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1  |  INTRODUC TION

As an integrated response to environmental changes, forest spring 
phenology is interconnected with ecosystem functions and ser-
vices, including forest productivity (Cuny et al., 2015), species dis-
tribution (Kharouba et al., 2018), and community assemblage (Piao 
et al., 2019). The advances in spring phenology are well appreci-
ated as a major imprint of climate change impacts across all biomes 
(Menzel et al., 2006; Richardson et al., 2013), but are mostly focused 
on the onset of primary growth (Delpierre et al., 2016). Secondary 
growth, or xylem phenology, is also a key component of forest 

spring phenology but remains understudied until the development 
of the micro- sampling approach (Deslauriers et al., 2003; Huang 
et al., 2020).

Temperature has been widely recognized as a key driver for cam-
bial reactivation of Northern Hemisphere conifers (Huang et al., 2020; 
Rossi et al., 2016). Warmer temperatures promote hormone produc-
tion and the conversion of starch to sugar, thus breaking the dormancy 
(i.e., ecodormancy) and inducing cell division in the vascular cambium 
(Begum et al., 2018). These processes have been confirmed from ex-
periments of localized heating of the stem (Oribe et al., 2003) and field 
observations of wood formation (Moser et al., 2010; Rossi et al., 2016). 
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Abstract
Despite growing interest in predicting plant phenological shifts, advanced spring 
phenology by global climate change remains debated. Evidence documenting either 
small or large advancement of spring phenology to rising temperature over the spatio- 
temporal scales implies a potential existence of a thermal threshold in the responses 
of forests to global warming. We collected a unique data set of xylem cell- wall- 
thickening onset dates in 20 coniferous species covering a broad mean annual tem-
perature (MAT) gradient (−3.05 to 22.9°C) across the Northern Hemisphere (latitudes 
23°– 66° N). Along the MAT gradient, we identified a threshold temperature (using 
segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology 
to rising temperatures significantly decline. This threshold separates the Northern 
Hemisphere conifers into cold and warm thermal niches, with MAT and spring forc-
ing being the primary drivers for the onset dates (estimated by linear and Bayesian 
mixed- effect models), respectively. The identified thermal threshold should be inte-
grated into the Earth- System- Models for a better understanding of spring phenology 
in response to global warming and an improved prediction of global climate- carbon 
feedbacks.

K E Y W O R D S
cell wall thickening, Northern Hemisphere conifer, photoperiod, spring forcing, winter chilling, 
xylem phenology
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More recently, studies on the onset of primary growth have demon-
strated the declining effects of global warming on spring phenology, 
indicating a slowdown in the advancement of spring phenology, espe-
cially in warm ecosystems (Fu et al., 2015; Vitasse et al., 2018). For in-
stance, larger advancements in spring phenology have been observed 
at higher altitudes, colder sites, and rural areas (Meng et al., 2020; 
Prevéy et al., 2017; Vitasse et al., 2018). Such differences in the ad-
vancing rates raise questions about the occurrence of critical thresh-
olds along thermal gradients above which the process of advancement 
decreases significantly. However, despite the ecological importance 
of a potential transition temperature in shaping terrestrial biomes 
with climate warming, it has not been accurately incorporated into 
the Earth- System- Models (Delpierre et al., 2019; Huang et al., 2020), 
which jeopardizes the model performance in predicting phenological 
responses under future climate scenarios.

Trees require a sufficient forcing temperature above a threshold 
of 0– 5°C for the resumption of xylem growth (Antonucci et al., 2015). 
On one hand, warming can accelerate the advancing rate through 
the accumulation of forcing temperature. On the other hand, warm-
ing imposes a higher forcing temperature requirement through the 
lower accumulation of chilling (i.e., the sum of low- temperature inci-
dents informing that winter has passed) (Asse et al., 2018; Delpierre 
et al., 2019). Such a dual effect of warming could play a role in slow-
ing down the advancement of spring phenology under warming 
conditions (Delpierre et al., 2019; Meng et al., 2020; Montgomery 
et al., 2020). Growth reactivation is also controlled by photoperiod 
over the Northern Hemisphere (Huang et al., 2020; Rossi et al., 2016). 
Photoperiod could constrain the advancement under warming condi-
tions as spring phenological events tend to occur at a shorter photope-
riod (Fu et al., 2019; Meng et al., 2020). Despite numerous hypotheses 
raised in the literature, the factors involved in the declining trend of 
tree spring phenology advancement remain to be disentangled.

Herein, we aimed to identify the threshold temperature at which 
the advancement of spring phenology to rising temperature drops 
significantly, and to elucidate the possible causes of the decline. We 
used “space- for- time approach,” which is widely used in ecology for 
inference about future climate change impacts (Elmendorf et al., 2015; 
Peters et al., 2019), to tackle this problem. Recent studies have shown 
no virtual spatial bias for predicting the timing of cambial resumption 
(Delpierre et al., 2019; Huang et al., 2020). They suggest that species 
and site were not the main factors affecting the onset of wood forma-
tion of conifers across the Northern Hemisphere (Huang et al., 2020), 
which is far less affected by local adaptation than by environmental 
plasticity (Delpierre et al., 2019). Thus, with a scarcity of high- quality 
time series in xylem phenology, applying a space- for- time approach 
could be a reasonable alternative to project the impacts of climate 
change on wood phenology (Rossi et al., 2016). We, therefore, pro-
posed that the spatial pattern of the onset dates of xylem phenological 
activities along the gradient of mean annual temperature (MAT) re-
vealed in our study can provide a framework to examine the responses 
of secondary growth of forests to rising temperatures.

In this study, we compiled a large and unique data set of weekly 
cell- wall- thickening phenological measurements of 20 coniferous 

species from 75 sites over the Northern Hemisphere as surrogates 
for spring phenological activity. These sites spanned across a broad 
MAT gradient (−3.05°C to 22.9°C), from 23°11′ N to 66°12′ N, in-
cluding boreal, temperate, Mediterranean, and subtropical biomes 
(Figure 3a and Table S1). The cell- wall- thickening process is part 
of the secondary growth of trees representing the progression 
from cell enlargement to cell wall thickening, lignification, and pro-
grammed cell death that generates the mature xylem (Figure S2) 
(Begum et al., 2013). This process ultimately accounts for 90% of 
the woody biomass production of forest trees (Cuny et al., 2015). 
Thus, weekly cell- wall- thickening phenological measurements offer 
a unique opportunity to describe the dynamics of the global carbon 
cycle and improve our ability to simulate the future of the Earth's 
system at a high temporal resolution.

2  |  MATERIAL S AND METHODS

2.1  |  Field experiments and sample collection

Xylogenesis was monitored throughout the growing season from 
January– April to October– December according to the local cli-
mate of the sites. The monitoring years varied among the sampling 
sites from 1998 to 2016 (Table S1). At each site, from 1 to 55 adult 
dominant trees with upright, healthy trunks were selected for sam-
pling. Wood microcores (2.5 mm in diameter × 25 mm long) were 
collected weekly (90%) or, on occasion, biweekly, from around the 
stems at breast height (1.3 ± 0.3 m) using a Trephor microcorer (Rossi 
et al., 2006). The samples usually contained several (or at least one) 
previous tree rings, as well as the developing annual layer with the 
cambial zone and adjacent phloem tissues. The microcores were 
stored immediately at 5°C in solutions of propionic or acetic acid 
mixed with formaldehyde or ethanol to avoid tissue deterioration 
and were then transported to the lab for further treatment. The 
microcores were dehydrated in ethanol and D- limonene and then 
embedded in paraffin or glycol methacrylate. Transverse sections 
10– 30 μm thick were cut from the samples with rotary or sledge mi-
crotomes. Sections were stained with aqueous cresyl violet acetate 
or double- stained with safranin and astra blue and observed with 
bright- field and polarized light to differentiate the developing xylem 
cells.

In total, data were collected from 814 individuals of 20 coni-
fers distributed across 75 sites that covered boreal, temperate, 
Mediterranean, and subtropical biomes in North America, Europe, 
and Asia. The sites were distributed over latitudes from 23°11′ N 
to 66°12′ N and at elevations ranging from 23 m to 3850 m a.s.l. 
(Figure 3a and Table S1).

2.2  |  Species classification

Early successional species are the shade- intolerant pioneers corre-
sponding to life history strategies of fast growth rate and an ability 
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    |  1609HUANG et al.

to grow in harsh conditions, whereas late successional species are 
those that are shade tolerant and characterized by a slow growth 
rate. There were 645 individuals belonging to the early successional 
species, that is, Juniperus przewalskii (JUPR), Juniperus thurifera 
(JUTH), Larix decidua (LADE), Pinus halepensis (PIHA), Pinus heldreichii 
(PIHE), Pinus leucodermis (PILE), Pinus longaeva (PILO), Pinus masso-
niana (PIMA), Pinus peuce (PIPE), Pinus pinaster (PIPI), Pinus sylvestris 
(PISY), Pinus tabulaeformis (PITA), Pinus uncina (PIUN). There were 
1302 individuals belonging to the late successional species, that 
is, Abies alba (ABAL), Abies balsamea (ABBA), Abies georgei (ABGE), 
Cedrus libani (CELI), Picea abies (PCAB), Picea mariana (PCMA), and 
Pinus cembra (PICE). In general, the two successional species over-
lap along the MAT gradients, except the individuals of the early suc-
cessional species located at warmer sites (Figure 1b). Three species, 
JUPR, JUTH, and PIHE, are unique species that grow in harsh con-
ditions, show a slow growth rate and a long- life history. They can-
not be grouped into early or late successional species according to 
classical theory; therefore, they were excluded when splitting the 
data into different successional stages and associated downstream 
analyses.

2.3  |  Xylem phenology data

A common protocol for classifying xylem cells at different develop-
mental phases was followed at all sites. For each sample, the number 

of cells in the cambial zone, and cells in the enlargement and second-
ary cell wall thickening phases were counted along three radial rows. 
Thin- walled enlarging cells were distinguished from cambial cells by 
their larger size, as they had a radial diameter at least twice that of 
a fusiform cambial cell (Deslauriers et al., 2003). A wall- thickening 
cell was differentiated from an enlarging cell by the presence of a 
secondary cell wall that displayed birefringence under polarized light 
due to the orientation of the cellulose microfibrils (Abe et al., 1997).

Color changes from violet to blue (simple cresyl violet acetate 
staining) or from blue to red (double safranin- astra blue staining) 
demonstrated the entire progression of wall thickening (Figure S2). 
Mature cells presented entirely lignified, monochromatic walls; 
therefore, the absence of cytoplasm and a complete color change 
over the whole cell wall marked the end of lignification and the full 
maturation of the tracheid (Abe et al., 1997). The mean number of 
xylem cells in the wall- thickening phase was obtained at each sam-
pling date. The timing of the onset of wall thickening, represented by 
the day of the year (DOY), was defined for each tree, site, and year 
as the date of appearance of the first wall- thickening cell and was 
referred to as the cell- wall- thickening DOY.

2.4  |  Statistical analyses

We explored key drivers of cell- wall- thickening DOY among six 
selected common potential predictors (MAT, photoperiod, forcing, 

F I G U R E  1  Changes in the cell- wall- thickening DOY (day of the year) separate along the mean annual temperature (MAT) gradients of 
the study sites, with contrasting slopes between cold and warm sites. According to the determined break point (at 4.9 ± 1.1°C), segmented 
regression lines (the solid lines) were fitted with linear mixed- effect models separately for all observations (a) and for early successional 
species and late successional species (b) at different temperature zones. The dashed orange line (a) was fitted with a generalized linear model 
for all observations. Species are reported with the following acronyms and classified into early (JUPR, Juniperus przewalskii; JUTH, Juniperus 
thurifera; LADE, Larix decidua; PIHA, Pinus halepensis; PIHE, Pinus heldreichii; PILE, Pinus leucodermis; PILO, Pinus longaeva; PIMA, Pinus 
massoniana; PIPE, Pinus peuce; PIPI, Pinus pinaster; PISY, Pinus sylvestris; PITA, Pinus tabulaeformis; and PIUN, Pinus uncina) and late (ABAL, 
Abies alba; ABBA, Abies balsamea; ABGE, Abies georgei; CELI, Cedrus libani; PCAB, Picea abies; PCMA, Picea mariana; PICE, Pinus cembra) 
successional species types (see Supporting information for further details). Points (n = 1948) represent individual trees from the 75 study 
sites included in this study. Biomes include boreal (b), temperate (T), Mediterranean (M), and subtropical (S). [Colour figure can be viewed at 
wileyonlinelibrary.com]
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chilling, scPDSI, and spring temperature variation) using three classes 
of statistical models: boosted regression trees (BRTs), linear mixed- 
effect models (LMMs), and Bayesian mixed- effect models (BMMs). 
We also performed a natural cubic spline to check for the general 
trends among different predictor variables or between the cell- wall- 
thickening DOY and a certain selected predictor.

2.4.1  |  General patterns: Settings and diagnostics 
for boosted regression trees

We assessed the relative importance of explanatory variables in pre-
dicting the cell- wall- thickening DOY using BRTs (Figure S3a), as these 
have been used extensively in ecological studies with an ensemble 
of ‘boosted’ multiple decision trees for analysis of complex systems 
(Frey et al., 2016; McClanahan et al., 2019). The fitting procedures 
for a BRT model do not make assumptions on data distribution for 
a large data set, and they have several advantages, such as collin-
earity handling among predictors and robustness to outliers (Elith 
et al., 2008), especially when accounting for nonlinear relationships 
and complex interactions between explanatory variables of multiple 
classes during boosted regression modeling (Venter et al., 2018). We 
used the following settings for our BRT model: a tree complexity 
of 10, a learning rate of 0.005, and a bag fraction of 0.7. A smaller 
learning rate corresponds to a higher number of trees used in the 
model, while the bag fraction was added as a stochastic component 
that improves model performance by reducing variance in the final 
model. A final BRT model with 5800 trees was chosen for our study.

A partial dependence plot following BRT modeling was then 
constructed to show the general trending pattern of the relation-
ship between the cell- wall- thickening DOY and each predictor 
(Figure S3b– g). The R program packages “gbm” package, “dismo,” 
and “pdp” were used for the BRT analyses and visualization 
(Muggeo, 2008).

After using the fitted BRT model to confirm MAT as the most im-
portant predictor (Figure S3a), we fitted a natural cubic spline (Ortiz- 
Bobea et al., 2018) to provide a nonlinear smoothed estimate of the 
other five predictors and frost frequency along the MAT gradient 
(Figure S4). Cubic spline regressions make no assumptions about the 
shape of a curve other than smoothness, and they are commonly 
suggested for examination of the fitness and performance of natural 
selection on a quantitative trait, such as the thermal performance 
traits (Logan et al., 2014). Cubic splines were estimated using the 
“mgcv” package.

2.4.2  |  Breakpoint analysis: Cell- wall- thickening 
day of the year versus mean annual temperature

The preliminary analyses described above revealed an apparent 
transition of the relationship between cell- wall- thickening DOY and 
MAT from the BRT- related partial dependence plot (Figure S3b), in-
dicating the possible existence of a thermal transition along the MAT 

gradient. We conducted a methodology for threshold detection fol-
lowing Berdugo et al. (2020). Specifically, we constructed general-
ized linear and segmented regressions to the relationships between 
cell- wall- thickening DOY and MAT with a log- linked Gaussian error 
distribution for the full data set using the R package “MASS” and the 
‘Segmented’ R package (Muggeo, 2008) (Figure 1), respectively. We 
used AIC to decide the model that provided the best fit in each case 
(Hastie, 2017). This criterion lower than 2 indicates that the model 
is significantly better (Berdugo et al., 2020). Only when nonlinear 
regressions were a better fit to the data, thresholds may be present. 
Therefore, we explored the presence of thresholds only when non-
linear models were a better fit for the data. We fitted segmented 
regressions describing the point in the predictor (MAT) that evi-
dences the shift in the relationship (in slope, intercept, or slope + in-
tercept) between cell- wall- thickening DOY and MAT. We consider a 
threshold as the point in MAT in which the cell- wall- thickening DOY 
changes abruptly its value.

Next, to confirm the significance of the cell- wall- thickening 
trends (for overall observations and species referring to each succes-
sional stage) before and after the identified breakpoint (estimated at 
4.9 ± 1.1°C), the full data set was split into cold (≤4.9°C) and warm 
(>4.9°C) temperature zones. Data in each temperature zone were 
obtained by further splitting into different sub- datasets according 
to their successional stages, that is, as early and late successional 
species.

Among the fitted segmented linear models, the statistical sig-
nificance of the differences between the slopes of regressions was 
tested with standardized major axis (SMA) estimation (e.g., the dif-
ference in the regression slopes between temperature zones or 
successional stages) as implemented in the “smart” R package (Fox 
& Weisberg, 2018). We also chose robust SMA estimation, which 
handles outliers with Huber's M- estimator, because our SMA ap-
proaches are highly sensitive to outliers (Warton et al., 2012). All 
analyses were performed in R v.4.0.2.

2.4.3  |  Linear mixed- effect model and Bayesian 
mixed- effect model settings and diagnostics

We further examined the direction and magnitude of the relation-
ships between environmental predictors and site covariates with 
cell- wall- thickening DOY by fitting a LMM and BMM for both the 
overall data set and the sub- datasets. Summary statistics (raw mean, 
median, and quantiles) of all data sets were obtained (Table S2) by 
fitting intercept- only LMMs without fixed predictor variables, using 
“site” and “species” as random intercept terms.

The LMMs were used to test for the main effects of the explan-
atory variables on cell- wall- thickening DOY. We obtained the best 
model for each data set by performing model selection procedures 
to determine the best random- effects structure and the optimized 
fixed- effect structure through a backward stepwise model simplifi-
cation, using all the explanatory variables in the fixed component for 
the most complex models (Table S3). Collinearity among variables 
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was detected by the variance inflation factor (vif), and the variables 
with vif <3 were retained. The most complex model was fitted using 
the following formula:

where Dijk is the date of onset of the first cell wall thickening of spe-
cies i at site j in year k; MATijk, Pijk, Fijk, Cijk, PDSIijk, and Tem_variationijk 
are fixed effects and represent the MAT, photoperiod, forcing, chill-
ing, scPDSI, and spring temperature variation corresponding to Dijk, 
respectively; α is the intercept; β1, β2, β3, β4, β5, and β6 are the slopes; ai 
and bj are the random effects of the site i and species j, respectively; 
and ε is the error term.

Log- likelihood ratio tests and F tests were used to perform 
backward elimination of non- significant random and fixed effects 
(Kuznetsova et al., 2014) (Table S3). In particular, the fixed effects 
were retained or removed based on changes in the AIC, with ΔAIC 
values of <−2 as a criterion to drop variables and on a likelihood ratio 
test with a p value (based on Satterthwaite approximation) higher 
than 0.05, through which a rigorous estimate of the most parsimoni-
ous model was retained. The validity of the assumptions of normality 
and homoscedasticity was examined using residual plots (Burnham 
et al., 2011). For each optimal LMM, the contributions of the fixed-  
and random- effects variables in explaining variation in the dependent 
variable (i.e., cell- wall- thickening DOY) were calculated by a variance- 
partitioning analysis to partition the variances attributable to each 
variable into the best- fitting model (Hoffman & Schadt, 2016). We 
reported the coefficients of the optimal model estimated by the re-
stricted maximum likelihood approach, the bootstrap confidence in-
terval (90% and 95%) calculated based on 1000 simulations, and the 
marginal and conditional R2 values, which account for fixed and fixed 
plus random effects. All the statistical analyses associated with LMMs 
were conducted using the R packages “lme4,” “MuMIn,” and “lmerTest.”

The magnitude and significance of the six predictors in deter-
mining cell- wall- thickening DOY were further examined by BMMs. 
We standardized and centered the numerical independent variables 
before analyses, thereby facilitating the direct comparison of the re-
sulting coefficients. All explanatory variables were considered in these 
models, which we ran as four chains with 2000 iterations each, burn-
ing 1000 samples per chain, with analysis of 1000 post- warmup sam-
ples. Statistical significance was obtained by means of the posterior 
distribution of the 95% credible interval of its mean estimate (log odds 
ratio). Positive and negative values of the log odds ratio denote posi-
tive versus negative effects, respectively, while a significant effect oc-
curs when no overlap exists between the 95% error bars and zero. The 
mean estimates (representing Bayesian probabilities) of BMMs were 
overall similar to the predictor ranking of variance- partitioning analysis 
obtained by LMMs, with minor differences for sub- dataset modelings 
partly due to different model structures and statistical approaches.

Finally, according to the identified temperature threshold 
(4.9°C) of tree xylem phenology under rising MAT, we mapped 
those regions vulnerable to such a critical transition in future cli-
mate warming scenarios (Figure 3b). These areas are selected by 

comparing the differences between two periods of MAT in the 
Northern Hemisphere (Figure S1), that is, recent MAT (1970– 2000, 
from world clim.org) versus future MAT (2061– 2080, projected by 
CMIP5). We mapped those areas with MAT <4.9°C in recent tem-
perature scenarios and future MAT exceeding the threshold value 
4.9°C experiencing temperature rise, and considered that the spring 
phenology of coniferous trees in these regions is more vulnerable to 
the thermal transition identified and discussed in this study.

3  |  RESULTS

3.1  |  Thermal transition across temperature (MAT) 
gradient

We identified MAT as the major driver of cell- wall- thickening DOY 
among selected predictors with BRT analyses (Figure S3a). Partial de-
pendence plot from BRT further showed that cell- wall- thickening DOY 
was a decreasing function of the rising MAT gradient (i.e., phenological 
advance) and responded in a nonlinear manner, with apparent thermal 
transitions along the descending trend (Figure S3b). A generalized seg-
mented regression model assuming one breakpoint (AIC = 17,274.2 
and BIC = 17,302.2) outperformed a generalized linear regression 
(AIC = 17,326.0 and BIC = 17,342.8) and supported such a hypothe-
sized thermal transition. Observed temperature- scaling of the cell- wall- 
thickening DOY based on the piecewise model indicates a qualitative 
transition at MAT = 4.9 ± 1.1°C (Figure 1a). The slopes of the segments 
to the left (−5.14) and the right (−2.89) of the observed breakpoint dif-
fered significantly (Davies' test, p = .001). Consequently, this thermal 
transition separated our study sites into the cold and the warm eco-
systems, whereby a significantly greater phenological advancement 
occurred in sites with MAT below 4.9 °C but a smaller advancement 
occurred in sites with MAT above 4.9°C, respectively (Figure 1a,b).

Accordingly, species with sufficient coverage along the MAT 
gradient, for example, Picea abies (n = 447, Figure S5), exhibited a 
significantly greater advancement in cold regions and a smaller ad-
vancement in warm areas (Figure S5; p = .001). At the biome level, 
both boreal and cold- temperate forests (MAT <4.9°C) showed a 
significantly stronger advancement than did the Mediterranean 
and warm- temperate forests (MAT >4.9°C) (Figure S7; p = .001). 
Previous studies have reported that early successional species are 
more responsive to rising temperature than are the late- successional 
ones (Basler & Körner, 2012; Fu et al., 2019), and therefore, we also 
considered them separately in the current study (see Species clas-
sification in Section 2 for further details). The early and late suc-
cessional species also revealed similar patterns, that is, have smaller 
advancement when MAT >4.9°C (Figure 1b).

3.2  |  The partition of variance of the main drivers

By constructing LMMs and BMMs, we explored the reasons un-
derlying the decreased advancement to rising temperature and 

Dijk =�+�1MATijk+�2Pijk+�3Fijk+�4Cijk

+�5PDSIijk+�6Tem_variationijk+ai+bj+�,
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assessed and quantified the main environmental drivers for the 
onset of cell- wall- thickening in cold versus warm ecosystems (see 
LMM and BMM settings and diagnostics in Statistical analyses 
for further details). The onset of the spring phenology of forest 
trees is also strongly regulated by local spring temperature vari-
ance and soil moisture availability (Huang et al., 2020; Körner & 
Basler, 2010), and these parameters were included in the LMMs 
and BMMs.

In the cold sites, MAT remained the main driver for the cell- 
wall- thickening DOY, while its relative importance substantially 
decreased in warm sites, where forcing superseded MAT as the 
major driver (Figure 2a,b,g). In determining the cell- wall- thickening 
DOY, photoperiod was more important in warm sites than in cold 
sites (Figure 2a,b,g). Similarly, chilling consistently explained higher 
variances of cell- wall- thickening DOY in warm sites than that in cold 
sites (Figure 2a,b,g).

In addition, the relative importance of selected phenological 
predictors differed between different successional stages, that is, 
early-  versus late- successional species. MAT in regulating cell- wall- 
thickening DOY explained a higher variance for both early and late 
species in cold sites than in warm sites, especially for the early ones. 
Similarly, photoperiod was more important for the early species than 
the late species in warm sites (Figure 2c– g). Higher scPDSI delayed 
the cell- wall- thickening DOY, again more pronounced for the early 
species (Figure 2c– g).

At the biome level, MAT played a much more important role 
in determining cell- wall- thickening DOY in the boreal and cold- 
temperate forests than in the Mediterranean and warm- temperate 
forests (Figure S8). By contrast, forcing was the dominant driver for 
the Mediterranean and warm- temperate forests (Figure S8).

4  |  DISCUSSION

Climate warming has resulted in more uniform spring phenology 
between cold (high latitudes or altitudes) and warm (low latitudes 
or altitudes) ecosystems (Chen et al., 2018; Chen et al., 2019; Ma 
et al., 2018; Meng et al., 2020), suggesting a possible existence of 
a thermal threshold across ecosystems over a large spatial scale. 
Such a threshold may separate the biomes into regions with di-
verging advancing rates of tree spring phenology under global 
warming, that is, a larger advancement at the higher latitudes or 
altitudes due to benefits from warming versus a smaller advance-
ment at the lower latitudes or altitudes due to a higher forcing 
requirement induced by the reduced chilling accumulation. Our 
dataset showed evidence of an abrupt change in the advance-
ment of cell wall thickening of conifers along the gradient in MAT 
over the Northern Hemisphere, corresponding with a threshold of 
4.9 ± 1.1°C in MAT (Figure 1a,b).

The air temperature, represented by MAT in our analyses, 
was the primary factor regulating the timings of cell wall thick-
ening in cold ecosystems, whereas forcing was the main trigger 
in warm ecosystems. Our results suggest that global warming 

would continue to advance the onset of cell wall thickening, but 
this advancement could slow down because of the increased re-
quirement in forcing temperature in warm ecosystems. Our results 
provide empirical evidence for introducing a thermal transition 
into temperature- based models for a better understanding of 
thermal adaption mechanisms in their geographical context. This 
inclusion will improve Earth- System- Models for predicting global 
forest phenology, productivity and biogeochemical cycles under 
climate warming.

4.1  |  A critical thermal transition revealed in the 
Northern Hemisphere

The abrupt change in the slopes of the advancement of cell- wall- 
thickening DOY (at MAT of 4.9 ± 1.1°C) (Figure 1a) has important 
ecological implications, implying divergent advancing rates of forest 
phenology events could be quantitatively organized into a larger- 
smaller advancement spectrum: larger advancements in cold sites 
and smaller advancements in warm sites. The advancement of cell- 
wall- thickening DOY to rising temperatures would significantly slow 
down at a MAT of 4.9°C. Our research extends and advances prior 
research reporting that the effects of climate warming on forest 
spring phenology are dependent on weather conditions (Gunderson 
et al., 2012; Montgomery et al., 2020). The greater advancement to 
rising temperature in cold ecosystems, associated with the reduction 
in advancement in warm ecosystems, could reduce spatial variability. 
Therefore, we would expect a more uniform trend in spring phe-
nology between cold and warm ecosystems under ongoing warming 
conditions (Chen et al., 2019; Ettinger et al., 2020; Ma et al., 2018).

At the species level, as early successional species showed a stron-
ger advancing shift in cold sites than that for the late- successional 
ones, these two functional groups would shift further apart under 
rising temperatures. Hence, the cold sites would face fundamen-
tal changes in the timing of cell wall thickening and the synchrony 
among tree species, with consequences for the plant communities 
and the whole ecosystem (Kharouba et al., 2018). However, the two 
successional groups showed a marginally similar degree of shift in 
warm sites (Figure 1b). Consequently, the early species exhibited a 
more substantial and abrupt decline in further advancement along 
the MAT gradient than did the late ones (Figure 1b).

4.2  |  Drivers for cell wall thickening 
across the thermal threshold and 
underlying mechanisms

We explored key drivers of cell- wall- thickening DOY among six 
selected common potential predictors (MAT, photoperiod, forcing, 
chilling, scPDSI, and spring temperature variation, see climate data 
and photoperiod in Supplementary Information Text for further de-
tails) using LMMs and BMMs. The main environmental drivers varied 
greatly for trees in the cold versus warm temperature regimes. MAT 
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    |  1613HUANG et al.

F I G U R E  2  Summary of the direction and magnitude of the effect of all predictors on cell- wall- thickening day of the year (DOY) in 
different systems using Bayesian linear mixed- effect models, shown in (a– f), and including samples from different temperature zones: The 
upper (a, c, e) and lower (b, d, f) panels were from cold and warm sites, respectively. Samples were also assigned to different successional 
stages: Early species (c, d) and late species (e, f). Significant effects occur when no overlaps exist between the 95% error bars and zero. The 
blue and red colors denote positive versus negative effects, respectively. The Bayes factors are provided to show significance. Marginal 
and conditional R- squared (R2

m and R2
c, respectively) values are provided. Based on the best- fitting linear mixed- effect models (Table S3), 

variance partitioning of the selected fixed-  and random- effects variables, indicating the relative importance of each predictor, is also shown 
in figure g, and the sample sizes are reported for each model. The variance inflation factor (vif) of each predictor variable in the linear 
mixed models is provided for all observations and subset modelings in Table S4. MAT: The mean annual temperature at each site per year; 
photoperiod: The length of time that an organism is exposed to sunlight each day, was calculated as the interval between sunrise and sunset 
for each site; chilling: The length of the period (days or hours) during which the temperature remains within the range of −5°C and 5°C, the 
reference period starting from November 1st of the previous year to the onset day of cell wall thickening; forcing: The length of period 
(days or hours) during which the temperature remains above 5°C, the reference period starting from January 1st to the onset day of cell wall 
thickening; scPDSI: The self- calibrating palmer drought severity index, representing soil moisture (scPDSI ranging from −4 to 4, indicating 
from excessively dry to excessively moist); Tem_variation: The averaged standard deviation of the mean daily temperature in a 60- day period 
over the mean cell- wall- thickening DOY (60- day centered period) at each site and in the same year, this value was used to represent the local 
spring temperature variance. [Colour figure can be viewed at wileyonlinelibrary.com]
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was the reason behind most of the variance in the timings of cell wall 
thickening in cold ecosystems, but its relative importance dropped in 
warm ecosystems (Figure 2a,b,g). This confirmed that cell wall thick-
ening in cold regions is strongly regulated by MAT. Therefore, the 
occurrence of the first xylem wall thickening cell becomes a mat-
ter of tracking the appropriate temperature across ecosystems and 
species (Begum et al., 2013; Rossi et al., 2016). Trees are subjected 
to selective pressure to match their spring phenology to favora-
ble environmental conditions and minimize the risk of frost (Mura 
et al., 2022), while at the same time maximizing the length of the 
growing season to ensure trees safely complete secondary cell wall 
lignification before winter (Rossi et al., 2006). As the temperature 
is a limiting factor in cold and temperate climates, tracking global 
warming to obtain a long growing season and thus maximize annual 
carbon would become the priority of tree spring phenology.

In warmer ecosystems, the temperature rise would reduce the 
accumulation of chilling (Figure S4b), which could decrease the ad-
vancement of forest spring phenology to rising temperature (Chen 
et al., 2019; Ma et al., 2018; Meng et al., 2020). The greater vari-
ance in the timings of cell wall thickening explained by chilling in 
warm ecosystems demonstrates the possibility that the reduced 
chilling accumulation plays a role in reducing further advancement 
(Fu et al., 2015; Meng et al., 2020; Vitasse et al., 2018). However, 
the contribution of this factor was relatively small, suggesting that 
chilling was unable to explain completely the declining advancement 

of forest spring phenology, which is in line with previous studies 
(Ettinger et al., 2020; Fu et al., 2015). Instead, chilling exerted its 
influence mainly by improving the forcing requirement (Delpierre 
et al., 2019; Ma et al., 2018). Although increasing evidence ascribed 
the slowdown of the onset advancement of forest primary growth 
to a higher forcing temperature requirement induced by chilling 
insufficiency (Chen et al., 2019; Ma et al., 2018), it has only rarely 
been reported for the onset of xylem growth (Delpierre et al., 2019). 
Trees usually require exposure to a sufficient forcing temperature 
for the resumption of xylem cell growth (Delpierre et al., 2019). The 
higher accumulation of forcing temperatures in warm ecosystems 
(Figure S4c) was, thus, expected to advance the onset of cell wall 
thickening, but we observed declined advancing rate (Figure 1). 
We thus raise the hypothesis that a decreasing chilling exposure in 
warm sites (Figure S4b) induced a higher forcing requirement (Chen 
et al., 2019; Delpierre et al., 2019; Ma et al., 2018). Forcing is the 
most important factor in determining the timings of cell wall thicken-
ing in warm ecosystems (Figure 2), which supported our hypothesis. 
A photoperiod limitation for further advancement was also captured 
in our study, as indicated by the greater variance explained by the 
photoperiod in warm ecosystems compared with cold ecosystems 
(Figure 2) (Basler & Körner, 2012; Richardson et al., 2018; Zohner 
et al., 2016). The importance of the photoperiod was relatively 
low compared with forcing accumulation, in line with other stud-
ies showing that only a minor group (mainly from lower latitudes) 

F I G U R E  3  (a) Geographical distributions of global conifer cover (data from Global Forest Age Dataset (GFAD) (Poulter et al., 2019) and 
location of the study sites across the Northern Hemisphere. The numbers in the conifer cover legend denote the relative coniferous forest 
cover proportional to a specific total area in the GFAD (Poulter et al., 2019). (b) Areas in the current cold region (MAT <4.9°C) that may turn 
into warm regions in CMIP5 projected changes in MAT in the Northern Hemisphere. This is predicted by the differences in MAT between 
1970 and 2000 (from world clim.org) and between 2061 and 2080 (projected by CMIP5). [Colour figure can be viewed at wileyonlinelibrary.
com]
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of temperate trees were constrained by day length (Rossi, 2015; 
Zohner et al., 2016). Our results illustrated how the environmental 
factors interact in space and result in the divergent advancing rates 
of forest spring phenology (Piao et al., 2019), thus providing a new 
perspective for understanding the potential trajectories of forest 
growth dynamics under global changes.

Notably, MAT had a dominant influence on early successional 
species in cold sites (Figure 2). This could be explained by the differ-
ent life strategies, as they adopt more risky life strategies (Körner & 
Basler, 2010) and can better benefit from appropriate temperatures 
for cell wall thickening. By contrast, late successional species adopt 
more conservative strategies and are less responsive to rising tem-
peratures, which reflects the process of natural selection in environ-
ments characterized by greater temperature fluctuations and higher 
frost frequency (Figure S9). There is evidence that early successional 
species are more likely to keep tracking climatic warming than late 
successional species (Basler & Körner, 2012; Fu et al., 2019; Körner 
& Basler, 2010). Moreover, once cross the transition, photoperiod 
and forcing temperatures had similar importance for early succes-
sional species.

To the best of our knowledge, this study is the first to provide 
a quantitative indication of the existence of a thermal threshold at 
MAT = 4.9 ± 1.1°C, based on a unique dataset describing the onset 
of cell wall thickening in Northern Hemisphere conifers. This ther-
mal threshold classified all the studied sites into cold and warm eco-
systems, where air temperature (represented by MAT) and forcing, 
respectively, were the primary drivers for triggering the onset of 
cell wall thickening. Rising temperatures will continue to advance 
the onset dates, but this advancement would significantly decline 
upon crossing the thermal transition toward warm ecosystems. 
Rising MAT in many areas of the Northern Hemisphere (Balting 
et al., 2021) may have exceeded certain threshold temperatures 
in recent two decades, leading to the widely observed declining 
phenology advancement (Fu et al., 2015; Vitasse et al., 2018). For 
areas in the current cold regions (MAT <4.9°C) that may turn into 
warm regions predicted by climatic models (Figure 3b), we would 
expect to see declining sensitivity of xylem phenology to warm-
ing similar to other spring phenological phases (Fu et al., 2015), 
particularly for those conifer trees inhabit within these areas 
(Figure 3b). The early and late successional species would be ex-
pected to shift further apart in cold ecosystems due to different 
advancing rates to rising temperatures. Conversely, in warm eco-
systems, future global warming would exert less influence on the 
phenological synchrony between the early and late successional 
species due to their similar advancing rates. Our results overall 
demonstrate how forest spring phenology will respond to rising 
temperatures in two distinct phases, lending insights into the 
mechanisms behind the divergent results regarding phenological 
responses (Piao et al., 2019). The identified thermal threshold can 
thus be integrated into the Earth- System- Models to enable more 
accurate and reasonable predictions of global carbon, water, and 
energy cycles under global warming (Montgomery et al., 2020; 
Wolkovich et al., 2012).
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