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Effective medium model for graphene superlattices with electrostatic and magnetic vector potentials
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In this article we develop an effective medium model to characterize the electron wave propagation in graphene
based nanostructures with electrostatic and magnetic vector potentials imposed on their surface. We use a
numerical algorithm to determine the effective medium parameters of the heterostructure and calculate the
electronic band structure of the system. We apply our formalism to analyze superlattices with solely a magnetic
potential and reveal that the response of the structure remains reciprocal and is characterized by a decrease in the
velocity of the charge carriers. We also study the response of superlattices with both potentials superimposed on
graphene and show that the response of the system becomes nonreciprocal with a dispersion characterized by a
tilted Dirac cone. We demonstrate that it is possible to alternate between type-I, type-II, or type-III Dirac cones
by properly tuning the amplitude of the potentials.
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I. INTRODUCTION

Graphene is a two-dimensional nanomaterial formed by
carbon atoms that are arranged in a honeycomb lattice [1–8].
Over the last decade this material has been in the spotlight of
condensed matter physics research due to its remarkable elec-
tronic properties. By possessing a relativistic spectrum, the
low-energy electrons in graphene have a linear dispersion and
their propagation is determined by a massless Dirac equation
[3].

It has been proposed that it is possible to achieve additional
control over the propagation characteristics of the electrons in
graphene by modifying the original material. These structures
are known as graphene superlattices (GSLs) and may be ob-
tained by artificially introducing a new length scale into the
system in the form of a periodic potential, either by using an
electrostatic potential [9–18] or a magnetic vector potential
[19–31]. Superlattices characterized by electrostatic poten-
tials may be realized using different techniques, such as with
periodically patterned gates, using a crystalline substrate or
with the deposition of adatoms on graphene’s surface [32–39].
On the other hand, to obtain GSLs with a magnetic vector
potential one can use nanomagnetic strips [19–24] or strain-
inducing modulations [40]. An electrostatic potential on the
surface of graphene can allow for an extreme anisotropic
response which can lead to the supercollimation of electron
waves [17,32–34]. Moreover, it can permit extreme wave
phenomena such as a perfect lens for matter waves [41,42]
or an electron wormhole [43]. Conversely, a magnetic vector
potential can also allow one to tailor the electron wave prop-
agation by reducing the charge carrier’s velocity [24–31] or
even providing a way to tilt the energy dispersion of electrons
in the medium [44], usually identified as a type-I tilted Dirac
cone [45]. Such type of response may be used for valley
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filtering in p-n junctions [46] and to generate photocurrent
[47].

The characterization of the propagation of electrons in
superlattices with a magnetic vector potential is typically done
using a transfer matrix formalism [24–30] which can limit
the study to potentials characterized only by constant barri-
ers. Interestingly, in the works reported in [17,18,41–43] the
propagation of the electrons in the GSLs with an electrostatic
potential was studied under an effective medium formalism,
so that granular details of the potential are homogenized [41]
and the structure is regarded as a continuum characterized
by some effective parameters. Such effective medium tech-
niques can vastly simplify the analysis of the problem while
simultaneously providing invaluable insight into the physical
phenomena taking place in the structure.

The main objective of this work is to develop an effec-
tive medium model for superlattices characterized by both
an electrostatic potential and a magnetic vector potential. To
determine the effective response of the superlattices we use
a numerical finite-difference time-domain (FDTD) algorithm
based on the numerical tool proposed in Ref. [17]. It is im-
portant to mention that FDTD numerical tools such as the
ones developed in [17,18,48,49] have been widely used to
determine electron wave propagation in graphene based nano-
materials. To begin with, we apply the numerical algorithm
to homogenize a GSL with a magnetic vector potential with a
sinusoidal spatial variation and show that, similar to what hap-
pens in GSLs with Krönig-Penney type potentials [24–30], the
response of the structure is isotropic, with the group velocity
of the charge carriers being smaller than in pristine graphene.
We demonstrate that for these superlattices the analysis of
the problem can be vastly simplified by using an effective
Hamiltonian that discards the granular details of the potential
and instead considers an effective parameter that is indepen-
dent of space. This effective parameter may be regarded as
an effective Fermi velocity whose value is only dependent
on the amplitude of the magnetic vector potential. We also
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determine the effective response of superlattices with both
electrostatic and magnetic vector potentials with sinusoidal
spatial variations. Using our effective medium formalism,
we demonstrate that the interplay between the magnetic and
electric potentials can give rise to an overall nonreciprocal
response whose energy dispersion is characterized by a Dirac
cone tilted along the direction perpendicular to the stratifi-
cation of the potentials (type-I Dirac cone). Moreover, we
show that for propagation along such direction there is a wide
range of combinations of amplitude of the potentials for which
the bulk eigenmodes can flow along the same direction and,
by properly tuning the amplitude of the potentials, it is even
possible to have eigenmodes with a null group velocity. Such
dispersion characteristic corresponds to a type-III Dirac cone
[45,50,51], where one of the bands is flat and the other has
a linear dispersion. It has been proposed such dispersion can
enhance the superconducting gap in Weyl semimetals [52],
and by using the flat band, they can allow for a new platform to
study the correlated phases in the structure [53]. Importantly,
a type-III Dirac cone marks the transition between type-I
and type-II Dirac cones. The type-II dispersion characteristic
differs from the type I due to the fact that the Fermi surface
is no longer a point, but rather two crossing lines [54–56].
Such dispersion appears when one of the bands is tilted in
such a way that the group velocity of the associated energy
eigenmode has the opposite sign than the corresponding value
in pristine graphene.

The article is organized as follows. In Sec. II we in-
troduce the homogenization formalism that will be used to
characterize the effective medium response of the graphene
superlattices. In Sec. III we describe the numerical FDTD
algorithm that is used to determine the effective parameters
of the superlattice. In Sec. IV the homogenization formalism
is applied to characterize the wave propagation in GSLs with
solely a magnetic vector potential and in superlattices with
both electrostatic and magnetic potentials. Finally, the con-
clusions are drawn in Sec. V.

II. EFFECTIVE MEDIUM MODEL

In this work we study electron wave propagation in
graphene-based nanomaterials characterized by a periodic
electrostatic potential and a periodic magnetic vector poten-
tial. Near the K point, the propagation of the charge carriers in
graphene superlattices with electrostatic and magnetic vector
potentials may be described using the massless Dirac equa-
tion:

ih̄
∂

∂t
� = Ĥ�, (1)

where Ĥ = vF σ · [−ih̄∇−qA(r)] + V (r) is the microscopic
Hamiltonian operator, V is the microscopic electric potential,
q = −e is the electron charge, A is the magnetic vector poten-
tial, vF ≈ 106 m/s is the Fermi velocity in pristine graphene,
and σ = σxx̂ + σyŷ, with σx, σy the Pauli matrices. Moreover,
� = {�1, �2} is a two-component pseudospinor, with each
component of the pseudospinor associated with a different
trigonal sublattice of graphene. In the present work the effects
of mass-induced spectral gaps [57–62], as well as strain or
spin-orbit coupling effects [63–66], are not taken into account.

Without any loss of generality, we consider that the mi-
croscopic potentials have a one-dimensional (1D) spatial
variation. In particular, we suppose that V (r) = V (x) and
A = Ay(x)ŷ. The proposed effective model could be readily
extended to other (more complex) types of spatial variations.

For the considered spatial variations of the electric and
magnetic potentials Eq. (1) may be rewritten as

ih̄
∂

∂t
� = vF σ · [−ih̄∇ + eAy(x)ŷ] · � + V (x)�. (2)

In Ref. [41] it was shown that provided the initial state
of the system �(t = 0) is macroscopic, so that 〈�(t = 0)〉 =
�(t = 0), with 〈· · · 〉 the spatial averaging operator defined
as 〈F 〉 = 1

A

∫
Fe−ik·rdS (where we assume a spatial evolution

of the type eik·r), then the envelope of the pseudospinor can
be accurately calculated from an effective Hamiltonian of
the system Ĥe f , defined as Ĥe f 〈�〉 = 〈Ĥ�〉, which may be
written as

Ĥe f = h̄vF σ · k + evF σy · Ae f (ω, k) + Ve f (ω, k). (3)

Here we used i∇ = k, with k the pseudomomentum, and
introduced the effective magnetic and electric potentials, Ae f

and Ve f , which can generally be matrices. Applying the spa-
tial averaging operator to Eq. (2), with ∂

∂t = −iω for a time
evolution of the type e−iωt , we obtain

E〈�〉 = 〈Ĥ�〉 = h̄vF σ · k〈�〉 + evF σy · 〈Ay�〉 + 〈V �〉,
(4)

where ∂
∂n = ikn, with n = x, y and E = ih̄ ∂

∂t .
To determine the effective Hamiltonian for a fixed energy

and pseudomomentum k0 = (kx0, ky0) we can calculate the
time evolution in the graphene nanomaterial of two linear
independent initial electronic states of the form

�(1)(r, t = 0) = eik0·r
(

1
0

)
, (5a)

�(2)(r, t = 0) = eik0·r
(

0
1

)
, (5b)

and use the Fourier transform and the spatial averaging opera-
tor to calculate 〈�(n)〉, 〈Ay�

(n)〉, and 〈V �(n)〉 in the frequency
and spatial domains for each initial state �(n), with n = 1, 2.
The effective Hamiltonian Ĥe f (ω, k) is then determined by
calculating

Ĥe f (ω, k) = [〈Ĥ�(1)〉; 〈Ĥ�(2)〉] · [〈�(1)〉; 〈�(2)〉]−1. (6)

Similarly, the effective electric and magnetic potentials can
also be calculated using

Ve f (ω) = [〈V �(1)〉; 〈V �(2)〉] · [〈�(1)〉; 〈�(2)〉]−1, (7)

Ae f (ω) = [〈A�(1)〉; 〈A�(2)〉] · [〈�(1)〉; 〈�(2)〉]−1. (8)

It is important to mention that the initial states are chosen
in such a way that they are not more localized than the charac-
teristic period of the lattices, such that the pseudomomentum
k0 associated with these states is within the first Brillouin
minizone of the superlattice.
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FIG. 1. (a) The graphene superlattice spatial domain is discretized into a rectangular grid with a finite number of nodes spaced by �x along
the x direction and �y along the y direction. The pseudospinor components �1 and �2 are defined on staggered subgrids so that �1 is defined
over the nodes (p, q) and �2 is defined at the nodes (p + 1/2, q + 1/2), shifted by a half-grid period. (b) The time domain is sampled at
time intervals separated by a time step �t . Similarly to the spatial-domain discretization scheme, the pseudospinor components �1 and �2 are
defined on staggered subgrids shifted by �t/2.

III. NUMERICAL ALGORITHM

The calculation of the effective Hamiltonian in the fre-
quency domain requires the calculation of the time evolution
of the electronic states in Eqs. (5a) and (5b) and its Fourier
transform. To determine the time evolution of the initial elec-
tronic states we use a FDTD (finite differences in the time
domain) numerical algorithm. The algorithm is based on the
numerical tool developed in [17] which was successfully used
to study the transport properties of graphene superlattices
characterized solely by an electrostatic potential. We begin by
separating the Dirac equation (2) for each component of the
pseudospinor:

∂�1

∂t
= −vF

(
∂

∂x
− i

∂

∂y
+ eAy

h̄

)
�2 + V

ih̄
�1, (9a)

∂�2

∂t
= −vF

(
∂

∂x
+ i

∂

∂y
− eAy

h̄

)
�1 + V

ih̄
�2. (9b)

To obtain the time update equations in an explicit form
we discretize the spatial domain into a rectangular grid, such

that the consecutive nodes along the x and y directions are
separated by a distance �x and �y, as depicted in Fig. 1(a).
Furthermore, each component of the pseudospinor is sampled
at instants of time separated by the time step �t . This al-
lows us to write the pseudospinor components as �(x, y, t ) =
�(p�x, q�y, n�t ) ≡ �(p, q, n) and permits using a finite-
differences method to calculate the partial derivatives in
Eq. (9) such that

∂l�(i) = �
(
i + 1

2

) − �
(
i − 1

2

)
�l

, (10)

with l = x, y, t .
We also consider that the two components of the pseu-

dospinor are defined on staggered grids in space and time
so that we have �1(p, q, n) and �2(p + 1

2 , q + 1
2 , n + 1

2 ), as
shown in Figs. 1(a) and 1(b). Applying these principles to
Eqs. (9a) and 9(b) leads to the following update equations:

�n+1
1,p,q

(
1 − Vp,q

ih̄2
�t

)
= �n

1,p,q

(
1 + Vp,q

ih̄2
�t

)
− vF �t

[
+eAyp,q

h̄
�

n+ 1
2

2,p,q+
(

1

2�x
− i

1

2�y

)
�

n+ 1
2

2,p+ 1
2 ,q+ 1

2

−
(

1

2�x
+ i

1

2�y

)
�

n+ 1
2

2,p− 1
2 ,q+ 1

2

+
(

1

2�x
+ i

1

2�y

)
�

n+ 1
2

2,p+ 1
2 ,q− 1

2

−
(

1

2�x
− i

1

2�y

)
�

n+ 1
2

2,p− 1
2 ,q− 1

2

]
,

(11a)

�
n+ 1

2

2,p+ 1
2 ,q+ 1

2

(
1 −

Vp+ 1
2 ,q+ 1

2

ih̄2
�t

)
= �

n−1/2
2,p+ 1

2 ,q+ 1
2

(
1 +

Vp+ 1
2 ,q+ 1

2

ih̄2
�t

)
− vF �t

[
−eAyp,q

h̄
�n

1,p+ 1
2 ,q+ 1

2
+

(
1

2�x
+ i

1

2�y

)
�n

1,p+1,q+1

−
(

1

2�x
− i

1

2�y

)
�n

1,p,q+1 +
(

1

2�x
− i

1

2�y

)
�n

1,p+1,q −
(

1

2�x
+ i

1

2�y

)
�n

1,p,q

]
, (11b)
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with Vp,q = V (p�x, q�y ) and Ay p,q = Ay(p�x, q�y ). Importantly, this discretization scheme of the update equations requires the
value of the pseudospinor components in subgrid points where they are not defined. In particular, the value �2(p, q) is necessary
in Eq. (11a), while the update equation (11b) requires the value of �1(p + 1

2 , q + 1
2 ). To obtain such values we assume that the

wave function varies slowly in space so that the pseudospinor component values in points of space that lie outside the grid nodes
can be determined by the average of its neighboring nodes. In that case one can use

�2(p, q) ≈ 1

4

[
�2

(
p + 1

2
, q − 1

2

)
+ �2

(
p − 1

2
, q + 1

2

)
+ �2

(
p + 1

2
, q + 1

2

)
+ �2

(
p − 1

2
, q − 1

2

)]
, (12a)

and

�1

(
p + 1

2
, q + 1

2

)
≈ 1

4
[�1(p + 1, q) + �1(p, q + 1) + �1(p + 1, q + 1) + �1(p, q)]. (12b)

To determine the effective Hamiltonian it is necessary
to calculate the Fourier transform of 〈�(t )〉, 〈Ay�(t )〉, and
〈V �(t )〉. As shown in a previous work dealing with time-
domain homogenization techniques of artificial structured
media [67], to ensure the convergence of the Fourier transform
for a given frequency ω, at each time iteration n = 0, . . . , N
the quantities 〈�(n�t )〉, 〈Ay�(n�t )〉, and 〈V �(n�t )〉 must
be multiplied by a time decaying exponential of the form
eω′′n�t , with ω = ω′ + iω′′, so that the term ω′′ represents
some small losses in the system. Importantly, the total number
of iterations N must be sufficiently high so that eω′′N�t ≈ 0.
Typically, the total number of iterations is on the order of
N ≈ 2π/ω′′�t [67].

Without any loss of generality in all calculations per-
formed in this work we consider that both potentials have
the same spatial period a and that the distance between adja-
cent nodes is the same so that, �x = �y = �. Moreover, we
determine the time evolution of the initial states in a region
of space containing one period of the potentials and apply
Bloch boundary conditions at the edge of the computational
domain. In the Appendix we analyze the stability conditions
of the proposed FDTD algorithm and show that the maximum
value of the time step depends both on the distance between
adjacent spatial nodes and the amplitude of the magnetic
potential.

IV. NUMERICAL RESULTS

In what follows, we use our homogenization algorithm to
determine the band diagram and effective medium parameters
of graphene superlattices with electrostatic and magnetic vec-
tor potentials.

It was shown in [41] that provided the microscopic Hamil-
tonian of the graphene nanomaterial does not vary in time, the
electronic band structure of the material close to the K point
can be computed directly from the effective Hamiltonian. This
property is a consequence of the energy eigenstates of the
system calculated using Ĥe f being equal to the eigenstates of
the microscopic Hamiltonian [41].

In this work we consider an electrostatic potential with
a sinusoidal-type spatial variation of the form V (x) =
Vosc sin( 2πx

a ) and a periodic magnetic induction field given by
B = Bz(x)ẑ = 2π

a1
Aosc cos( 2πx

a1
)ẑ, so that it varies along the x

direction but is oriented along the z direction (perpendicular
to the propagation plane). The magnetic induction field is on

average null; i.e., 1
a1

∫ a1

0 Bz(x)dx = 0. Since the magnetic field
is related to the magnetic vector potential as B = ∇ × A, it
follows that A = Ay(x)ŷ, with Ay(x) = Aosc sin( 2πx

a ), which is
also periodic with zero spatial average.

Similar to [41], to calculate the band diagram of the GSLs
we expand the effective potentials Ae f , Ve f as a Taylor series
of the first order, such that

Ae f (ω, k) = Ae f (ω, 0) + ∂Ae f (ω, 0)

∂kx
kx + ∂Ae f (ω, 0)

∂ky
ky,

(13)

and

Ve f (ω, k) = Ve f (ω, 0) + ∂Ve f (ω, 0)

∂kx
kx + ∂Ve f (ω, 0)

∂ky
ky,

(14)

and use our numerical algorithm to calculate the effective
Hamiltonian [given by Eq. (4)]. Note that in general Ae f (ω, k)
and Ve f (ω, k) are not scalars.

From hereon we consider that the spatial grid is discretized
using a node spacing � = a/50 and the time step is �t =
0.3�/vF . Since the effective response of graphene super-
lattices characterized solely by electrostatic potentials was
already thoroughly discussed in [17,18,41], we restrict our
attention to superlattices with only magnetic vector potential
and structures with both magnetic and electrostatic potentials.

A. Superlattices with magnetic potential

We begin by calculating the response of superlattices char-
acterized solely by a magnetic vector potential. Particularly,
we determine the effective potential Ae f (ω, k) of the nanoma-
terial for some amplitudes of the magnetic potential. For this
GSL it is immediate that the effective electric potential is null;
i.e., Ve f (ω, k) = 0.

Our numerical results showed that to an excellent ap-
proximation, Ae f (ω, 0) ≈ ξσy, with ξ a real value depicted
in Fig. 2(a). Interestingly, it is seen that for low-energy ex-
citations this value varies linearly with the energy of the
carriers. Moreover, we also verified that ∂Ae f (ω,0)

∂kx
≈ iβσz, with

σz the Pauli matrix, and that ∂Ae f (ω,0)
∂ky

≈ χ1. Here β ≈ χ are
real constants almost independent of the carrier’s energy for
low-energy excitations, as shown in Figs. 2(b) and 2(c), re-
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FIG. 2. Normalized effective parameters of the graphene superlattice as a function of the normalized energy: (a) eaξ/h̄, (b) eβ/h̄, and (c)
eχ/h̄, for a magnetic vector potential with amplitude eAosca/h̄ = 1.0 (black line), eAosca/h̄ = 3.0 (dark green line), eAosca/h̄ = 4.0 (brown
line), and eAosca/h̄ = 6.0 (blue line).

spectively, for some representative amplitudes of the potential
Aosc.

Hence, for low-energy excitations, the effective magnetic
potential may be approximated by

Ae f (ω, k) ≈ ξ (ω)σy + iβkxσz + χky1. (15)

Inserting this expression in Eq. (3), allows us to write the
effective Hamiltonian as

Ĥe f = υ0E1 + υ h̄vF σ · k, (16)

with υ0E = evF ξ and υ = 1 − βe/h̄ ≈ 1 − χe/h̄. The en-
ergy dispersion of the superlattice may then be calculated
from the eigenvalue problem:

E� = Ĥe f · �, (17)

and it is given by |E − υ0E | = h̄vF |υ|
√

k2
x + k2

y . Since υ0 and

υ are weakly dependent on the energy, the previous expression
can be further simplified into

|E | = h̄vF,eff |k| (18)

by defining an effective Fermi velocity vF,eff = vF
|υ|

|1−υ0| . Con-
sidering that υ0 is a negative value [proportional to the slope
of the curves in Fig. 2(a)] and that υ is smaller than unity
because β, χ > 0, it is expected that vF,eff can be significantly
smaller than the Fermi velocity. To verify the accuracy of
our effective medium model we overlapped in Figs. 3(a) and
3(b) the “exact” band diagram for propagation along the x

direction (ky = 0) and the y direction (kx = 0), with the cor-
responding results calculated using our simplified effective
formalism. The band diagram was calculated for a graphene
superlattice characterized by a magnetic potential with ampli-
tude eAosca/h̄ = 4.0. As seen, for low-energy excitations both
results have nearly exact agreement.

The results shown in Figs. 3(a) and 3(b) also show that
even in the presence of a magnetic potential, which breaks
the time-reversal symmetry of the structure, the response of
these graphene superlattices remains isotropic and reciprocal
for low-energy excitations, and without a band gap. Moreover,
we see that the group velocity of the carriers in the super-
lattice is exactly equal to the effective Fermi velocity vg,x =
vg,y = 1

h̄
dE
dk = vF,eff . Indeed, by comparing these results with

the band diagram of pristine graphene, depicted as black
curves in Figs. 3(a) and 3(b), it is confirmed that the effective
Fermi velocity is smaller than the Fermi velocity in pristine
graphene. In Fig. 3(c) we show the effect of the amplitude of
the magnetic potential on the effective Fermi velocity. The re-
sults reveal that the carrier’s velocity can be severely reduced
from the Fermi velocity as the amplitude of the magnetic
vector potential increases. Hence, by precisely tailoring the
magnetic field distribution we can control the charge velocity
in the medium. These results go in line with previous studies
[24–30] which, using a transfer matrix formalism, demon-
strated the effect of magnetic potential barriers in the carrier
velocity properties. Moreover, the decrease in the effective
Fermi velocity can be regarded as the magnetic equivalent
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FIG. 3. (a,b) Dispersion of the energy eigenstates of a graphene superlattice with a magnetic vector potential eAosca/h̄ = 4.0 for propa-
gation along the x and y directions, respectively. The blue dashed curves represent the “exact” energy dispersion of the GSL, the blue solid
curves correspond to the dispersion of the GSL calculated using the effective parameter vF,eff , and the black solid curves show the dispersion
of pristine graphene. (c) Normalized effective Fermi velocity vF,eff/vF as a function of the normalized magnetic vector potential amplitude
eAosca/h̄.
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to the Klein tunneling effect in graphene superlattices with
a periodic electrostatic potential, which is originated from the
pseudospin nature of the eigenstates in the GSL [31].

B. Superlattices with magnetic and electric potentials

The analysis we did in the previous section revealed that
imposing a one-dimensional (1D) magnetic potential with
zero spatial average on the surface of graphene leads to a
reciprocal and isotropic response, wherein the charge carriers’
group velocity is decreased as the amplitude of the magnetic
potential increases. On the other hand, it was demonstrated
in [17,41] that in graphene superlattices with 1D electrostatic
potential with zero spatial average, the transport properties
of the electrons can also be modified so that they have a
preferred direction of propagation; i.e., the effective medium
behaves as an anisotropic medium. In what follows, we use
our homogenization model to study the response of superlat-
tices characterized by both a 1D magnetic potential and a 1D
electric potential with zero spatial average.

As in the previous section, we start by calculating the
effective potentials of the GSL given by Eqs. (13) and (14). As
a leading example, we consider a superlattice characterized by
a magnetic vector potential with amplitude eAosca/h̄ = 4 and
an electrostatic potential with amplitude Vosca/h̄vF = 5. Our
numerical results show to an excellent approximation that the
Taylor expansion of the effective potentials may be written as

Ae f (ω, k) = α01 + β0σy + σx · (α11 + β1σy)kx

+ (α21 + β2σy)ky, (19)

Ve f (ω, k) = χ01 + δ0σy + σx · (χ11 + δ1σy)kx

+ (χ21 + δ2σy)ky, (20)

with αi, βi, χi, δi, with i = 0, 1, 2, real-valued scalars whose
energy dependence is shown in Fig. 4.

The results in Fig. 4 show that the zeroth-order coefficients
of the Taylor expansion of the potentials α0, β0, χ0, δ0 vary
linearly with the energy of the electrons. On the other hand,
the first-order terms αi, βi, χi, δi, with i = 1, 2, are almost
independent of the energy. Interestingly, our simulation results

also show that the effective potentials are linked to each other
through the following relations:

evF α0

E
≈ δ0

E
≈ −eα1

h̄
≈ eβ2

h̄
≈ χ2

h̄vF
≈ − δ1

h̄vF
= c0, (21a)

evF β0

E
≈ −eβ1

h̄
≈ eα2

h̄
= c1, (21b)

χ0

E
≈ − χ1

h̄vF
≈ δ2

h̄vF
= c2. (21c)

Surprisingly, these relations show that it is possible to
describe the spatially dispersive response of the potentials
at the expense of the nonspatially dispersive terms. For this
example, it is found that c0 ≈ −0.277, c1 ≈ −0.215, and c2 ≈
−0.269. Using the effective potentials (19) and (20) together
with Eqs. (21a)–(21c), we can write the effective Hamiltonian
[Eq. (3)] as

Ĥe f = h̄vF σ · k + 2c0Eσy+(c1+c2)E1 + (c1 − c2)h̄vF kxσx

+ kyh̄vF [(c1 + c2)σy + 2c01]. (22)

The energy dispersion of the modes supported in the su-
perlattice is obtained from the eigenvalue problem in Eq. (17)
using the effective Hamiltonian given by Eq. (22). The corre-
sponding band diagram is shown in Fig. 5(a) and reveals that
the response of the superlattice is no longer reciprocal, with
the band diagram being tilted along ky.

To have a better understanding of the structure’s nonre-
ciprocal response effect in the propagation of the electrons
we focus our attention on propagation along the x and y
directions. Let us begin by studying the propagation along
x (ky = 0, kx �= 0). In that case, the energy dispersion of the
modes is simply given by

|E | = h̄vF (1 + c1 − c2)|kx|√∣∣4c2
0 − (1 − c1 − c2)2

∣∣ . (23)

The corresponding band diagram is shown in Fig. 5(b),
where we also depict the “exact” band diagram.

Our effective medium model results have very good
agreement with the exact band diagram showing that for
propagation along the x direction the results are comparable
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FIG. 4. (a) Normalized effective magnetic potential parameters eaα0 h̄−1, eaβ0 h̄−1, eα1 h̄−1, eβ1 h̄−1, eα2 h̄−1, and eβ2 h̄−1 as a function of the
normalized energy for a graphene superlattice characterized by a magnetic vector potential with amplitude eAosca/h̄ = 4 and an electrostatic
potential with amplitude Vosca/h̄vF = 5. (b) Similar to (a) but for the normalized effective electrostatic potential parameters eaχ0 h̄−1, eaδ0 h̄−1,
eχ1 h̄−1, eδ1 h̄−1, eχ2 h̄−1, and eδ2 h̄−1.
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FIG. 5. (a) Exact energy dispersion of the considered graphene superlattice. (b), (c) Dispersion of the energy eigenstates for propagation
along the x and y directions, respectively. The blue dashed curves represent the “exact” energy dispersion of the GSL, the blue solid curves
correspond to the dispersion of the GSL calculated using the simplified effective medium formalism, and the green solid curves show the
dispersion of pristine graphene. In all panels the GSL is characterized by a magnetic vector potential with amplitude eAosca/h̄ = 4.0 and an
electrostatic potential with amplitude Vosca/h̄vF = 5.0.

to the band diagram obtained for superlattices with solely a
magnetic potential [see Fig. 3(a)]. Indeed, for propagation
along the x direction, the response of the structure is reciprocal
and characterized by a group velocity smaller than that of
pristine graphene [whose response is depicted as green curves
in Fig. 5(a)], so that vg,x = h̄−1∂E/∂kx ≈ 0.77vF .

To determine the band diagram for propagation perpendic-
ular to the direction of the stratification of the potentials, i.e.,
for propagation along the y direction (with kx = 0, ky �= 0),
we follow a similar procedure and calculate the eigenvalue
problem in Eq. (17) considering the effective Hamiltonian
given by Eq. (22) with kx = 0. The problem yields two
solutions (eigenmodes), whose energy dispersion is given
by

E (1) = h̄vF ky
2c0 − c1 − c2 − 1

2c0 − c1 − c2 + 1
, (24a)

E (2) = h̄vF ky
2c0 + c1 + c2 + 1

−2c0 − c1 − c2 + 1
. (24b)

Clearly, for a fixed pseudomomentum ky both solutions
are not symmetric. In Fig. 5(c) we represent the band dia-
gram calculated using the effective medium formalism and
overlap the results with both the exact band diagram of
the superlattice and the band diagram of pristine graphene.
As seen, both results predict that the superlattice response
is vastly different from that of pristine graphene. The re-
sponse of the structure is nonreciprocal as for a fixed energy
both bulk modes are characterized by wave vectors ky that
have the same sign. Additionally, the band diagram reveals
that it is possible to have unidirectional bulk modes as
both bands have negative (but distinct) group velocity, i.e.,
v(1)

g,y = h̄−1∂E (1)/∂ky �= v(2)
g,y = h̄−1∂E (2)/∂ky, consistent with

a type-II Dirac cone dispersion characteristic. While one of
the bands [E (1)(ky)] follows closely the original band of the
pristine graphene, the other one [E (2)(ky)] is tilted towards
the origin E = 0. Indeed, our results suggest that it may
be possible to obtain an eigenmode characterized by a flat
band so that the group velocity is precisely equal to zero,
(vg,y = 0), corresponding to a static wave. Importantly, this
type of dispersion characteristic is usually identified as a
type-III Dirac cone [45] where the energy dispersion con-
sists of one flat band while the other has a linear dispersion

[45,50,51]. Clearly, this is an effect of the interplay between
the electrostatic and magnetic vector potentials in the dy-
namics of the charge carriers in the superlattice. In Fig. 6(a)
we show the group velocities v(1)

g,y , v
(2)
g,y , vg,x as a function of

the amplitude of the magnetic potential for the fixed ampli-
tude of the electric potential Vosca/h̄vF = 5. It is seen that
increasing the amplitude of the magnetic potential decreases
the group velocity along the x direction, similar to the previ-
ously studied superlattice with Vosc = 0. On the other hand,
the effects of changing Aosc in the group velocities v(1)

g,y , v
(2)
g,y

are far more pronounced. To begin with, we note that when
Aosc = 0 the response is that of a superlattice with electric
potential, which is characterized by an anisotropic response
[17,41], so that vg,y can be significantly smaller than the
Fermi velocity. Moreover, we see the group velocity v(1)

g,y de-
creases as the amplitude of the magnetic potential increases,
reaching a minimum for eAosca/h̄ ≈ 4.71, at which point it
is equal to the Fermi velocity, and then it starts increas-
ing. In contrast, for the other eigenmode, its group velocity
v(2)

g,y decreases as Aosc increases, reaching a null value for
a magnetic potential with amplitude eAosca/h̄ ≈ 3.36. Such
combination of amplitudes leads to dispersion characterized
by a type-III Dirac cone, which crucially, marks the transi-
tion point where the dispersion changes from a type-I Dirac
cone (for eAosca/h̄ < 3.36) into a type II (when eAosca/h̄ >

3.36), where both eigenmodes flow along the same
direction.

To have a complete understanding of the interplay between
both potentials in the carrier’s velocity in the superlattice,
we numerically calculated the group velocities vg,x, v

(1)
g,y , v

(2)
g,y

while simultaneously varying Aosc and Vosc. The results are
shown in Figs. 6(b)–6(d), respectively.

The results depicted in Fig. 6(b) reveal that vg,x is unaf-
fected by a variation in Vosc when Aosc = 0 due to the Klein
tunneling effect, and that when Aosc �= 0 the carrier’s velocity
is decreased. Interestingly, our results suggest that for a fixed
magnetic potential vg,x tends to increase as the amplitude of
the electric potential increases.

For propagation along the y direction, the response of the
structure to variations in both potentials is more complex.
In Fig. 6(c) it is seen that the group velocity v(1)

g,y follows
closely the response of pristine graphene when both poten-
tials are similarly valued (using normalized quantities) but
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FIG. 6. (a) Normalized group velocities along the x direction vg,x/vF and along the y direction v(1)
g,y/vF and v(2)

g,y/vF of the bulk eigenmodes
of a GSL is characterized by an electrostatic potential with amplitude Vosca/h̄vF = 5.0 as a function of the normalized amplitude of the
magnetic vector potential eAosca/h̄. (b) Normalized group velocities along the x direction vg,x/vF of the bulk eigenmodes as a function of the
normalized amplitudes of the magnetic vector potential eAosca/h̄ and electrostatic potential Vosca/h̄vF . (cd) Similar to (b) but for the normalized
group velocities of the bulk eigenmodes that propagate along the y direction v(1)

g,y/vF and v(2)
g,y/vF , respectively.

decreases significantly when one of the potentials is sig-
nificantly stronger than the other. On the other hand, the
results associated with the propagation properties of the other
eigenmode, shown in Fig. 6(d), show that v(2)

g,y is progres-
sively reduced when both Aosc and Vosc increase. Hence,
there is a vast combination of potentials that can result
in static waves [v(2)

g,y = 0], i.e., a dispersion characteristic
consistent with a type-III Dirac cone, and also bulk unidi-
rectional eigenmodes (v(1)

g,y , v
(2)
g,y < 0) (type-II Dirac cone), so

that by properly tuning the potentials we are able to precisely
control the direction of propagation of the carriers in the
superlattice.

V. CONCLUSIONS

We developed a homogenization model to determine the
effective response of superlattices with magnetic vector po-
tential and electrostatic potential. We used a numerical FDTD
algorithm to apply this formalism and study the propagation
properties of the charge carriers in graphene superlattices
characterized by 1D magnetic and electric potentials with a
sinusoidal-type spatial variation. We demonstrated that when
the GSL has only a magnetic vector potential, the effective
Hamiltonian of the structure can be drastically simplified by
neglecting the granular details of the potential and considering
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solely an effective Fermi velocity that is smaller to that of pris-
tine graphene. We also demonstrated that when both potentials
are present in the superlattice the response of the structure
becomes nonreciprocal and is characterized by a dispersion
characteristic consisting of a tilted Dirac cone. Particularly,
we showed that for propagation perpendicular to the strati-
fication of the potentials the GSL supports two eigenmodes
whose energy dispersion, for a fixed pseudomomentum, is not
linked by an odd symmetry. We showed that in such materials
we can obtain extreme wave phenomena such as energy flat
bands and regimes where both eigenmodes flow along the
same direction. We envision that by properly tuning the po-
tentials the proposed GSL structure can be operated in regimes
characterized by type-I, type-II, or type-III Dirac cones.
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APPENDIX: STABILITY OF THE FDTD ALGORITHM

In a FDTD numerical algorithm the calculations remain stable provided the time step is small enough, below a given threshold
[68]. In what follows we address the stability of the proposed numerical FDTD algorithm to determine the time evolution of
the waves in the graphene superlattices. For simplicity we assume that the medium is spatially homogeneous (V and Ay are
independent of the spatial coordinates) in the update equations (11a) and (11b). Our aim is to characterize the stationary states
of the system. Thus, we look for plane-wave type solutions of Eq. (11) with(

�n
1,p+1,q

�
n+1/2
2,p+1/2,q+1/2

)
= ξp

(
�n

1,p,q

�
n+1/2
2,p−1/2,q+1/2

)
, (A1a)(

�n
1,p,q+1

�
n+1/2
2,p+1/2,q+1/2

)
= ξq

(
�n

1,p,q

�
n+1/2
2,p+1/2,q−1/2

)
, (A1b)

where ξp = eiθp and ξq = eiθq are the spatial phase shifts between consecutive nodes. Furthermore, we consider a time variation
of the type �n+1

1,p,q = λ�n
1,p,q and �

n+1/2
2,p,q = λ�

n−1/2
2,p,q where λ is a function of the spatial phase shifts (ξp, ξq). Hence, the proposed

FDTD algorithm is stable as long as |λ| � 1 for arbitrary values of ξp and ξq with |ξp| = |ξq| = 1. Inserting Eqs. (A1a) and (A1b)
into Eqs. (11a) and (11b) and using simple mathematical manipulations we obtain the following system written in a matrix form:

(
1
λ

[
λ − 1 − V

ih̄2�t (λ + 1)
]

vF �t D−
vF �t D+

[
λ − 1 − V

ih̄2�t (λ + 1)
])

⎛
⎝ �n

1,p,q

�
n− 1

2

2,p+ 1
2 ,q+ 1

2

⎞
⎠ = 0, (A2)

with

D− = eAy

4h̄

(
ξ−1

q + ξ−1
p + ξ−1

p ξ−1
q + 1

) +
(

1

2�x
− i

1

2�y

)
−

(
1

2�x
+ i

1

2�y

)
ξ−1

p

+
(

1

2�x
+ i

1

2�y

)
ξ−1

q −
(

1

2�x
− i

1

2�y

)
ξ−1

p ξ−1
q , (A3)

D+ = −eAy

4h̄

(
ξq + ξp + ξpξq + 1

) +
(

1

2�x
+ i

1

2�y

)
ξpξq −

(
1

2�x
− i

1

2�y

)
ξq

+
(

1

2�x
− i

1

2�y

)
ξp −

(
1

2�x
+ i

1

2�y

)
. (A4)

To verify the stability of the algorithm we calculate the characteristic equation of the problem, obtained from the kernel of
Eq. (A2), which is given by

1

λ

[
λ − 1 − V

ih̄2
�t (λ + 1)

]2

− (vF �t )
2D−D+ = 0. (A5)

Using ξp = eiθp and ξq = eiθq it can be shown that

D−D+ = 1

�2
x�

2
y

[
−4�2

ycos2 θq

2
sin2 θp

2
− �2

xcos2 θp

2

(
eA

h̄
�y cos

θq

2
+ 2 sin

θq

2

)2
]
. (A6)

085119-9



DAVID E. FERNANDES PHYSICAL REVIEW B 107, 085119 (2023)

The nontrivial solutions λ of the characteristic equation are then

λ = 1

(C − i)2

⎡
⎣−1 − C2 + B2

2
± B

√(
B

2

)2

− C2 − 1

⎤
⎦, (A7)

with C = V
2h̄�t and B2 = −(vF �t )2D−D+ > 0 real-valued parameters. From this result, it is simple to check that if

(
B
2

)2 −
C2 − 1 < 0 then

|λ| = 1

(1 + C2)

[(
1 + C2 − B2

2

)2

+ B2

(
1 + C2 − B2

4

)]1/2

= 1. (A8)

Thus, the algorithm is stable when
(

B
2

)2 − C2 − 1 < 0. This condition is equivalent to

�2
ycos2 θq

2
sin2 θp

2
+ �2

xcos2 θp

2

(
eA

2h̄
�y cos

θq

2
+ sin

θq

2

)2

<
�2

x�
2
y

(vF �t )2

[
1 +

(
V

2h̄
�t

)2
]
. (A9)

The above inequality should be satisfied for all θp and θq. In particular, it is enough to ensure that

1

�2
x�

2
y

[
�2

y + �2
x

(
eA

2h̄
�y + 1

)2
]

(vF �t )
2 < 1. (A10)

If we consider equally spaced nodes, i.e., �x = �y = �, and time steps given by �t = �
vF

α, where α is a real-valued positive
constant, this condition is equivalent to

α <

√
1

1 + (
eA
2h̄ � + 1

)2 . (A11)

Hence, for these superlattices the numerical algorithm stability will depend on the amplitude of the magnetic vector potential.
In case there is no magnetic vector potential (A = 0) we regain the usual formula for the stability of the FDTD algorithm
�t < �

vF

√
2
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