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Abstract: Condition-Based Maintenance (CBM), based on sensors, can only be reliable if the data used
to extract information are also reliable. Industrial metrology plays a major role in ensuring the quality
of the data collected by the sensors. To guarantee that the values collected by the sensors are reliable,
it is necessary to have metrological traceability made by successive calibrations from higher standards
to the sensors used in the factories. To ensure the reliability of the data, a calibration strategy must be
put in place. Usually, sensors are only calibrated on a periodic basis; so, they often go for calibration
without it being necessary or collect data inaccurately. In addition, the sensors are checked often,
increasing the need for manpower, and sensor errors are frequently overlooked when the redundant
sensor has a drift in the same direction. It is necessary to acquire a calibration strategy based on the
sensor condition. Through online monitoring of sensor calibration status (OLM), it is possible to
perform calibrations only when it is really necessary. To reach this end, this paper aims to provide
a strategy to classify the health status of the production equipment and of the reading equipment
that uses the same dataset. A measurement signal from four sensors was simulated, for which
Artificial Intelligence and Machine Learning with unsupervised algorithms were used. This paper
demonstrates how, through the same dataset, it is possible to obtain distinct information. Because of
this, we have a very important feature creation process, followed by Principal Component Analysis
(PCA), K-means clustering, and classification based on Hidden Markov Models (HMM). Through
three hidden states of the HMM, which represent the health states of the production equipment, we
will first detect, through correlations, the features of its status. After that, an HMM filter is used to
eliminate those errors from the original signal. Next, an equal methodology is conducted for each
sensor individually and using statistical features in the time domain where we can obtain, through
HMM, the failures of each sensor.

Keywords: sensors; calibration; condition-based maintenance; online calibration status; HMM;
K-means; PCA; features generation

1. Introduction
1.1. The Importance of Sensors in CBM

Industrial maintenance is currently seen as an investment that dramatically decreases
a company’s production costs. For companies with highly critical equipment, where an
unexpected stoppage can cost a very high daily monetary loss, it is necessary to implement
a Condition-Based Maintenance (CBM) policy. In this type of maintenance, the equipment
is monitored by several sensors, responsible for translating the physical behavior of the
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equipment into electrical signals, amenable to reading [1]. Thus, sensors play a key role, al-
lowing intelligent decisions, prediction of future conditions, etc. [2]. Through the collection
of values continuously, in online mode, it is possible to determine the health status of the
equipment in real-time. This requires the use of methodologies and algorithms that obtain
information from the collected data [3]. Using Artificial Intelligence (AI) and Machine
Learning (ML) methods, it is possible to detect patterns in the data that provide information
about the behavior of the equipment.

In this area, there are some fundamental works: Li et al. [4] use AI and ML methods
to classify patterns for the detection of False Data Injection Attacks (FDIA) in Cyber-
Physical Systems (CPS) in order to improve security cybernetics of intelligent networks;
Antunes et al. [5] use ML methodologies and propose a condition-based maintenance
system of a wood chip pump system; Mateus et al. [6] use neural networks, such as
Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), to predict univariate
and multivariate data in a maintenance system based on the conditions of the equipment
used in the paper industry. Simoes et al. [7] use the HMM for a diesel engine maintenance
system; Kou et al. [8] propose a condition-based monitoring and maintenance method for
Smart Offshore Wind Farms using several ML tools.

1.2. Industrial Metrology to Support CBM

In recent years, the increasing globalization of the market and the distributed pro-
duction of highly complex technical systems have significantly increased the demand for
reliable and accurate systems [9–11]. The need to acquire data constantly and online is
increasing; so, reliability and accuracy in data collection are increasingly relevant [12],
especially with regard to CBM. Having a large volume of data collected in the industry is
valuable as long as it is accurate [13]. The author also presents smart metrology as a new
approach based on reliability, which is presented as a solution. The lack of metrological
traceability is a major obstacle faced [2]. Therefore, to use the information acquired by the
collected data, it is necessary to trust the data. For this, metrology plays a very important
role in this industrial process. Metrology generates information and knowledge [14], with
its acquisition subject to measurement and information transfer able to derive from this
knowledge consequences for the development of know-how and, finally, understanding
for the management of process improvements and manufacturing products [14]. Industrial
metrology can be seen as the basis of good CBM maintenance. It is responsible for perform-
ing the calibration of sensors, being concerned with measurement performed by them. With
the advancement of Industry 4.0, there is an increasing pressure to improve the integration,
interoperability, and accessibility of measurement information in industrial metrology and
related activities with measurement information for operations. This contributes to estab-
lishing a reliable Internet of Things (IoT) or Cyber-Physical Systems (CPS) environment,
where measurement data need to be accurate, reliable, and easily accessible [12]. Because of
this, sensors need to be calibrated in accredited laboratories, compared with standards from
higher levels of the traceability chain, and obtain a calibration certificate that ensures the
reliability of the collected data [1]. Calibration Certificates (CC) are essential to maintain the
accuracy of measuring instruments and guarantee the quality of products and services [15].
Calibration is a part of metrology that evaluates the quality and accuracy of measurements.
Over time, measuring equipment can show errors in their results due to misuse or external
factors such as environmental and operating conditions [13]. These deviations can also
be caused by dirt or other materials contaminating [15] components. As explained by the
author, these conditions result in inaccurate measurements and uncertainty in the results;
to reduce these effects, any measuring instrument needs to be calibrated [15]. Calibration
is conducted through metrological traceability. Traceability of measurements based on
recognized standards is essential for data comparability [16]. For measurements to be
considered metrologically accurate, they must be related to their units through a properly
documented chain of calibrations. Each calibration contributes to the measurement uncer-
tainty. Without a clear and complete record of these traceable calibrations, measurements
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cannot be safely compared [17]. Typically, calibration occurs on a periodic basis, thus
performing a preventive calibration, where often sensors undergo calibration without it
being necessary (over-calibration) or else are working out of calibration because the time
has not yet come for them to be calibrated (inefficient calibration).

As a consequence of the industry’s competitive need to be highly efficient and quality
conscious, manufacturing metrology is evolving from traditional engineering metrology,
performed on a periodic basis, to automatic inspection methods by online mode [18]. This
requires a type of calibration based on the condition of the sensor. In this way, the sensor
undergoes calibration only when it is needed, making calibration management based on
the condition of the sensor. For this, it is also necessary to obtain status information from
the reading equipment through their own collected data.

1.3. Online Calibration Monitoring (OLM)

Online monitoring of sensor calibration status is assessed when the sensor needs
to be removed from the equipment to be calibrated to an equivalent or higher standard
(either locally or at an accredited laboratory). This type of performance monitoring is a
condition-based methodology, offering an alternative approach to traditional calibration
status maintenance performed at regular intervals or by checking the condition of the
readout by conducting periodic checks. This can cause a sensor requiring calibration to
be overlooked simply because the calibration interval has not yet passed or the sensor
used for verification has a drift in the same direction as the sensor being monitored, which
causes the need for calibration to not be detected. It should also be noted that much of the
calibration monitoring effort is currently carried out in the verification of sensors that do
not need any maintenance [1,19]. The extensive use of verification procedures as calibration
procedures is undeniable, as is the fact that measurement standards errors are neglected
during verification [20]. Whereas, with an online calibration status monitoring system,
there may be a reduction in unnecessary field calibrations, which can reduce the associated
labor costs; reduce the potential for incorrect calibration; and, if it is done in an oil or
nuclear company, may reduce the radiation exposure of personnel as it uses the data from
the sensor itself and monitoring can be performed under normal operational operation.
Further, in this way, it becomes unnecessary to use redundant sensing to protect very
important components.

1.4. Methodology Developed for OLM

Through the collected data, we can obtain information about the status of the produc-
tion equipment as well as the reading equipment. The difficulty lies in distinguishing the
different information from the same set of data, since a high reading can either be due to
malfunctioning production equipment or by reading equipment that are out of calibration.
The objective of this paper is to present a methodology capable of—through the same set of
data—extracting information about the health state of the production equipment, as well
as of the reading equipment. To solve metrology delays, consistent reading deviations,
and sudden changes in deviations, the method was developed using a methodology of
optimized observations, through ML processes, to provide input to the Hidden Markov
Models (HMM) classifier, which after filtering errors of the production equipment, will
determine calibration errors inherent to the sensors. So, this methodology adds value based
on a set of data, where it is possible to collect health status information, both from the
reading equipment attached to the production equipment, as well as from the production
equipment itself. Furthermore, the methodology can be used online to obtain information
in real-time. It is possible to evaluate the condition of the equipment, even in operation,
without having to switch off to analyze it. Based on this, it also is no longer necessary to
perform periodic checks made to the sensors that take a long time and high costs (due to
the need for manpower). It is also possible to reduce the use of redundant sensors for the
same component. Through pattern detection and classification performed by the HMM,
it is possible to detect behaviors of the equipment without previous information about
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them—that is, without knowing which data represent malfunction or good operation of
the equipment, the AI and ML methodology can learn autonomously and without being
supervised. The methodology can also be used in any type of equipment and/or sensor,
making it generic for industrial support in maintenance and metrology. Through this
method, maintenance and calibrations are only performed when necessary. This increases
the availability of the equipment (both the production ones and the reading ones) and,
consequently, an increase in the company’s profits.

1.5. Related Work

To present an overview to understand the evolution and current status of studies
related to the subject in question, this chapter presents and analyzes the main relevant
works published recently in the area. Articles presented propose techniques for identifying
faults in sensors, as well as approaches to issues such as missing data, assessment of
data reliability, and data prediction. Methods that use correlation methodologies are
also demonstrated.

Lai et al. [21] propose a technique for identifying faults in sensor nodes using correla-
tion theory to prevent fault data injection attacks, identifying these nodes based on spatial
correlation and events. Tipireddy et al. [22] present virtual sensors to temporarily replace
faulty physical sensors, allowing the safe postponement of recalibration, using a Gaussian
model to process data from redundant and nearby sensors. Hines and Rasmussen et al.
The authors of [23] discuss forecast range estimation methods for three nonlinear empirical
modeling strategies (artificial neural networks, partial least squares neural networks, and
local polynomial regression), applied to operational data from a nuclear power plant to
monitor sensor calibration. Rao et al. [24] present a fault prediction method based on
spatial correlation using the Vector Space Model (VSM) to identify reliable or faulty nodes.
Berjab et al. [25] suggest a new method of extracting sensor relationships based on cross-
correlation; it combines information from spatiotemporal correlations and multivariate
attributes to determine whether the sensor has abnormalities or actual events. Lee and
Chai et al. [26] propose a modification to Gaussian Process Regression (GPR) to improve
the estimation of the sensor conditions in the online monitoring system of nuclear power
plants. Fu et al. [27], define a strategy for detecting faults in Wireless Sensor Networks
(WSNs), called the Trend-Correlation-based Fault Detection strategy (TCFD); the strategy
detects damaged sensor nodes by analyzing the trend correlation and the mean value of
neighboring nodes. Li et al. [28] present a method to identify serious failures in structural
integrity monitoring sensors; the method uses a generalized likelihood ratio and correlation
coefficient to evaluate each sensor in the network and detect faults through multiple hypoth-
esis testing. Rajesh and Chaturvedi et al. [29] address in their article the problem of missing
data in wireless sensor networks; the correlation between different data modalities is used
to recover missing data and predict data; three classical estimates (Pearson, Spearman,
and Kendall-tau) as well as four robust estimates of correlation coefficients are used to
determine the correlation between modalities on data characteristics. Karmakar et al. [30]
propose a new model that evaluates the reliability of IoT sensor data representing temporal
correlation. Biswas and Samanta et al. [31] describe an algorithm to detect faults in sensor
nodes; the algorithm is based on the Pearson correlation coefficient and the Support Vector
Machine (SVM) algorithm.

2. Methodology
2.1. Signal Simulation

To explain and test the developed methodology, a multivariate signal was created
with four different non-redundant variables (Figure 1), i.e., sensors that measure different
physical phenomena. An equipment error was simulated where all the sensors reacted to
the changes in the equipment’s behavior. After that, maintenance was performed, and the
measured values returned to the equipment’s normal operational behavior. Next, an error
of one of the sensors was simulated, where the value of one of the sensors was increased
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without the others suffering any changes, thus simulating a sensor drift. This leads to the
conclusion that it is not a production equipment error but a sensor error, since there was no
reaction from the other three sensors.

Figure 1. Simulated signal with production equipment error and deviation in one of the sensors.

It is necessary to select suitable sensor groups to be applied in a model, since the
performance of the model is based on the correlation between the sensors [32]. For this
method to work, it is necessary to have a large set of sensors or else a set of sensors that
are correlated with changes in the behavior of the production equipment. According to
Coble et al. [33], modeling non-redundant sensor clusters requires that the sensors in a
model share related information, which can be identified by linear correlations or physical
understanding. These modeling methods can also be applied to redundant sensor groups.
In a heterogeneous environment with more than one sensor, the variables tend to be
correlated [29]. Data from several heterogeneous sensors tend to show a strong correlation
in space and time, which can be used to improve the detection of anomalies [25] and, in
addition, improve the performance of each individual sensor [34].

Making a correlation study between the sensors, we can verify (Figure 2) that sensors
present high correlation values only when there is a failure in the production equipment,
keeping low values in normal operation or even when there is a deviation in one of
the sensors.
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Figure 2. Correlations shown in each of the signal phases.

2.2. Generation of Correlation Features

The first stage of any Machine-Learning-based model is feature selection, which
depends on the problem under study [30]. The goal here is to use dispersed correlation
values to detect faults in production equipment. To generate the features, the data collected
from a sensor are divided into blocks [30]. Then, to be able to obtain the correlation states
over time, temporal windows are created, where, for each one, we can choose the number
of samples per window. Before creating the temporal windows, subtraction and ratio
were performed on all the sensors to increase the relationship between them. They were
tested without this method and the results obtained were not good. After increasing the
relationship between the sensors, with X = x1, x2, . . . , xn representing the dataset for each
window, the temporal windows were created. In this example, temporal windows with
a dataset of 288 samples per window were chosen, giving a total of 833 windows for this
dataset with a sampling of 240.000 samples (Table 1). If the data were collected every 5 min,
this would represent a 1-day time window.

Table 1. Time windows with data subtracted and ratios between each sensor pair.

Col 1
Sensor 1/Sensor 2

Col 2
Sensor 1/Sensor 3 (...) Col 24

Sensor 4/Sensor 3

1st Chunk

60.63244195683154
59.64240130685382
(...)
59.262459386540584

79.78937757904451
79.86135304565789
(. . . )
79.87646380056816

(...)

3.0538616746523806
3.062736422782496
(. . . )
3.4567110848650304

2nd Chunk

59.82199978785137
60.19302454746067
(. . . )
60.122575793590606

78.56797868615018
78.74172104561583
(. . . )
80.59289809317407

(...)

3.0538616746523806
3.062736422782496
(. . . )
3.4567110848650304

(...) (...) (...) (...) (...)

834th Chunk

100.12391557061736
99.36665172104591
(. . . )
100.67188973084929

119.97019459713032
119.88307859672575
(. . . )
120.40164877024282

(...)

3.210611636252731
3.3163521246018797
(. . . )
3.2317746352961993
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Continuous and time-varying features can provide a prediction of possible failures [35].
So, after creating the temporal windows, it is possible to create correlation features between
each of the columns for each day (Table 2). In the case of multiple nearby sensors, the perfor-
mance can be improved by performing cross-correlation between all sensor combinations
in pairs [34].

As explained by Alqahtani et al. [36], correlation is a widely used mathematical
technique for measuring the relationship between two or more variables by describing how
they vary together. It is a common similarity evaluation technology [37]. Correlation in
space and time is common in many physical phenomena, where spatial correlation refers
to an association of measurements of two variables at a specific moment in time t [21,31].
According to these authors, there are several possible measures of correlation, where the
correlation coefficient can be viewed as a degree of linearity between X and Y variables. The
degree of correlation describes the response of the structure built between two positions
that reflects their level of correlation. The parameter ranges are from −1 to 1, where the
closer the correlation is to the value 1, the more strongly the structural responses between
two positions are correlated; when the correlation value is 0, it corresponds to more weakly
correlated structural responses between two positions [38,39].

For this methodology, three types of correlations are used:

• Pearson Correlation

Pearson correlation is a technique that measures the covariance and degree of correla-
tion between two estimates of input sets X and Y [39]. It is widely used in feature selection
research [40] and is defined by the following equation (Equation (1)) [29,31,38]:

COO[X, Y] =
cov[X, Y]√

var[X], var[Y]
(1)

where
cov[X, Y] is the covariance of X and Y;
var[X] is the variance of the random variable X.

• Spearman Correlation

Spearman’s correlation is an alternative measure to Pearson’s correlation, which
assesses monotonous relationships, not just linear ones. Instead of using the actual values
of the observations of two variables X and Y, Spearman’s correlation uses the corresponding
ranks, rg(Xi) and rg(Yi), to measure the similarity between the observations [29,41]. It can
be represented by Equation (2):

rs =
cov(rg(X), rg(Y))√

σrg(X)σrg(Y)
(2)

where
cov(rg(X), rg(Y)) is the covariance of the variables in ranks;
σrg(X) and σrg(Y) are the standard deviations of the variables in ranks.
Another popular formula to represent the Spearman correlation is given by Equation (3):

rs = 1−
6 ∑n

i=1 d2
1

n(n2 − 1)
(3)

where
di = rg(Xi)− rg(Yi);
n is the number of observations.

• Kendall Correlation

Any pair of observations (xi, yi) and (xj, yj), where i 6= j, is concordant if the ratings
of both elements agree with each other, i.e., if xi > xj and yi > yj. They are discordant
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if xi > xj and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither
concordant nor discordant. Kendall’s τ coefficient is defined as Equation (4) ([29]):

τ =
n1 − n2

n(n− 1)/2
(4)

After creating the time windows, the three correlation measures are calculated for
all pairs represented in Table 1. This means that, for each time window, there will be a
combination of the correlation measures for all sensor subtraction and ratio pairs. After
making all the correlations, Table 2 and the graph shown in Figure 3 were obtained,
representing all the correlation characteristics obtained over time.

Table 2. Correlations between each pair of sensors in each of the time windows.

Col 1
Corr. Pearson Col1-Col2 (...) Col 828

Corr. Spearman Col13-Col1 (...) Col 1656
Corr. Kendall Col24-Col23

1st Chunk 0.53820 (...) 0.90987 (...) 0.08561

2nd Chunk 0.49547 (...) 0.88902 (...) 0.14987

(...) (...) (...) (...) (...) (...)

834th Chunk 0.43642 (...) 0.84575 (...) 0.05570

Figure 3. Correlations between each sensor pair over signal time.

2.3. Normalization

To ensure better results, normalization attempts are important [42]. There is a need
to normalize the data to make the magnitude and time scale uniform [25]. To obtain
consistent results, usually, ML models use a normalization mechanism before training [43].
The normalization of the data through the Z-score (Equation (5)) aims to transform the
magnitude and dispersion of the data so that the mean is 0 and the standard deviation is
1—that is, Z ∼ N(0.1). This method helps to make patterns in the data more visible, as it
converts a range of variables so they all have the same range, transforming not only the
magnitude of the data but also the scatter [44].

ZScore =
xi − X̄
σ(X)

(5)

where
X̄ is the mean of the dataset X;
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σ(X) is the standard deviation of X.

Through normalization, the amplitudes of the initial continuous variables also con-
tribute to the analysis, with features with larger amplitudes not overlapping, which could
lead to biased results [43]. As the authors explain, to avoid this problem, it is recommended
to scale each feature in the same value range, which, in turn, also increases the training
speed. Normalization is one of several data transformation techniques, which has the
effect of reducing the parameters to a common range, providing a measure that allows the
relative importance of any factor or interaction to be identified more clearly [45].

As can be seen through Figure 4, all correlations for all sensor pair combinations are
normalized with mean zero and standard deviation 1. This causes two-phase peaks to be
created. This means that values closer to 0 will be more concentrated and values farther
from 0 will be less frequent. After performing normalization, it is already possible to better
understand the behavior of the data. The normalization of the dataset will also help to
improve the K-means clustering technique [46], which will be used later.

Figure 4. Correlation features normalized by Z-score over study time.

2.4. Dimensional Reduction through Principal Components Analysis (PCA)

After normalization, a dimensionality reduction technique, Principal Component Anal-
ysis (PCA), is used, which can be considered a fault detection method based on multivariate
statistical analysis [28]. It is a feature extraction and dimensionality reduction method in
Machine Learning [35] and is one of the most widely used methods for dimensionality
reduction of data from a multidimensional space [40,47]. It can reduce the dimensionality
of high-dimensional data and remove noise by dimensionality reduction [48]. To perform
dimensionality reduction and feature extraction, the data undergo orthonormal rotations of
the coordinate system. In this way, we will increase the processing speed of the algorithm
as we will use new variables that have more important information, thus increasing the
prediction ability. It is a technique that transforms several potentially correlated variables
into a set of uncorrelated variables, the principal components (PCs). The first principal
components are responsible for explaining most of the information present in the data,
with the number of PCs being limited to the number of original variables [49]. The PCA
process aims to find a new coordinate system of the dataset centered on the mean, whose
axes are perpendicular and have a maximum variance in descending order [50]. So, PC1
is responsible for having the highest data variability, while each subsequent PC has the
highest possible variance, under the constraint of being orthogonal to the previous PCs [47].

As Zhang et al. [51] explain, the algorithm can be described as follows: in the feature
space of dimension N, we find a direction that maximizes the variance of the data. We
then use that direction as our first principal direction and project the data onto the N − 1
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dimension space, removing the principal direction. This process is repeated M times, where
M ≤ N, to obtain a transformation of the data in the main dimensions.

The optimization process in feature selection is based on new components representing
correlated features. These components are generated as columns in the matrix X′, making
it m × n′. To preserve the original feature information, it is common that n′ = n − 1.
The desired default dimension for the lower-dimensional space is n′ = n − 1, where n
represents the dimension of the original dimensional space.

The cumulative variance is used to assess how much of the original data information
is retained in each principal component. According to Figure 5, it is possible to see, after
calculating the cumulative variance, that the first 10 PCs contain about 95% of the total
variance of the original data.

Figure 5. Pareto chart with the percentage of information for each PC.

It was possible to preserve about 95% of the raw information by shrinking the matrix
from X = [xij](834×1656) to X′ = [x′ij](834×10).

We can also verify, through Figure 6, the movement over time of the points of each
of the first 10 PCs coming from the orthogonal reorientation performed by the PCA. It is
already possible to better distinguish the areas that are really coming out of the normal
operating standards of the equipment.

Figure 6. Data movement of the first 10 PCs processed by PCA.
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When projecting the data of Figure 4 into 10 PCs, the two-phase peaks were lost
because the PCs are directions that maximize the variation of the data and do not necessarily
preserve the original characteristics of the data. Since the two-phase peaks were not related
to the directions of maximum variation of the data, they were lost when projecting the data
into the principal components.

In addition, PCA aims to reduce the dimensionality of the data—that is, to represent
the data with fewer principal components without losing much information. This means
that some of the less expressive peaks can be lost in the projection process to the principal
components and, hence, represent the PCs through time.

2.5. Clustering through K-Means

According to Thrun and Ultsch et al. [52], the use of the PCA algorithm is frequent
when there is a high number of variables since it allows the application of a preliminary
reduction of these variables; next, it is common to use K-means clustering based on early
PCs that preserve a significant amount of information.

The cluster analysis [53] achieves the following:

• Examines the underlying structure of the data;
• Identifies patterns and categories in the data in order to establish the similarity between

the points;
• Performs dimensionality reduction, with the aim of grouping and simplifying the data

in an understandable way.

In the K-means clustering algorithm, data points are grouped within a cluster based
on similar shared characteristics [48,54], with good equipment functioning data being in
the same cluster and bad equipment functioning data in a distinct cluster.

K-means is one of the first proposed clustering methods and assumes that each sample
is linked to only one group, assigned to the one closest to [55]. It is an unsupervised
technique that is widely used to identify similarities between objects based on distance
measurements suitable for small datasets [53]. It has several advantages including brevity,
simplicity, efficiency, speed, and less computational power, which make it the most widely
used clustering algorithm [53,56–58].

The K-means algorithm has the main objective of grouping similar data points and
revealing the structure underlying the data [59]. This is achieved by fixing a defined number
of clusters (k) to be used in the analysis. To each one of the clusters is assigned a centroid,
which has a location in the center of the cluster. After k is chosen, each data point is allocated
to the nearest cluster by summing the squared distances of the Euclidean distances among
the items and the centroid (Equation (6)), minimizing intra-cluster variation [59].

W(Ck) = ∑
xi∈Ck

(xi − µk)
2 (6)

Here, xi is the ith data point of cluster k(Ck) and µk is the mean value of the points in
cluster k. The Total Within-Cluster Variation Equation (7) describes the clustering quality,
in which the Sum of Squared Errors (SSE) is used as a measure. The lower the SSE, the
higher the quality of the cluster [58].

TotalWithinClusterVariation =
k

∑
k=1

W(Ck) (7)

Then, as explained by Peng et al. [48] and Borlea et al. [60], K-means is used to
process a dataset D = x1, x2, . . . , xn ∈ <d, where x is a dataset record defined as Xi =
[xi1, xi2, . . . , xid]

T ∈ <d, i = 1. . . n. d is the dimension of a dataset record and T stands for
matrix transpose. The algorithm divides the dataset D into a set of k predefined numbers of
clusters C( j), j = 1. . . k. Each cluster Cj is composed by a center of mass called centroid and
defined as Cj = [Cj1, Cj2, . . . , Cjd]

T ∈ <d, j = 1. . . k. The total number of points assigned to
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each cluster is n, with the cluster expression Cj = (cj, nCj). The centroid array is defined as

c = [cT
1 , cT

2 , . . . , cT
k ]

T ∈ <dk, which represents the centroids of all existing clusters. The main
objective of the algorithm is to minimize the intra-cluster variance (Equation (8)).

c∗ = arg min
c∈<dk

V(c), V(c) = ∑k
j=1 ∑

ncj
i=1 ||xi − cj||

xi ∈ Cj
(8)

where
cj is the centroid of the cluster C( j), j = 1. . . k;
V is the objective function or the criterion;
c∗ is the optimal arrangement of centroids.
The K-means clustering process has the following steps [54,56,58–61]:

1. Specify the number of clusters (k);
2. Randomly select k data points as initial centroids;
3. Assign the dataset xi to the nearest centroid cj using the Euclidean distance

(Equation (9));

dxi ,Cj = ||xi − cj|| =
√
(xi1 − cj1)2 + (xi2 − cj2)2 + ... + (xid − cjd)2 (9)

4. Next, all data points are redistributed using the previous process to find the next
clusters. The process continues like this until the elements in each cluster are no
longer changed.

Due to the initial cluster center and the clustering criterion function of similarity
measure, it easily converges to the local minimum, selecting different initial clustering
centers to lead with different clustering results [62,63]. As the authors say, the correct
selection of the initial clustering center in the K-means algorithm has great influence on
the quality of clustering results. To calculate the optimal number of clusters k, there are
different methods [59] and, for this methodology, we will resort to the Sum of Squared
Error (SSE) method, or the elbow method, as it is known because of the graph it forms. SSE
is one of the most popular cluster evaluation methods [58]. We use different numbers of k
and calculate the total based on the sum of squares for each value of k and plot these in
Figure 7, where k is represented in the plot as a fold (elbow) location, which we consider
the optimal k number. The elbow method is the most widely used and comprises four
steps [57]:

• Perform a centroid-based clustering variance of each clustering result, e.g., sum of
squared errors algorithm, such as K-means, for each k ∈ <;

• Calculate the (SSE) for K-means;
• Plot the results on a graph;
• Select the elbow curve on the graph.

The amount of clusters is represented on the x-axis by the value k; after viewing the
corresponding graph, it is noted that the reduction in the sum of squared errors (SSE)
becomes negligible with the increase in the value of k.

So, the aim of the K-means algorithm is to minimize the sum of squared errors of
the criterion [58]. Thus, through the elbow graph illustrated in Figure 7, it is possible to
observe that the total distance of the sum of squares decreases as the value of k increases.
However, from k = 4, the additional clusters cause only an insignificant reduction in the
sum of squares. Thus, the ideal number of clusters can be considered as 4.
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Figure 7. SSE Analysis to determine nº of clusters.

Having chosen the number k of clusters, we can now proceed with the K-means algorithm
itself, which will fulfill the steps mentioned above. After grouping the data in clusters, each
cluster Cj will be represented over time (Figure 8). Thus, clusters C1, C2, C3, C4 will be seen as
new optimized observations of the values read by the four sensors. Note that an increasing
ordering of clusters is chosen so that the first cluster is the one with the highest number of points
and the last cluster has the lowest number of points, nC1 > nC2 > nC3 > nC4 .

Figure 8. Cluster (optimal observable states) over study time.

2.6. Behavior Classification of Production Equipment Using HMM

The Hidden Markov Model (HMM) is a doubly stochastic process, which has hidden
states and observable states [64].

A typical HMM model can be explained by the parameters λ = (N, M, π, A, B),
where [7,65,66] N represents the number of hidden states, S = S1, S2, .., SN ; M represents
the number of observable states, C,= C1, C2, ..., CM; A represents the transition matrix
that specifies the transition probabilities between the hidden states, A = aijN∗N ; B is the
emission matrix, which specifies the probabilities of observing a given observable state
given that the system is in a given hidden state, B = bjkN∗M; π is the initial probability
vector, which specifies the initial probabilities of being in each hidden state, πi = P(q1 = Si).
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For simplicity, the parameters of the HMM model can be represented by the notation
λ = (π, A, B).

After computing the optimized time series observations, which merge multivariate
information from sensors attached to the equipment, we can now use the clusters as ob-
servable states to provide input to the HMM model. The observations at instant t are
represented by Ot ∈ C,= C1, C2, C3, C4; already, the hidden states will represent the operat-
ing states of the production equipment within a certain state qt ∈ S, S = S1, S2, . . . , SN . The
hidden states are a Markov Chain, which is obtained through the observable states—that is,
through the observable states (collected and optimized by ML processes), we can deduce
the status of the equipment. In this case, we will choose three hidden states, S = S1, S2, S3,
to represent the operation of the equipment, where state S1 is the one with the most points
and state S3 is the one with the fewest points. If nS1 > nS2 > nS3 , it can be deduced that the
first state, which happens more often, will represent the good functioning state and states 2
and 3 will represent alert and failure states. For HMM, there are three basic problems that
need to be solved [7,64,67]:

• The evaluation problem—which computes the probability of the observed fusion out-
come sequence O = O1, O2, ..., OT , given the model λ = (π, A, B). This is performed
using the forward–backward algorithm.

• The training problem—which adjusts the model parameters, λ = (π, A, B), to maxi-
mize the probability of the observed sequence, i.e., given a chain of observable states,
which model λ best fits, P(O|λ). This is performed using the Baum–Welch algorithm.

• The prediction problem—calculates the most probable hidden state sequence accord-
ing to the observation sequence and the model parameters. Through the model λ and
the observation sequence O, it is possible to detect the best hidden state sequence S. It
can be solved by the Viterbi algorithm.

Thus, through the observable states coming from the clustering phase, in the first step,
the training is applied through the Baum–Welch method, where it is possible to obtain
the model parameters λ. Then, through the observations and the model parameters, it is
possible to determine the sequence of hidden states (Figure 9) using the Viterbi algorithm.

Figure 9. Hidden States (health states of the production equipment) over the study time.
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2.7. HMM Filter

As can be seen in Figure 10, the HMM detects hidden states different from 0 at the
time when the equipment malfunction is simulated, showing that this methodology works
and detects only the errors of the production equipment. It starts with state 3 due to the
initiation problems of the Viterbi algorithm and these initial values can be ignored.

Once the malfunctioning states of the production equipment are detected, these are
eliminated in the original signal using a filter with the values of the hidden states of the
HMM, i.e., any point in the original signal that coincides at the same time with any hidden
state other than the first state—which means, being coincident with S2 or S3—is eliminated
(Figure 10). In this way, we eliminate the errors of the original signal production equipment,
leaving only errors that may arise from the reading equipment (Figure 11).

Figure 10. Original signal with overlapping HMM states.

Figure 11. Original signal after HMM filter.
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2.8. Classification of Sensor Behaviour

As stated by Boechat et al. [68], an assumption is that the sensor deviations are not
correlated with each other, despite the correlations among the process variables. Through
the methodology presented above, we can demonstrate just that. So, now, we have only
one signal with sensor errors. In this way, the objective is to use the same steps of the above
methodology with the difference that now, instead of creating features of correlation among
sensors, we will apply the method sensor-to-sensor using statistical features in the time
domain (Table 3). As stated by Saucedo-Dorantes et al. [69], statistical features based on
the time domain provide a good performance basis to characterize patterns and behavioral
changes in equipment. Several features were used (Table 3), which were taken from other
papers whose aims were to detect faults over time [44,69,70]. An individual study for each
sensor is performed with the aim of understanding how it develops over time.

Table 3. Mathematical equations for time-domain-based statistical features.

Parameter Mathematical Equation Parameter Mathematical Equation

Mean T1 =

N
∑

n=1
x(n)

N A Factor T12 = T5
T2 .T3

Standard Deviation T2 =

√
N
∑

n=1
(x(n)−T1)

2

N−1 B Factor T13 = T7 .T8
T2

Variance T3 =

N
∑

n=1
(x(n)−T1)

2

N−1 SRM T14 =

( N
∑

n=1

√
|x(n)|

N

)2

RMS T4 =

√
N
∑

n=1
(x(n))2

N−1 SRM Shape Factor T15 = T14
T1

Absolute Maximum T5 = max|x(n)| Latitude Factor T16 = T5
T14

Coefficient of Skewness T6 =

√√√√ N
∑

n=1
(x(n)−T1)

3

(N−1).T3
2

Fifth Moment T17 =

√√√√ N
∑

n=1
(x(n)−T1)

5

(N−1).T5
2

Kurtosis T7 =

√√√√ N
∑

n=1
(x(n)−T1)

4

(N−1).T4
2

Sixth Moment T18 =

√√√√ N
∑

n=1
(x(n)−T1)

6

(N−1).T6
2

Crest Factor T8 = T5
T4

Median T19 = medianx(n)

Margin Factor T9 = t5
T3

Mode T20 = modex(n)

RMS Shape Factor T10 = T4

1
N

N
∑

n=1
|x(n)|

Minimum T21 = minx(n)

Impulse Factor T11 = T5

1
N

N
∑

n=1
|x(n)|

After applying the methodology to each sensor individually and with the statistical
features in the time domain, we obtain the results of the hidden states given by the HMM,
as can be seen in Figure 12.
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Figure 12. Methodology used to detect sensor errors individually.

3. Discussion of Results

Through the analysis of the results obtained, we can verify that, in the first phase,
the HMM is able to classify the faults of the production equipment, without detecting
the sensor drift (Figure 9). It detects state 3 in an initial phase that happens when the
equipment starts to present the failure. Then, it moves to state 2, where it remains until the
maintenance is performed. We can verify that the chosen correlation features will ensure
that the methodology detects only equipment failures since they only give relevance to
correlated behavioral changes of the sensors. The selection of important features in the
data requires sufficient communication of domain expert knowledge. Thus, the choice of
similarity measures and feature extraction techniques are critical to the success of clustering
approaches, as this significantly affects the quality of results obtained when processing
data to identify relevant patterns [36]. In this way, it is possible to extract only the health
status information from the production equipment.

Having only the status of the production equipment, it is possible to use this informa-
tion to filter the original data. After that, the HMM is able to detect only the sensor errors.
Through Figure 12, we can verify that, in the first sensor, a hidden state different from state
1 is only detected at the end of the study period, which is when the sensor represents a
deviation. When a hidden state different from state 1 is displayed for some time, we can
conclude that there is a deviation in the sensor under study. As for the other sensors, which
did not present any deviation, the HMM only stays different from state 1 for a very brief
instant, which means it has no relevance. Therefore, we cannot admit that this is a sensor
error. This only happens because, when the HMM filter is made based on the faults of the
production equipment, there is a small part of the error that is not eliminated. It is quickly
despised, because it is present in the final classification made by the HMM to determine
deviations from the sensors.

This methodology has the added value of being able to obtain two different types
of information from the same set of data. When a sensor rise is presented, it is difficult
to know whether it is caused by the production equipment or by the reading equipment.
This highlights the importance of a method that can extract the correct information to be
used. So, we can admit that this methodology will improve CBM actions since it also
detects sensor errors. Thus, it is possible to ensure that the data are reliable to understand
the true information that the data are transmitting. Furthermore, this methodology can
be used in different equipment and sensors with added value because it does not need
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previous information about the equipment failures. It is an unsupervised methodology
where, through AI and ML, the algorithm can provide information about the health state of
equipment to the production engineer.

In future work, it is intended to increase the range of algorithms to be used in each of
the steps to understand the best possible combination for the methodology. Other types of
strategies will be used in normalization, as well as in dimensional reduction and clustering.
Furthermore, a study of other types of correlation will be conducted, such as distance
correlation. Temporal correlations will also be applied to evaluate the correlations between
temporal windows t and t+1, with a single sensor. The hidden states coming from the
HMM model will be used to build a supervised classifier, such as Support Vector Machine
(SVM). This classifier will be used to direct the new data collected by the sensors into
the hidden states of the HMM, allowing to immediately determine the health status of
the equipment without having to go through the entire methodology. For this, it will be
necessary to train the methodology so that it can teach the supervised classifier. In addition,
we will have an adaptive methodology, in which, through a distance metric, an alert will be
issued if new data collected appears too distant from the rest. This would mean that there
is a new behavior in the equipment that has never been seen before, which means that the
methodology needs to be updated. Besides this, it is intended to apply this methodology in
a real factory aiming to demonstrate its importance in real situations.

For practical cases, it will be necessary to perform an initial cleanup to remove incorrect
or inconsistent data such as zeros, NaN (Not a Number), or infinities. An algorithm will also
be created to eliminate equipment downtime. In addition, depending on the application,
additional filtering may be required to remove noise in the data. There are several filtering
techniques that can be chosen, depending on the study. Since the goal is to study failure
cases, outliers can be seen as important data. Therefore, a quartile filter performed on
time windows will be created. In this way, it will be possible to filter out noise without
losing valuable information for the study. Moreover, as Martins et al. [44] explain, the
methodology itself uses tools that help with filtering data throughout the process.

4. Conclusions

The methodology goes through several steps, where the first is the correlation between
the sensors over time, using temporal windows. The subtraction is made alongside the ratio
between each sensor, aiming to increase the relationship between them; then, three types of
correlations are made: Pearson, Spearman, and Kendall. Based on this, we obtain several
features after passing through the Z-score normalization, which undergo a new orthogonal
variation through the PCA, to extract a new set of variables that is reduced but with more
information. This feature extraction process is also responsible for increasing the prediction
quality of K-means, which aims to group the most similar values, thus creating a set of
clusters that have new optimized observations. These observations feed the HMM classifier,
which, through three hidden states (1—Smooth operation; 2—Warning; 3—Failure), is
responsible for detecting the health state of the production equipment. Knowing the health
states of the equipment, through the hidden states of the HMM, a filter is performed on the
original data, where the values coincide with the different states from the well-functioning
state, which permits filtering the data when the machine is in good working order. After
that, the sensors are studied one by one, through the same methodology, but now making
a generation of statistical characteristics in the time domain to evaluate the individual
behavior of each sensor. Finally, again through the HMM and the three hidden states,
it is possible to define the status of each sensor. If states 2 or 3 remain for some time, it
is necessary to take the sensor for calibration because it is having a deviation. We can
conclude that, through this methodology, it is possible to detect failures in the production
equipment as well as deviations in the sensors that need to be calibrated. The authors will
continue working to improve the implementation in practical cases.
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