposition. Let
a, b ∈ IR and define, for each n ∈ IN and i = 1, . . . , n,

Ti,n =
1√
φ(h)

[
a

(
K

(
‖x−Xi‖

h

)
− IEK

(
‖x−Xi‖

h

))

+b

(
YiK

(
‖x−Xi‖

h

)
− IE

[
YiK

(
‖x−Xi‖

h

)])]
.

Consider now sequences pn and qn of integers such that pn + qn < n, and
define rn as the largest integer less or equal than n

pn+qn
(we will drop the

explicit reference to the subscript n, for simplicity). We will suppose that
r ∼ nc, p ∼ n1−c and q ∼ nd, with c, d ∈ (0, 1) suitably chosen. Let

V1,n = T1,n + · · ·+ Tp,n, V ′
1,n = Tp+1,n + · · ·+ Tp+q,n,

V2,n = Tp+q+1,n + · · ·+ T2p+q,n, V ′
2,n = T2p+q+1,n + · · ·+ T2(p+q),n,

...
...

Vr,n = T(r−1)(p+q)+1,n + · · ·+ Trp+(r−1)q,n, V ′
r,n = Trp+(r−1)q+1,n + · · ·+ Tr(p+q),n.

Finally, define

Rn = Tr(p+q)+1,n + · · ·+ Tn,n.

Theorem 4.4. Suppose that (K1), (K2), (D1), (D2), with ψ(h) ≤ c1φ
2(h),

(R1), (R2), (M1) hold. Suppose also that there exists a > 1 such that

nφa(h) −→ +∞, (12)

and (α1) holds with

β >
3a

a− 1
. (13)
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Then, the random vector√
nφ(h)

(
f̂n(x)− IEf̂n(x), ĝn(x)− IEĝn(x)

)
converges in distribution to a centered Gaussian vector with covariance ma-
trix Γ given by (8).

Proof: The plan of the proof is as follows: couple the large-blocks Vi,n with
independent variables, control the distance between the large-blocks and the
coupling variables, prove a Lyapounov Theorem for the coupling variables,
and prove that the small-blocks and the remaining term are asymptotically
negligible.

Step 1. Coupling and controlling the distance. Using recursively Lemma
4.2, with θ = 2, we construct independent random variables W1,n, . . . ,Wr,n,
with distributions PWi,n

= PVi,n
, and such that

P (|Vj,n −Wj,n| > un) ≤ 11

(
‖Vj,n + cn‖2

un

)2/5

(α(q))4/5, (14)

where un ∈ (0, ‖Vj,n + cn‖2]. Now, according to the definition of Ti,n,

‖Ti,n‖2
2

=
1

φ(h)
Var

(
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

))
=

a2

φ(h)
Var

(
K

(
‖x−Xi‖

h

))
+

b2

φ(h)
Var

(
YiK

(
‖x−Xi‖

h

))
+

2ab

φ(h)
Cov

(
K

(
‖x−Xi‖

h

)
, YiK

(
‖x−Xi‖

h

))
.

The first two terms have been shown to converge to a2c2f(x) and b2g2(x)f(x),
respectively. Separating the two mathematical expectations of the covariance
in the third term, it is easy to verify that, as for the independent case, it
converges to 2abc2 r(x)f(x). That is

‖Ti,n‖2
2 −→ c2f(x)

(
a2 + b2g2(x) + 2ab r(x)

)
=: B.

We apply now the inequality in (b) of Lemma 4.2, with the constant cn =
3pB1/2. With this choice, we have

pB1/2 ≤ ‖Vj,n + cn‖2 ≤ 5pB1/2,
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so that, for n large enough,

P (|Vj,n −Wj,n| > un) ∼
p2/5(α(q))4/5

u
2/5
n

. (15)

Finally, at this first step of the proof of the theorem, we look at

∆n =

∑r
j=1 Wj,n
√
rp

−
∑r

j=1 Vj,n
√
rp

,

which verifies, using (15),

P (|∆n| > ε) ≤
r∑

j=1

P
(
|Vj,n −Wj,n| > ε p1/2 r−1/2

)
∼ r6/5p1/5(α(q))4/5,

that is, taking into account the choices made for the block decomposition
sequences and (α1),

P (|∆n| > ε) ∼ n
5c+1−4βd

5 .

This probability converges to zero provided that

β >
5c+ 1

4d
. (16)

Step 2. The Lyapounov Theorem for the coupling variables. To prove the
Central Limit Theorem for (rp)−1/2 ∑r

j=1 Wj,n, we will prove that, for some
ρ > 2,

zn =

∑r
j=1 IE(|Wj,n|ρ)

(rVar(W1,n))ρ/2 −→ 0. (17)

Let us first describe Var(W1,n). It is obvious that Var(W1,n) = Var(V1,n), so
we look at

1

p
Var(V1,n)

=
1

pφ(h)

p∑
i,j=1

Cov

(
aK

(
‖x−Xi‖

h

)
+ bYiK

(
‖x−Xi‖

h

)
, (18)

aK

(
‖x−Xj ‖

h

)
+ bYjK

(
‖x−Xj ‖

h

))
.

The sum is now separated into two sums: the first where i = j and the
second one for indexes satisfying i 6= j. The term corresponding to the first



ESTIMATION FOR FUNCTIONAL DATA 17

of these two sums is equal to

1

φ(h)
Var

(
aK

(
‖x−X ‖

h

)
+ bY K

(
‖x−X ‖

h

))
,

which has been shown to converge to B = c2f(x)
(
a2 + b2g2(x) + 2ab r(x)

)
.

We now prove that, under our assumptions, the other sum, with the indexes
verifying i 6= j, converges to zero. As the variables Yi and the function K are
nonnegative valued, it is enough to prove the convergence to zero without
the real constants a and b (just replace them by the largest absolute value).
To obtain an upper bound we expand the covariance using the bilinearity
and proceed by bounding each term. We have then, using (D2), together
with the assumption that ψ(h) ≤ c1φ

2(h), and (R2), where B(x, h) = {u ∈
S : ‖x− u‖ ≤ h},

Cov

(
K

(
‖x−Xi‖

h

)
, K

(
‖x−Xj ‖

h

))
≤M 2P(‖x−Xi‖ ≤ h, ‖x−Xi‖ ≤ h) +M 2P2(‖x−X ‖ ≤ h)

= M 2
(
f2(x)ψ(h) + f 2(x)φ2(h)

)
≤M 2

(
c1f2(x) + f 2(x)

)
φ2(h),

Cov

(
YiK

(
‖x−Xi‖

h

)
, YjK

(
‖x−Xj ‖

h

))
≤M 2IE

(
sij(Xi, Xj)IIB(x,h)×B(x,h)(Xi, Xj)

)
+

(
M

(
sup

‖x−u‖≤h

|r(x)− r(u)|+ r(x)

)
f(x)φ(h)

)2

≤ 2M 2sij(x, x)f2(x)ψ(h) + 4M 2r2(x)f 2(x)φ2(h)

= 2M 2
(
c1sij(x, x)f2(x) + 2r2(x)f 2(x)

)
φ2(h),

and finally, using the same kind of arguments,

Cov

(
K

(
‖x−Xi‖

h

)
, YjK

(
‖x−Xj ‖

h

))
≤ 2M 2

(
c1s

∗
ij(x, x)f2(x) + r(x)f 2(x)

)
φ2(h).
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So, summarizing, there exists some t(x) > 0, depending only on x ∈ S, such
that each covariance corresponding to different indexes in (18) is bounded
above by t(x)φ2(h). Following now the proof of Theorem 1 in Masry [16], we
decompose the sum in (18) with distinct indexes into

1

pφ(h)

p∑
i,j=1

0<|i−j|≤ap

Cov(∗, ∗) +
1

pφ(h)

p∑
i,j=1

|i−j|>ap

Cov(∗, ∗), (19)

where we have written Cov(∗, ∗) for the large covariances appearing in (18),
and

ap =

⌊
1

(φ(h))
1−2/ν+η

β(1−2/ν)−1

⌋
,

where ν > 2 and 0 < η < 2/ν. We apply the upper bound t(x)φ2(h) on the
first of the sums in (19) to bound it by

2t(x)φ2(h)ap

φ(h)
=

2t(x)

(φ(h))η−2/ν
−→ 0.

To control the second term, we apply Davidov’s inequality (see, for example,
Corollary 1.1 in Bosq [3]), to obtain

1

pφ(h)

p∑
i,j=1

|i−j|>ap

Cov(∗, ∗)

≤ 8t(x)

pφ(h)
f 2/ν(x)φ2/ν(h)

p∑
i,j=1

|i−j|>ap

(
α(|i− j|)

)1−2/ν

≤ 8t(x)f 2/ν(x)

φ1−2/ν(h)

∑
l=ap+1

(
α(l)

)1−2/ν

∼ a
−β(1−2/ν)+1
p

φ1−2/ν(h)
−→ 0.

So, summarizing again, we have verified that

Var(W1,n) = Var(V1,n) ∼ pB = p c2f(x)
(
a2 + b2g2(x) + 2ab r(x)

)
,

thus describing the behaviour of the denominator of (17). We still need to
control the numerator of this expression. For this purpose we will apply
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Yokoyama’s inequality [19], for which we have to control the third moment
of the variables Ti,n. By expanding the power of Ti,n, we have

φ1/2(h)IE |Ti,n|3

≤ 1

φ(h)
IE

[(
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

))3
]

+
3

φ(h)
IE

[(
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

))2
]

×IE
[
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

)]
+

4

φ(h)
IE3
[
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

)]
.

The third term may be rewritten as

φ2(h)

(
1

φ(h)
IE

[
aK

(
‖x−Xi‖

h

)
+ bY K

(
‖x−Xi‖

h

)])3

−→ 0,

as the expression in parenthesis converges to af(x)+ b r(x)f(x). The second
term also converges to zero for analogous reasons. As for the first term, it is
less or equal to

1

φ(h)

[
a3IEK3

(
‖x−Xi‖

h

)
+ 3a2bIE

(
YiK

3
(
‖x−Xi‖

h

))

+3ab2IE

(
Y 2

i K
3
(
‖x−Xi‖

h

))
+ b3IE

(
Y 3

i K
3
(
‖x−Xi‖

h

))]
.

Taking absolute values and bounding each K3 by MK2, this expression is,
up to the multiplication by a constant, bounded by,

M

φ(h)

[
IEK2

(
‖x−Xi‖

h

)
+ IE

(
YiK

2
(
‖x−Xi‖

h

))

+IE

(
Y 2

i K
2
(
‖x−Xi‖

h

))
+ 6M 3

1 IE

(
Y 2

i K
2
(
‖x−Xi‖

h

))]
,
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where we used (M1) to bound the final term. Now, we have seen that each
of these terms is convergent. That is, we have verified that

φ1/2(h)IE |Ti,n|3 <∞, i = 1, . . . , n.

In order to apply Yokoyama‘s inequality we verify that there exists ρ ∈ (2, 3)
such that

∑
n (n + 1)ρ/2−1(α(n))(3−ρ)/3 < ∞. Given the assumptions made

on the mixing coefficients, the convergence of this series follows from

β >
3 ρ

2(3− ρ)
. (20)

Now, applying Yokoyama’s inequality it follows that

IE
(
(hρ/6

n |Wj,n|ρ
)
∼ pρ/2,

so that

zn ∼
r pρ/2

rρ/2 pρ/2 h
ρ/6
n

=
nc−cρ/2

h
ρ/6
n

, (21)

given the choices made for the sequences defining the block sizes. Taking
account of (12), this converges to zero provided that c ≥ ρ

3 a(ρ−2) . As we want

to choose c ∈ (0, 1), we impose that ρ > 6 a
3 a−1 . Using this on (20) we need

to impose (13). This proves the asymptotic normality of (rp)−1/2 ∑r
j=1 Wj,n

from which follows the asymptotic normality of (rp)−1/2 ∑r
j=1 Vj,n. Further,

note that it follows from the previous arguments that Var(
∑r

j=1 Vj,n) ∼
Var(

∑r
j=1 Wj,n) ∼ rp.

Step 3. Asymptotic negligibility of the remaining terms. Using the same
coupling technique it is easy to check that

Var

(∑r
j=1 V

′
j,n√

rp

)
=∼ rq

rp
∼ nd−1+c ,

as the V ′
j,n are sums of q variables, and

Var

(
Rn√
rp

)
=∼ nc−1 ,

for analogous reasons. Thus (rp)−1/2Rn converges in probability to zero. The
term (rp)−1/2 ∑r

j=1 V
′
j,n also converges in probability to zero if d < 1 − c.
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Using this on (16), we derive β > (5 + a)/(4(a− 1)) which follows from (13),
so the theorem is proved.

As the covariance matrix that appears on the limiting distribution is also
given by (8), applying the δ-method to the function θ(u, v) = v

u proves the
same result as in the previous section.

Theorem 4.5. Suppose all the assumptions of Theorem 4.4 are satisfied.
Then √

nφ(h)
(
r̂n(x)− IEr̂n(x)

)
d−→ N

(
0, c2

(
g2(x)−

r2(x)

f(x)

))
.

References
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[11] Geffroy, J., Etude de la convergence du régressogramme, Pub. Inst. Statist. Univ. Paris 25,
41–56, 1980.
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