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Abstract
Semiconductor transistors are essential elements of electronic circuits as they enable,

for example, the isolation or amplification of voltage signals. While conventional tran-

sistors are point-type (lumped-element) devices, it may be highly interesting to realize a

distributed transistor-type optical response in a bulk material. Here, we show that low-

symmetry two-dimensional metallic systems may be the ideal solution to implement such

a distributed-transistor response. To this end, using the semiclassical Boltzmann equation

approach, we characterize the optical conductivity of a two-dimensional material under

a static electric bias. It is found that similar to the nonlinear Hall effect, the electron

transport depends on the Berry curvature dipole. Our analysis reveals that the electro-

optic effect modifies the optical conductivity of the material, breaking the electromagnetic

reciprocity and yielding a dynamical response that imitates that of a transistor but in a

distributed volume. Furthermore, the effective conductivity tensor can be non-Hermitian,

opening the possibility of optical gain. To maximize the non-Hermitian response, we ex-

plore the specific case of strained twisted bilayer graphene. Our analysis reveals that the

optical gain for incident light transmitted through the biased system depends on the light

polarization, and can be quite large, especially for multilayer configurations.
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Lorentz’s reciprocity is at the origin of the bidirectional nature of conventional

photonic devices, limiting the ways that electromagnetic signals can be manipulated

in such systems [1]. To bypass this limitation and produce a nonreciprocal electro-

magnetic response, it is necessary to apply a suitable bias to the system [2, 3]. This

can be achieved by breaking time-reversal (TR) symmetry [4], traditionally through

magneto-optical effects [5–7], but more recently also with temporal modulations

[8–12] and in systems with a large electron mobility with current injection [13–18].

Alternatively, non-reciprocity can also be engineered using non-linear materials that

are dynamically biased by the incoming wave [19–26].

Systems with gain can also provide peculiar non-reciprocal responses [27, 28].

In particular, it was recently suggested that the operation of a discrete transistor

can be imitated by an hypothetical bulk nonlinear metamaterial [27]. The meta-

material can be visualized as an array of discrete transistors such that the tran-

sistor response is effectively distributed over the entire space, rather than being

concentrated in a lumped device as in traditional electronic systems. An hypo-

thetical transistor-metamaterial may enable rather unique and exotic nonreciprocal

and non-Hermitian optical effects (e.g., optical isolation, gainy responses, etc) [27].

It is thus natural to wonder if the idealized transistor-type response can be engi-

neered with a suitable bias in a naturally available material. Remarkably, here we

theoretically demonstrate that nonlinear two-dimensional systems may be the ideal

platforms to implement the desired distributed transistor response. Our analysis

shows that the Berry curvature dipole and unfilled electronic bands are the keys

to unlock the gainy and nonreciprocal effects. Thus, the materials need to have a

highly anisotropic electro-optical effect, typical of systems with low symmetry.

The field of nanophotonics has been ignited by the availability of novel two-

dimensional (2D) materials and their unique optical properties [29, 30]. Several

2D materials are promising candidates for the use in nonreciprocal devices. For

instance, it has been shown that drifting electrons can break the spectral symmetry

of graphene plasmons and lead to unidirectional wave propagation [13–18]. Novel 2D

magnets and their heterostructures can also generate sizable magneto–optical effects

[6, 31, 32] and several 2D materials can enhance nonlinear properties, including

second and third order non-linearities in a wide spectral range [33].

It is well known that some nonlinear electrical and optical effects are linked to

higher order moments of the Berry curvature [34–36]. For example, the nonlinear

Hall effect, which depends on the squared amplitude of the applied electric field,
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results from the interplay between a Berry curvature dipole (BD) and the imbalance

between counterpropagating charge carriers [34, 37–41]. The circular photogalvanic

effect is related to an interband Berry curvature dipole [35, 42], as observed in 1Td

transition metal dichalcogenides [35].

Here we use the semiclassical Boltzmann transport theory to demonstrate that

the linearized optical response of non-magnetic 2D metals is determined by the Berry

curvature dipole and may mimic perfectly the linearized response of a distributed-

transistor. In particular, analogous to the idealized transistor-metamaterial of Ref.

[27], we find that for materials with sufficiently low-symmetry an electric static

bias can lead to nonreciprocal [43] and non-Hermitian optical responses. We apply

our theoretical formalism to graphene moiré superlattices, which present very large

BD [40, 44] and giant second-order nonlinear transport [45]. We find that when

the 2D-material is illuminated by a normally incident electromagnetic wave under

a lateral electric bias, the “transistor-mechanism” can produce considerable optical

gain, which depends on the light polarization. We discuss how the optical gain is

influenced by the polarization of the incident wave, the Fermi energy and the number

of material layers.

To begin with, we establish the relation between the linear electro-optic effect

and the Berry curvature dipole in 2D metals. Let us assume that the 2D material

is biased with a static field E0 given by E0 = E0
xx̂ + E0

y ŷ. For weak dynamic

field variations Eω around the biasing point E(t) = E0 + Eωe−iωt, the response

is linear in both Eω and E0. Semiclassically, the current density is determined

by J = −e
∑

k fkvk, where fk is the electron distribution function. The band

velocity is vk = v0
k + vBk = 1

~
∂εk
∂k

+ e
~Ωk × E, with vBk being the anomalous velocity

contribution determined by the Berry curvature Ωk. The term vBk may be nontrivial

in 2D materials with a broken inversion symmetry. To calculate the current density,

we need to solve the Boltzmann transport equation (BTE) that can be written as
∂fk
∂t

+ ∂k
∂t
·∇kfk = − δfk

τsck
with ∂k

∂t
= −e

~ E (see the Supplementary Material [46] for the

details). The collision term is evaluated in the relaxation time approximation, where

the rate of change of fk is proportional to the difference δfk = fk − f 0
k between fk

and the equilibrium distribution function. Here, f 0
k is the Fermi-Dirac distribution

and τ sck is the scattering relaxation time. We want to obtain the change in fk that

results from the two electric fields: δfk = δf 0
k + δfωk e

−iωt. The BTE is solved in two

steps [47]. Before the optical field is turned on, we consider that the DC field drives

the system to a steady state. For a DC field E0, the distribution function does not
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depend on t. If we assume that the change in the distribution function δf 0
k is small

such that fk ' f 0
k + δf 0

k, then δf 0
k ' e

~τ
sc
k E0 ·∇kf

0
k. Consider now the case where

both the static and the dynamic electric fields are turned on. The response to the

optical field is determined by the new steady state described by f 0
k + δf 0

k. Thus, the

BTE for the AC field is: −iωδfωk − e
~E

ω ·∇k(f 0
k + δf 0

k) = − δfωk
τsck

.

The current density can be separated into AC and DC contributions J =

J0 + Jωe−iωt (the second harmonic response is ignored), where the DC part J0

is just the linear response to the DC field. We assume that the unperturbed Hamil-

tonian of the 2D material is time-reversal invariant. Furthermore, only the parts of

δf 0
k and δfωk that are odd functions of the quasi-momentum can yield a nontrivial

contribution to the current. Taking this into account, it is found that the optical re-

sponse is determined by the usual Drude-like linear response term (not shown) plus

two contributions from the anomalous velocity, which are linear in both static and

dynamic fields. This second order contribution is known as the linear electro-optic

response and can be written as Jeo = Jeo
H + Jeo

NH with

Jeo
H = −e

3τ

~2
(D · E0)(ẑ× Eω) = σ̄eo

H · Eω, (1)

Jeo
NH = − e3τ/~2

(1− iωτ)
(ẑ× E0)(D · Eω) = σ̄eo

NH(ω) · Eω. (2)

where D is the Berry curvature dipole with components Da =
∫

d2k
(2π)2

Ωz
k
∂f0k
∂ka

. In

the above, σ̄eo
H and σ̄eo

NH(ω) are linearized optical conductivities that determine the

electro-optic response. Thus, Jeo(ω) = σ̄eo · Eω, gives the piece of the dynamic

current density induced by the static electric bias E0. In other words, the optical

conductivity of the material gains an extra term σ̄eo = σ̄eo
H + σ̄eo

NH, due to the

nonlinear interactions between the static and dynamical fields.

As expected, the linear electro-optic effect depends on the symmetry of the solid,

and it may be nontrivial when the inversion symmetry is broken (necessary but not

sufficient condition). The electro-optic conductivity has two qualitatively different

contributions. The first piece σ̄eo
H can be linked to an optical Hall effect [43] and is

associated with a gyrotropic and conservative interaction. The structure of σ̄eo
H is

the same as for a lossless nonreciprocal medium with a frequency independent opti-

cal conductivity. On the other hand, the second piece σ̄eo
NH yields a non-conservative

and frequency dependent optical conductivity. Rather remarkably, the second piece

can describe a process in which the optical field can extract energy from the DC

field, analogous to a distributed transistor. In fact, the sign of the quadratic form

pdis,EO = 1
2
Re {Jeo · Eω,∗} = 1

2
Re {Eω,∗ · σeo

NH · Eω} that determines the power trans-
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ferred from the optical field to the material (dissipated power) due to the linear

electro-optic effect is typically unconstrained; in particular, the sign can be nega-

tive, which corresponds to optical gain. Similar to a MOSFET transistor, the optical

gain arises due to the interactions between the DC current induced by the static

field and the optical field. In the supplemental materials, we develop further the

analogy with the transistor response.
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Figure 1: (a) A 2D material described by the conductivity tensor of Eq. (3) is illuminated

by an electromagnetic wave under normal incidence. The transmittance depends on the

handedness of the incident wave. It may exceed unity for a specific handedness, while for

the opposite handedness it is always less than unity. (b) Absorptance and (c) transmittance

of the 2D material as a function of the frequency for an incident wave with RCP (solid)

and LCP (dashed) polarization. (i) ξ = 0; (ii) ξ = ωF ; (iii) ξ = 5ωF ; (iv) ξ = 10ωF .

Note that for ξ = 0, the absorptance (transmittance) is the same for the RCP and LCP

polarizations, and thus the solid and dashed blue curves are coincident in both panels.

(d) Polarization curves of the transmitted wave for an incident wave with RCP (blue solid

lines) and LCP (red dashed lines) polarization for two different oscillation frequencies and

ξ/ωF=10. In the panels (b)-(d) ωF /(2π) ' 0.24 THz (ωF = EF /~ with EF =1 meV),

γ = 1× 1012 rad/s, εr1 = εr2 = 1.

Low-symmetry 2D materials are known for presenting strong optical nonlinear-

ities [33], and thus may be the ideal platforms to observe a natural distributed-

transistor response. In principle, there are several candidates for the observation of
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this novel effect, including, for instance, 1Td transition metal dichalcogenides such

as 1Td WTe2 [37, 38, 48] or transition metal monochalcogenides [49]. To maximize

the effect, it is desirable to have a large Berry curvature dipole. The BD depends on

the product of the Berry curvature and the derivative of the distribution function.

As a result, the most promising candidates for large BDs are systems with narrow

gaps, which can be obtained by nanopatterning 2D materials [50] or in twisted bilay-

ers [40, 44]. These systems can concentrate the band velocity and Berry curvature

at the vicinity of very localized Dirac cones, increasing in this manner the BD [40].

Let us first consider a generic 2D material in the metallic phase so that at low

frequencies the longitudinal optical conductivity is dominated by the Drude’s con-

tribution σ(1)(ω) = σD(EF )/(γ − iω) with γ = 1/τ the scattering rate. In the case

of Dirac fermions, σD(EF ) = σ0ωF where σ0 = 2e2/h and ωF = EF/~. The Drude

contribution is combined with the electro-optic conductivity σ̄eo. The nonconser-

vative piece of the conductivity (σ̄eo
NH) is proportional to the tensor product of the

real-valued vectors ẑ×E0 and D. The optical gain is maximized for high-frequencies

when these two vectors are orthogonal so that the tensor σ̄eo
NH is traceless. Thus,

ideally the applied static bias should be parallel to the Berry curvature dipole of

the 2D material. In the following, it is assumed without loss of generality that both

the Berry curvature dipole and the static bias are along the y-direction. In such a

case, the optical conductivity tensor can be written as the sum of (i) a frequency

dependent part determined by both the first order optical conductivity σ(1)(ω) and

by the non-Hermitian contribution σ̄eo
NH(ω) with (ii) a frequency independent part

determined by gyrotropic optical conductivity σ̄eo
H :

σ̄(ω) =
σ0

γ − iω

ωF ξ

0 ωF

− σ0
γ

0 −ξ

ξ 0

 . (3)

In the above, ξ = πeDyE
0
y/~ is a parameter with units of frequency and its sign is

determined by the sign of the static bias E0
y . The diagonal terms of the first piece are

determined by σ(1)(ω), whereas the anti-diagonal term of the first piece is determined

by σ̄eo
NH(ω). It should be noted that we use σ(1)

xx (ω) = σ
(1)
yy (ω), while the linear optical

conductivity in low symmetry 2D materials is typically anisotropic. The physical

mechanisms that control the optical gain depend weakly on the anisotropy, which is

ignored here for simplicity.

It can be easily checked that the total power (per unit of

area) transferred from the optical field to the material is pdis =

1
2

σ0
γ2+ω2

[
ωFγ

(
|Ex|2 + |Ey|2

)
+ ξRe {(γ + iω)E∗xEy}

]
. While the first term of
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pdis is strictly positive (corresponding to dissipation), the sign of the second term

(the linear electro-optic contribution, pdis,EO) is unconstrained and depends mainly

on the relative phase of the field components Ex and Ey. When the second term

of pdis dominates, the overall material response may be “gainy” analogous to a

conventional transistor amplifier. It should be underlined that the gainy response

can be unlocked only for metallic systems, i.e. with unfilled electronic bands,

so that the Berry curvature dipole and ξ can be different from zero. In such a

case, the static electric field induces a drift current which drives the system to a

nonequilibrium steady state. In fact, without a drift current (i.e., for an insulating

phase and equilibrium systems) it would be impossible to extract energy from the

static voltage generator and have optical gain, in agreement with the Kleinman

symmetry [51, 52].

In order to study the impact of the electric bias, next we consider that the 2D

material is illuminated by an electromagnetic wave that propagates along the +z

(normal) direction (see Figure 1a for a related setup with several stacked monolay-

ers). The material is surrounded by a vacuum and is biased with a static electric

field oriented along y. The transverse components of the reflected and transmitted

waves are related to transverse components of the incident field Einc as Er = ρ̄ ·Einc

and Et = t̄·Einc, where ρ̄ and t̄ are 2×2 reflection and transmission matrices derived

in the supplemental material that link the x and y components of the electric fields

of the different waves at the interface [46]. The transmittance T = |Et|2/
∣∣Einc

∣∣2
and the reflectance R = |Er|2/

∣∣Einc
∣∣2 can be expressed in terms of the reflec-

tion and transmission matrices as follows: R =
(
Einc∗ · R̄ · Einc

)
/
(
Einc∗ · Einc

)
and

T =
(
Einc∗ · T̄ · Einc

)
/
(
Einc∗ · Einc

)
with R̄ = ρ̄† · ρ̄ and T̄ = t̄† · t̄. The †-symbol

represents the operation of transpose-conjugation.

First, we consider that the incident wave is circularly polarized (CP) so that the

incident electric field at z = 0− is given by Einc = E0(x̂ ± iŷ))/
√

2 for right (left)-

handed circular polarization RCP (LCP), respectively. Figures 1b and 1c show the

absorptance (A = 1−R−T ) and transmittance of the electrically-biased 2D material

as a function of the frequency for different values of the ratio ξ/ωF . Having in mind

2D materials with minibands formed by either twisted bilayers or nano-patterning,

we consider in the simulations ωF/(2π) ∼ 0.24 THz, corresponding to Dirac fermions

with ωF = EF/~, with a reduced Fermi energy EF =1 meV.

For ξ = 0, the absorptance for the RCP and LCP polarizations, ARCP and ALCP

respectively, is the same because the material conductivity is isotropic. For increas-
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ing values of ξ, the distributed-transistor response originates optical dichroism and

optical gain. The source-drain bias in 2D materials can lead to in-plane electric

fields on the order of 0.2-1 V/µm [53] for samples in the micrometer scale. The

Berry curvature dipole Dy can reach values on the order of 40 nm for graphene

twisted bilayers [40, 44] and 150 nm for twisted WTe2 bilayers [40]; thus, it is in

principle realistic to consider 0 < ξ/ωF < 20 for ωF/(2π) ∼ 0.24 THz. Figure 1b

shows that in the conservative interval ξ/ωF ≤ 10, there is a sizable optical gain

in the terahertz range. Specifically, for RCP waves an increase of ξ diminishes the

material absorption and may even lead to a negative absorption (i.e., gain). Quite

differently, for LCP incident waves the bias enhances the material absorption such

that 1 − RLCP − TLCP increases with ξ. By reversing the sign of ξ, which implies

reversing E0
y , the role of the two polarizations is interchanged (moreover, flipping the

direction of arrival of the incoming wave leads to the same effect). The imbalance

between the two polarizations can be attributed to both the gyrotropic and non-

Hermitian parts of the electro-optic conductivity. Analogous to a lumped transistor,

the optical gain is due to the energy extracted from the drifting electrons through

the nonlinear response of the medium. It is important to underline that the non-

reciprocal and non-Hermitian response provided by the transistor mechanism has a

very different physical origin than the nonreciprocity and gain provided by current

injection in graphene and related systems [13–18, 54, 55]. In fact, in the latter case

the nonreciprocity and gain are rooted in the Doppler effect [15, 16] and a negative

Landau damping effect [54, 55], respectively, which require extremely large drift ve-

locities and an ultra-high mobility. In contrast, in the transistor case it is due to

the interplay of the nonlinear response and the electric bias.

The transmittance of the biased 2D material for RCP incident waves may exceed

unity (TRCP > 1) over a relatively wide frequency interval (Fig. 1c). In contrast, the

transmittance for LCP waves decreases with ξ and is always less than unity (TLCP

< 1). The transmittance does not exhibit a monotonic behavior with ξ (i.e., larger

values of ξ do not necessarily imply a larger transmittance, see the green and red

solid curves in Fig. 1c). In fact, part of the energy extracted from the 2D material

is coupled to the reflected wave, and thereby a negative absorptance does not imply

a transmittance greater than unity [46].

The polarization of the incoming wave is modified by the electrically biased 2D

material. Figure 1d depicts the polarization curve of the transmitted waves for

incident waves with RCP (blue solid lines) and LCP (red dashed lines) polarization

8



and for two different values of the oscillation frequency. For very low frequencies,

when the electro-optic response is dominated by Re {σ̄eo}, the material changes

noticeably the polarization. The transmitted waves for the RCP and LCP incident

waves have identical elliptical polarization with the principal axes of the ellipse

parallel to ±x̂ + ŷ. The eccentricity of the polarization curves depends on the

strength of ξ. For intermediate frequencies, the electro-optic conductivity is ruled

by Im {σ̄eo
NH}. Even though in this case the polarization curves of the transmitted

waves for incident waves with RCP and LCP polarization are different, both remain

approximately circular.

By tailoring the polarization of the incident wave it is possible to further optimize

the optical gain, i.e., maximize the transmittance. The transmittance is described

by the 2 × 2 positive definite and Hermitian matrix T̄ introduced previously. The

transmittance is bounded by the eigenvalues (Tmin, Tmax) of T̄ such that: Tmin ≤ T ≤

Tmax. The corresponding eigenvectors Et
eig,i with i = {max,min} form an orthogonal

basis and determine the “optimal polarization” (transmittance is maximized) and the

“worst polarization” (transmittance is minimized) of the incoming wave. It should be

noted that Et
eig,i are not eigenvectors of t̄, and thus the transmitted wave typically

has a polarization that is different from that of the incident wave. The physical

meaning of the eigenvectors is that they determine the polarization of the incident

field that maximizes or minimizes the transmitted wave power.

Figure 2a depicts the polarization curves of the incident waves that either max-

imize (solid lines) or minimize (dashed lines) the transmittance of the 2D material

(the dashed lines are represented only for the cases i) and ii)). In general, the

states that maximize or minimize the transmittance are elliptically polarized. The

polarization states that yield T = Tmax and T = Tmin are rotated by 90◦. For low

frequencies, T = Tmax corresponds to an incident wave that is almost linearly polar-

ized with an orientation of 135◦ with respect to the +x-axis. If the scattering rate is

higher, the peak of the real part of σ̄eo
NH broadens. This increases the eccentricity of

the polarization curve that yields T = Tmax. For larger frequencies, the eccentricity

decreases and the optimal polarization tends to the RCP polarization.

This behavior can be understood by analyzing the component of the gain

(−pdis,EO) due to the electro-optic response: 1
2
−σ0ξ
γ2+ω2 Re {(γ + iω)E∗xEy}. For low

frequencies, the gain per unit of area is roughly 1
2
σ0ξγ
γ2+ω2 Re {−E∗xEy}, which for ξ > 0

and a fixed incident power flux is maximized (negative dissipation) when Ex and Ey

have the same amplitude and are in opposition of phase (linear polarization). On
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Figure 2: (a) Polarization curves for the incident waves that maximize (solid lines) or

minimize (dashed lines) the transmittance of the 2D material for (a) (i) ξ = 0+; (ii-iv) ξ =

10ωF and (ii) f =0.01THz, (iii) f =0.3THz, and (iv) f =3 THz; (b-c) Transmittance of the

2D material as a function of the frequency for an incident wave with optimal polarization

(T = Tmax) (solid lines), RCP polarization (dashed lines) and linear polarization T = Tlinear

with Einc = E0(−x̂ + ŷ)/
√

2 (dot-dashed lines); (b) γ = 1 × 1012 rad/s and (i) ξ = 5ωF ,

(ii) ξ = 10ωF . (c) γ = 10 × 1012 rad/s and (i) ξ = 5ωF , (ii) ξ = 10ωF , (iii) ξ = 20ωF ;

(d) Transmittance as a function of the angle ϕ for a linearly polarized incident wave with

Einc = E0(cosϕx̂ + sinϕŷ)/
√

2, γ = 10 × 1012 rad/s and (i) and for f = 0.3 THz (solid

lines) and f = 3 THz (dashed line); (i) ξ = 10ωF . (ii) ξ = 20ωF . The value of ωF is the

same as in Fig. 1 for all the panels.

the other hand, for large frequencies the gain is approximately 1
2
σ0ξω
γ2+ω2 Re {−iE∗xEy},

which is maximized when Ex and Ey have the same amplitude and are in quadrature

(circular polarization).

Figure 2b compares the transmittance of the state that yields T = Tmax

with the transmittance for a RCP wave and for a linearly polarized wave with

Einc = E0(−x̂ + ŷ)/
√

2. The state with optimal polarization provides considerably

more optical gain than the RCP state in the low frequency regime, especially for a

large ξ/ωF . On the other hand, the transmittance of the linearly polarized wave ap-

proaches Tmax in the limit ω → 0, which is consistent with the analysis of Figure 2a.

However, for intermediate frequencies, Tlinear is strongly reduced. Figure 2d shows

the transmittance for an incoming wave with linear polarization as a function of the

orientation of the electric field vector. Consistent with the previous discussion, the
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transmittance is maximized for ϕ = 135◦.

In general, a lower scattering rate leads to a stronger gain due to the larger

mobility of electrons (compare Fig. 2b with Fig. 2c, which was calculated with a

scattering rate 10 times larger). However, for sufficiently small γ a non-monotonic

behavior is observed due to an impedance mismatch effect that repels the electric

field lines away from the surface of the 2D material and suppresses the gain (not

shown). The impedance mismatch is mostly due to the gyrotropic part of the mate-

rial response. In principle it is possible to counteract the undesired effects of a large

scattering rate with some optimization of the Berry curvature dipole (i.e., using a

larger ξ/ωF , see Fig. 2c). This is made possible by the broad peak in Im {σ̄eo
NH}.

The optical gain can be boosted by stacking several layers of the 2D material.

To illustrate this, next we consider a heterostructure formed by Nsh identical 2D

material sheets separated by dielectric spacers of thickness d and dielectric constant

εr2 surrounded by a vacuum (see Figure 3a). Using a transfer matrix formalism,

the transverse electromagnetic fields at the input interface (z = 0−) can be linked

to the fields at the output interface (z = (N − 1)d+). In this manner, one can

find the transmittance of the heterostructure as a function of the polarization state

of the incoming wave [46]. Figure 3b shows Tmax as a function of the number of
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Figure 3: (a) Geometry of a heterostructure formed by a stack of 2D materials separated

by thin dielectrics. (b-c) Transmittance of the multilayer system for an incident wave with

the optimal polarization (T = Tmax), EF = 1 meV, εr,1 = 1, εr,2 = 3.5 (hBN), and d = 10

nm. (b) Transmittance as a function of the number of sheets Nsh for (i) γ = 1×1012 rad/s,

ξ = 10ωF and f = 0.3 THz, (ii-iv) γ = 10 × 1012 rad/s, (ii) ξ = 10ωF and f = 0.3 THz,

(iii) ξ = 20ωF and f = 0.3 THz, and (iv) ξ = 20ωF and f = 3 THz. (c) Transmittance of

the multilayer system as a function of ξ/ωF for Nsh=5, γ = 10 × 1012 rad/s, and (i) f =

0.3 THz, (ii) f = 3 THz.

layers for a heterostructure with a spacer with d =10 nm and εr2 = 3.5, which is

the dielectric constant of hBN [56]. The transmittance for the optimal polarization
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can reach 110%. As seen, the transmittance reaches a maximum for some optimum

Nopt number of layers that depends on the dielectric spacers, on the static field bias

and on the scattering rate.

The origin of the optimum Nopt is the change of the wave polarization caused

by the transmission through each layer. In fact, the wave that illuminates a certain

layer has typically a sub-optimal polarization. This problem may be fixed with

polarization transformers that restore the optimal polarization after the transmission

through each layer.

A larger scattering rate and smaller ξ reduce the polarization rotation suffered

by the transmitted waves, increasing the value of Nopt. Figure 3c presents the

transmittance of a heterostructure with Nsh = 5 layers as a function of ξ/ωF (similar

results are obtained for other values of Nsh). As seen, the transmittance saturates

for some value of ξ/ωF and then drops down. This property is due to the impedance

mismatch caused by the gyrotropic part of the electro-optic conductivity σ̄eo
H , which

is also proportional to ξ. In fact, without this component the transmittance would

increase monotonically with ξ/ωF .

Next, we analyze the possibility of observing the distributed-transistor response

in twisted bilayer graphene (TBG). It is well known that “strain” can be used to tune

the Berry curvature dipole in 2D materials [50, 57–60]. Deformations of 0.1 - 0.5%

have been measured with STM in TBG [61–63]. Consequently, TBG encapsulated

in hBN naturally presents a broken inversion symmetry [64, 65] and heterostrain

[61–63], which also breaks the C3 symmetry. Both effects reduce the symmetry

of the TBG and allow for the presence of a Berry curvature dipole. In fact, the

combination of uniaxial strain and mini-gaps in TBG leads to extremely large BDs

that can reach values on the order of 102 nm [40, 44, 60]. Thus, TBG is a promising

candidate for observing the current-driven optical gain.

We follow a standard theoretical approach to obtain the BD and the optical

conductivity tensor of strained TBG for strain in the range of 0.1% < ε < 0.3%

[40, 44]. We model the heterostructure with a low-energy continuum Hamiltonian

consisting of two Dirac terms for the graphene layers and a tunneling term for the

hopping between layers [66]. The key ingredients to observe optical gain are a

large BD and small longitudinal conductivity, such that the off-diagonal terms of

the conductivity tensor dominate the optical response. This can be achieved with

twist angles on the order of 1.25◦. For these angles, the maximum value of the BD

occurs near the bottom of the first conduction moiré band, where the longitudinal

12



conductivity is small [46].
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Figure 4: (a) Transmittance and (b-c) absorptance of the strained twisted bilayer graphene

(surrounded by a vacuum) for an incident wave with optimal polarization (T = Tmax) (solid

lines), RCP polarization (T = TRCP) (dashed lines), and linear polarization (T = Tlinear)

with Einc = E0(−x̂+ ŷ)/
√

2 (dot-dashed lines), for γ = 2× 1012 rad/s. (a) Transmittance

as a function of the frequency for E0
y = 0.8 V/µm; (i) EF = -2.5 meV, (ii) EF = -1.8 meV.

(b) Absorptance as a function of EF for E0
y = 0.8 V/µm and f = 0.3 THz. (c) Absorptance

as a function of amplitude of the static bias field directed along the y direction for EF =

-1.8 meV and f = 0.3 THz.

Figure 4a depicts Tmax, TRCP, and Tlinear for electrically biased TBG as a function

of the frequency for E0
y = 0.8 V/µm, γ = 2× 1012rad/s (equivalent to a broadening

of 1.6 meV) and two different values of EF , specifically (i) EF = −2.5 meV and (ii)

EF = −1.8 meV. The 2D material can provide considerable gain over a wide range

of frequencies. The transmittance exhibits a behavior analogous to the previous

figures. For low frequencies, the optimal polarization is linear, whereas for high

frequencies the optimal polarization becomes circular. The transmittance depends

significantly on EF , due to the reasons discussed next.

The value of EF affects the optical gain through changes in Dy and in the lon-

gitudinal conductivity. In fact, it is well known that the Berry curvature dipole is

strongly dependent on EF in TBG [50, 58–60]. Consistent with previous works, we

show in the supplementary materials that Dy is a non-monotonical function of the

Fermi energy [46]. On the other hand, the Fermi energy also controls the longitudinal

conductivity which should be kept as small as possible to maximize ξ/ωF . As illus-

trated in Fig. 4b, values of EF near the bottom of the conduction band (EF ' −2.5

meV) provide a good compromise between a large dipole Dy and a small longitudinal

conductivity. The negative absorptance is maximized for EF = −1.8 meV where the

BD has contributions from both electron and hole pockets [46]. It should be noted

that in an experiment it may be easier to detect the active response in terms of

13



positive and negative variations of the absorption.

Figure 4c shows how the absorptance varies with the static bias. The material

exhibits a “gainy” response for a wide range of values of the bias field. The change in

the sign of the absorptance with the sign of the bias and its sensitivity to the handed-

ness of the wave polarization are the “smoking gun” signatures of the transistor-like

optical response.

In summary, our theoretical analysis reveals that electrically biased two-

dimensional metallic systems with a large Berry curvature dipole may effectively

behave as “distributed transistors” with a strongly nonreciprocal and non-Hermitian

distributed optical response. The described effect is rooted in a novel electro-optic

effect that arises due to the interplay of the drift current induced by the static bias

and material nonlinearities. In order to illustrate the rather unique properties of

the material, we characterized the absorptance and transmittance of the electrically

biased 2D material under plane wave illumination. Our analysis reveals that the

material response can be either gainy or lossy depending on the handedness of the

polarization state of the incident wave. The optical gain/loss also depends on the

direction of the wave propagation and on the orientation of the static electric field,

giving the flexibility to design of a panoply of new tunable and active devices (e.g.,

amplifiers, oscillators, etc) with the gain controlled by the polarization of the wave.

Furthermore, it was shown that an heterostructure formed by multiple material lay-

ers can boost the optical gain. Finally, we identified graphene moiré supperlattices

as very promising platforms to observe the transistor-like electro-optic effect.
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Supplementary material for “Engineering transistor-like optical gain in

two-dimensional materials with Berry curvature dipoles”

A. Boltzmann Transport Equation (BTE)

Let us assume that the 2D material is biased with a static field E0 given by

E0 = E0
xx̂ + E0

y ŷ.

For weak dynamic field variations Eω around the biasing point E(t) = E0 +Eωe−iωt,

the response is linear in both Eω and E0. Semiclassically, the current density is

determined by

J = −e
∑
k

fkvk,

where fk is the electron distribution function. The band velocity is

vk = v0
k + vBk =

1

~
∂εk
∂k

+
e

~
Ωk × E,

with vBk being the anomalous velocity contribution determined by the Berry curva-

ture Ωk.

To calculate the current density, we need to solve the Boltzmann transport equa-

tion (BTE)
∂fk
∂t

+
∂k

∂t
·∇kfk = −δfk

τ sck
, with

∂k

∂t
=
−e
~

E. (S1)

The collision term is evaluated in the relaxation time approximation, where the rate

of change of fk is proportional to the difference δfk = fk − f 0
k between fk and the

equilibrium distribution function. Here, f 0
k is the Fermi-Dirac distribution and τ sck is

the scattering relaxation time. We want to obtain the change in fk that results from

the two electric fields: δfk = δf 0
k + δfωk e

−iωt. The BTE is solved in two steps [47].

Before the optical field is turned on, we consider that the DC field drives the system

to a steady state. For a DC field E0, the distribution function does not depend on

t. If we assume that the change in the distribution function δf 0
k is small such that

fk ' f 0
k + δf 0

k, then

δf 0
k '

e

~
τ sck E0 ·∇kf

0
k.

Consider now the case where both the static and the dynamic electric fields are

turned on. The response to the optical field is determined by the new steady state

described by f 0
k + δf 0

k. Thus, the BTE for the AC field is:

−iωδfωk −
e

~
Eω ·∇k(f 0

k + δf 0
k) = −δf

ω
k

τ sck
.
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The solution can be written explicitly as:

δfωk '
eτ/~

(1− iωτ)
Eω ·∇kf

0
k +

(eτ/~)2

(1− iωτ)
Eω ·∇k(E0 ·∇kf

0
k), (S2)

where τ sck ∼ τ is assumed a constant. The first term is linear in Eω while the second

is quadratic in the electric field as it depends on both E0 and Eω. The induced

current density can be written in terms of the total distribution function as follows:

J = −e
∑
k

(f 0
k + δf 0

k + δfωk e
−iωt)(v0

k +
e

~
Ωk × (E0 + Eωe−iωt)). (S3)

This expression can be separated into AC and DC contributions J = J0 + Jωe−iωt

(the second harmonic response is ignored), where the DC part J0 is just the linear

response to the DC field. We assume that the unperturbed Hamiltonian of the

2D material is time-reversal invariant, and thereby the term f 0
kΩk × Eω does not

contribute after integration over the momentum space. Furthermore, only the parts

of δf 0
k and δfωk that are odd functions of the quasi-momentum can yield a nontrivial

contribution to the current. Taking this into account, it is found that the optical

response is determined by the usual Drude-like linear response term (not shown)

plus two contributions from the anomalous velocity:

Jeo = −e
∑
k

δf 0
k

e

~
(Ωk × Eω)− e

∑
k

δfω0k

e

~
(Ωk × E0). (S4)

with δfω0k = 1
1−iωτ

τe
~ ∇kf

0
k · Eω.

In 2D materials the Berry curvature is of the form Ωk = Ωz
kẑ. Hence, the second

order contribution can be written as Jeo = Jeo
H + Jeo

NH, as shown in the main text.

B. Reflection and transmission matrices for a 2-dimensional material

Here we derive the reflection and transmission matrices (ρ̄ and t̄) for a 2-

dimensional (2D) material whose electromagnetic response is determined by the

surface conductivity σ̄(ω) (Fig. S1). Following the approach of Refs. [67, 68], we

define the transverse fields as:

ET =

Ex
Ey

 , J̄ ·HT =

 0 1

−1 0

Hx

Hy

 =

 Hy

−Hx

 (S5)

The transverse components of the electric E and magnetic H fields in the di-

electrics i = 1, 2 are linked by

J̄ ·H±T = ±Ȳi · E±T (S6)
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εr,1 εr,2

x

y z

Figure S1: Sketch of a 2D material surrounded by two dielectrics with relative permittivities

εr,1 and εr,1 and wave impedances η1 = η0/
√
εr,1 and η2 = η0/

√
εr,2.

where the sign ± determines if the wave propagates towards the +z or the −z

direction and

Ȳi =
1

η0k0kz,i

k20εr,i − k2y kxky

kxky k20εr,i − k2x

 (S7)

where kz,i =
√
k20εr,i − k2x − k2y, k0 = ω/c is the free-space wave number, and η0

is the vacuum impedance. By matching the tangential component of the electric

field (ET|z=0+ − ET|z=0− = 0) and by imposing the surface impedance boundary

condition (−J̄ · (HT|z=0+ −HT|z=0−) = σ̄ · ET) at the interface, it is found that:

(12×2 + ρ̄) · Einc
T = Et

T (S8)

Ȳ1 · Einc
T − Ȳ1 · Er

T − Ȳ2 · Et
T = σ̄ · Et

T (S9)

The reflected and transmitted fields are related to the incident electric field as shown

in Fig. S1. From Eqs. (S8) and (S9) we obtain the following reflection and trans-

mission matrices:

ρ̄ =

ρxx ρxy

ρyx ρyy

 = (Ȳ1 + Ȳ2 + σ̄)−1 · (Ȳ1 − Ȳ2 − σ̄) (S10)

t̄ =

txx txy

tyx tyy

 = 2

√
η1
η2

(Ȳ1 + Ȳ2 + σ̄)−1 · Ȳ1 (S11)

where the generic lm element represents the complex amplitude of the reflected (ρ)

or transmitted (t) wave, linearly polarized in the l direction for the excitation in the

m direction.

C. Study of the reflectance

Figure S2 depicts the reflectance of the biased 2D material for the same param-

eters as in Fig. 1 of the main text as a function of the frequency for RCP (solid

3



lines) and LCP (dashed lines) incident waves. The reflectance is weakly dependent

on the incident wave polarization and typically increases with ξ, which explains why

a transmittance less than unity can be compatible with a negative absorption for

large values of ξ.

R
ef
le
ct
an
ce

(i) (iii)(ii) (iv)
RCP

LCP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

0.08

0.10

Figure S2: Reflectance of the 2D material as a function of the frequency for an incident wave

with RCP (solid) and LCP (dashed) polarization, for ωF /(2π) ' 0.24 THz (ωF = EF /~

with EF =1 meV), γ = 1× 1012 rad/s, εr1 = εr2 = 1. (i) ξ = 0; (ii) ξ = ωF ; (iii) ξ = 5ωF ;

(iv) ξ = 10ωF . Note that for ξ = 0, the reflectance is the same for the RCP and LCP

polarizations, and thus the solid and dashed blue curves are coincident.
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D. Reflection and transmission matrices for a multilayer system

Here, we derive the transmission matrix for a multilayer structure formed by

several 2D material sheets and dielectric layers (Fig. S3).

The boundary conditions that link the electromagnetic fields across the 2D ma-

terial (see section A) interfaces can be written in a compact matrix form as:
Ex

Ey

Hx

Hy


z=z+0

= ŪB ·


Ex

Ey

Hx

Hy


z=z−0

with ŪB =


1 0 0 0

0 1 0 0

σyx σyy 1 0

−σxx −σxy 0 1

 . (S12)

ŪB is a transmission matrix that relates the transverse fields at z+0 with the fields

calculated at z−0 .

...

z = 0 z = d z = 2d z = 3d z = (N-1)d

x

y z
εr,1 εr,2 εr,2 εr,2 εr,2 εr,1

Figure S3: Sketch of a multilayer system formed by N 2D material sheets.

To characterize the propagation in the dielectric slabs, we rely on the Maxwell’s

equations:
~∇× E = iωµ0H, ~∇×H = −iωε0εr,iE. (S13)

The material is assumed infinite along the x and y directions. In this case the fields

can be decomposed into plane waves with spatial variation ei(kxx+kyy) and the nabla

operator reduces to ~∇ = ikxx̂ + ikyŷ + ∂zẑ. Thus, we can write:

− i


ikyEz − ∂zEy
∂zEx − ikxEz
ikxEy − ikyEx

 = ωµ0H and i


ikyHz − ∂zHy

∂zHx − ikxHz

ikxHy − ikyHx

 = ωε0εr,iE. (S14)

The z-component of the fields does not depend on ∂z and can be expressed as a

function of the other components

Ez =
−kxHy + kyHx

ωε0εr,i
and Hz =

kxEy − kyEx
ωµ0.

(S15)
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From here, it follows that the remaining set of equations can be written in a matrix

form as:

i∂z


Ex

Ey

Hx

Hy

 = M̄ ·


Ex

Ey

Hx

Hy

 (S16)

with

M̄ =


0 0 − kxky

ωε0εr,2
−ωµ0 + k2x

ωε0εr,2

0 0 ωµ0 −
k2y

ωε0εr,2

kxky
ωε0εr,2

kxky
ωµ0

ωε0εr,2 − k2x
ωµ0

0 0

−ωε0εr,2 +
k2y
ωµ0

−kxky
ωµ0

0 0

 . (S17)

Then, the problem of propagation in the dielectric material reduces to i∂zf = M̄ · f

that has a formal solution given by:

f(z) = exp(−izM̄) · f(z = 0). (S18)

The matrix exp(−izM̄) is a 4x4 transmission matrix as it relates the values of the

fields in two dielectric material planes. Using Eqs. (S12) and (S18) one can write

that:

f(z = d+) = ŪL · f(z = 0+), (S19)

where ŪL is the “one-layer” transmission matrix given by

ŪL = ŪB · exp(−iM̄d). (S20)

Finally, the global transmission matrix that relates the transverse fields at the input

and output interfaces,

f(z = (N − 1)d+) = Ūglobal · f(z = 0−). (S21)

is given by

Ūglobal = (ŪL)N−1 · ŪB. (S22)

The fields at the interface z = 0− are given by:

f(z = 0−) = f inc + f ref =

Einc
T + Eref

T

Hinc
T + Href

T

 =

 (1 + ρ̄ML) · Einc
T

−J̄ · Ȳ1 · (1− ρ̄ML) · Einc
T

 ei(kxx+kyy)
(S23)
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where ρ̄ML represents the reflection matrix for the multilayer system. On the other

hand, the transverse fields at the interface z = (N − 1)d+ are given by:

f(z = (N − 1)d+) =

 t̄ML · Einc
T

−J̄ · Ȳ1 · t̄ML · Einc
T

 ei(kxx+kyy) (S24)

where t̄ML represents the transmission matrix for the multilayer system. Therefore,

from Eq. (S21) it follows that: t̄ML · Einc
T

−J̄ · Ȳ1 · t̄ML · Einc
T

 = Ūglobal ·

 (1 + ρ̄ML) · Einc
T

−J̄ · Ȳ1 · (1− ρ̄ML) · Einc
T

 . (S25)

By writing the global transmission matrix as

Ūglobal =

Ā B̄

C̄ D̄

 . (S26)

where Ā, B̄, C̄, D̄ are 2 × 2 matrices, it is found after straightforward algebra that

the reflection and transmission matrices are given by

ρ̄ML = (Q̄1+Q̄2)
−1·(Q̄1−Q̄2), t̄ML = 2

(
Ā · (Q̄1 + Q̄2)

−1 · Q̄1 − B̄ · J̄ · Ȳ1 · (Q̄1 + Q̄2)
−1 · Q̄2

)
,

(S27)

where

Q̄1 = (J̄ · Ȳ1 · B̄ + D̄) · J̄ · Ȳ1, Q̄2 = J̄ · Ȳ1 · Ā + C̄. (S28)

E. Link with the response of a MOSFET transistor

In what follows, we highlight some similarities between the material response

derived in the main text and the response of MOSFET transistors.

We consider an n-channel (depletion mode) MOSFET transistor operated in the

linear region [1, 69]. The drain-source channel is directed along the y-direction.

The voltage on the gate terminal controls the electric field along the x-direction.

The gate-to-source and the drain-to-source voltages are VGS and VDS, respectively,

whereas the gate and drain currents are IG and ID, respectively. It is possible to

establish the following correspondence between the parameters of the 2D material

(with the electric bias along +y) of the main text and the parameters of a MOSFET

transistor: VGS → Ex, VDS → Ey, IG → jx and ID → jy.

The response of the transistor is of the type [69]:

IG = CGS
dVGS
dt

ID = ID(VGS, VDS)

7



where CGS is the gate-to-source capacitance and ID(VGS, VDS) is some nonlinear

function of the voltages that determines the transfer function of the transistor. As

is well-known, under a static bias the transistor response can be linearized. The

response for a weak dynamical excitation with frequency ω is given by: IωG

IωD

 =

 −iωCGS 0

gm g22


︸ ︷︷ ︸

Y

 V ω
GS

V ω
DS

 (S29)

where g22 = ∂ID
∂VDS

and gm = ∂ID
∂VGS

are determined uniquely by the bias point. The

parameter gm gives the transconductance gain. The admittance matrix Y is the

circuit counterpart of the conductivity matrix σ of the main text, and Eq. (S29)

is the circuit counterpart of the formula j = σ · E. Both matrices do not have the

transpose symmetry. The structure of the two matrices is slightly different (most

noticeably Y12 = 0 whereas σ12 6= 0) because the transistor is an insulator along the

direction of the gate terminal (x-direction) due to the oxide layer. In contrast, the

2D material allows the current to flow along both the x and y directions. Similar

to the 2D material, the transconductance gain gm is inversely proportional to the

scattering rate (it is proportional to the electron mobility) [69].

F. Strained twisted bilayer graphene

The band structure of strained twisted bilayer graphene can be calculated us-

ing the procedure described in the supplementary material of Ref. [44]. For

a single graphene layer, the lattice vectors can be written as a1 = a(1, 0) and

a2 = a(1/2,
√

3/2) and the reciprocal lattice vectors are b1 = 2π
a

(1,−
√

3/3) and b2 =

2π
a

(0, 2
√

3/3), with a ≈ 2.46Å. The graphene Dirac points areK± = −ξ(2b1+b2)/3

where ξ = ±1 is the valley index. At low energy, the monolayer can be described by

a continuum model in the vicinity of the Dirac points: H(q) = −(~vf/a)q · (ξσx, σy)

where σi are the Pauli matrices.

A twisted bilayer graphene can be obtained by rotating the two layers around a

common B site [70]. The lower layer l = d is rotated by an angle θ/2 and the upper

layer l = u is rotated by −θ/2. The primitive and reciprocal lattice vectors in the

rotated layers are written as ali = R̄(∓θ/2)ai and bli = R̄(∓θ/2)bi where R̄(θ) is

a rotation matrix by an angle θ. The twisted bilayer graphene presents strain that

originates from the interaction with the h-BN substrate and top layer. If we consider

uniaxial deformations, the system is stressed along one direction and unstressed on

8



the perpendicular direction [71], breaking the C3 symmetry. To include uniaxial

strain perpendicular to the zigzag direction, the linear strain tensor ε̄ with relative

magnitude ε can be written as

ε̄ = ε

 −1 0

0 ν0

 , (S30)

with ν0 = 0.16 being the Poisson ratio for graphene. In our case ε̄T = ε̄ and, the

transformed primitive and reciprocal lattice vectors for each rotated graphene layer

are given by αli = (1 + ε̄l)a
l
i and βli = (1 − ε̄l)bli, where ε̄l is the strain tensor

and l a layer index. In TBG with uniaxial heterostrain, the strain is applied in

opposite directions in the two graphene layers. The relative deformation is given by

ε̄ = ε̄u−ε̄d with ε̄u = −ε̄d = 1
2
ε̄. The strain modifies the intralayer Hamiltonian and

consequently changes the electronic structure. For small strain, one can introduce

a pseudomagnetic field in the low energy Hamiltonian [72]. In each graphene layer,

the vector potential, Al = (Alx, A
l
y), for this field is given by Alx =

√
3

2a
βG
(
εlxx − εlyy

)
[73], where βG ≈ 3.14 is a dimensionless parameter. In small angle TBG, the moiré

superlattice constant is much larger than the atomic scale. The low energy physics is

still restricted to the vicinity of the Dirac points. This allows us to study each valley

separately with the continuum model of Bistritzer and MacDonald [66]. However,

the strain shifts the Dirac points from their original positions to (1 − ε̄)Kξ − ξAl.

In the layer basis, the effective Hamiltonian for the valley ξ = ±1 has two Dirac

Hamiltonian terms for each graphene layer and a tunneling term describing the

hopping between them. It can be written as

Hξ =

 H(qd,ξ) + ∆dσz U †

U H(qu,ξ) + ∆uσz

 , (S31)

where ql,xi = R̄(±θ/2)(1 + ε̄l)(q −Dl,ξ) with ± for l = d and l = u, respectively.

H(q) is the Hamiltonian for a monolayer graphene. ∆d/u is the staggered potential

induced by the h-BN substrate and top layer [74], which is responsible for breaking

inversion symmetry and opening a band gap in monolayer graphene. Finally, the

off-diagonal term U describes the interlayer coupling between graphene layers. In

the low energy approximation, it is given by the Fourier expansion:

U =

 u u′

u′ u

+

 u u′ω−ζ

u′ωζ u

 eiζg1·r +

 u u′ωζ

u′ω−ζ u

 eiζ(g1+g2)·r (S32)

where ω = e2πi/3, with u = 0.0797 eV and u′ = 0.0975 eV [75]. The large periodicity

of the moiré superlattice leads to a small periodicity in the reciprocal space repre-
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sented by the moiré Brillouin zone (mBZ). k is then restricted to the first mBZ.

We solve the secular equation H(k) |Ψnk〉 = En(k) |Ψnk〉 to obtain the eigenvectors

and energies |Ψnk〉 and En(k). q = k + ng1 + mg2, where m,n are integers. The

Figure S4: Left: Band structure of a strained twisted bilayer graphene for θ = 1.25◦,

uniaxial strain ε = 0.3% and ∆d = −∆u = 1 meV. k is restricted to the first mBZ. The

band that originates the main contribution to the Berry curvature dipole for the range of

Fermi energies used in the main text is highlighted in red. Right: Three dimensional view

of the band edges for the same band structure as in the left panel. The gray planes give

the locations of the valence and conduction band edges.

energy dispersion and eigenvectors are obtained by diagonalizing the Hamiltonian

of equation (S31) numerically. The number of Fourier components that define the

eigenvectors in the numerical calculation is chosen as the minimal number to obtain

convergence for the low energy moiré bands.

We calculate the energies and wave-functions for a TBG with a heterostrain of 0.3

%, a twist angle of 1.25◦ degrees and opposite staggered potentials ∆d = −∆u=1

meV for each graphene layer. Following the procedure outlined in the previous

paragraphs, we obtain the moiré band structure of Fig. S4. One can see that the

staggered potential leads to energy band anti-crossings with band separations of the

order of few meV. This results in large Berry curvatures that could also occur in

other graphene systems where a large periodicity is engineered. The right panel of

Fig. S4 shows the position of the band edges in the mBZ, which are not located in

the path connecting the high symmetry points. The conduction band edge is lower

than the valence band edge, closing the gap.

The band structure and the eigenstates are used to calculate the Berry curvature

dipole and the optical conductivity of a TBG without any further approximation.

The Berry curvature is calculated numerically using Fukui’s method [76]. For multi-
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band systems, the components of the BD are obtained using

Da =
∑
n

∫
d2k

(2π)2
Ωz
n

∂f 0
k

∂ka
. (S33)

where n is the band index. The contributions of the two valleys are summed. The

DC conductivity is given by (vαk = ∂εk
∂kα

)

σαβ = −e
2

γ

∫
d2k

(2π)2
vαkv

β
k

(
∂f 0

k

∂εk

)
, (S34)

and is obtained with numerical integration. For Fermi energies lying at the bottom

of the band highlighted in red in Figure S4, the direct gap to the upper band is

larger than 100 meV. Thus, for the frequency ranges considered in the main text,

interband contributions to the optical conductivity are negligible.
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Figure S5: Berry curvature dipole (left) and longitudinal DC conductivity (right) as a

function of the Fermi energy for a strained twisted bilayer graphene for θ = 1.25◦ and

uniaxial strain ε = 0.3%. ∆d = −∆u = 1 meV, γ=2 THz and T=10K.

The BD and DC conductivity for the same parameters as in Fig. S4 are given

in Fig. S5 as a function of the Fermi energy. Figure S5 shows the two Cartesian

components of the BD. The BD is maximized for a energy window where the Fermi

surface contains electron and hole pockets and both contribute to the BD. In two

dimensions, the Berry curvature dipole behaves as a pseudo-vector D in the xy

plane. In the main text, the electric field direction and the y-axis orientation were

chosen to be parallel to D.
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