
Pré-Publicações do Departamento de Matemática
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ON THE EXPONENTIAL FUNCTION TAIL

MARIA BARBOSA AND JOÃO SOARES

Abstract: In this note we show that for every positive ε there exists an interval
[T,+∞) in which every term xn/n! of the exponential series expansion bounds from
below the scaled exponential function εex. This, in particular, implies that the
sequence of functions {e−xxn/n!} converges uniformly to the function zero every-
where.

1. Introduction
The value of xn/n!, for every n = 0, 1, . . ., bounds from below the value of

the exponential function ex for every real x. For every fixed ε > 0, the fact
that

lim
x→+∞

xn/n!

εex
= 0

holds for any n suggests that a similar statement holds for the scaled expo-
nential function εex. In words, for every “x large enough”, the value xn/n!
bounds from below the value εex. We claim that ’x large enough’ is indepen-
dent of n, i.e., for every ε > 0, there exists T such that

max
n=0,1,...

{
e−xxn

n!

}
≤ ε, for every x ≥ T. (1)

As we shall see, (1) in particular implies the uniform convergence of the
sequence of functions {fn(x) ≡ e−xxn/n!} to the function zero everywhere.

In this paper we prove the claim and present some of its consequences.
The paper is structured as follows. In Section 2 we prove a few preliminary
lemmas. In Section 3 we prove the claim. In Section 4 we present some of its
consequences and we also mention some key aspects that must hold in order
to be able to generalize this type of claim to other functions.
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2. Preliminary results
A naive analysis leads to a partial result, formally presented in Proposi-

tion 1 below. Essentially, this is the result that motivated our claim.

Proposition 1. For every ε ≥
√

2− 1 ≈ 0.414, there exists T such that

max
n=0,1,...

{
e−xxn

n!

}
≤ ε, for every x ≥ T.

Proof : Recall the power series of the exponential function,

ex =
∞∑

n=0

xn

n!
, for every x ∈ R. (2)

When ε ≥ 1, the result follows trivially with, e.g., T = 0. Consider the case
ε ∈ [

√
2− 1, 1). For any n ≥ 1,

xn−1

(n− 1)!
+

xn

n!
+

xn+1

(n + 1)!
≤ ex, for every x ∈ R.

Thus, for any n ≥ 1,

xn

n!
+

xn−1

n!

(
εn + (ε− 1)x +

ε

n + 1
x2
)

︸ ︷︷ ︸
Pε,n(x)

≤ εex, for every x ∈ R.

Now, we show that the quadratic function Pε,n is always nonnegative. Since
n/(n + 1) ≥ 1/2, the discriminant of Pε,n is

(ε− 1)2 − 4 (εn)
ε

n + 1
≤ (ε− 1)2 − 2ε2 = 1− 2ε− ε2 ≤ 0,

for every ε ∈ [
√

2 − 1, 1). Thus, Pε,n(x) ≥ 0, for every x ∈ R, which in
particular implies that

max
n=1,2,...

{
xn

n!

}
≤ εex, for every x ∈ R.

The desired follows because the missing term x0/0! = 1 ≤ εex, for every
x ≥ T ≡ ln(1/ε).

The following lemma provides a closed-form formula for the maximum over
n in (1). It will allow to put our claim in a limit sense.
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Lemma 1. For every x > 0,

max
n=0,1,...

{
xn

n!

}
=

xbxc

bxc!

attained at {x− 1, x} when x is integer, and at {bxc} when x is not integer.

Proof : Let un ≡ xn/n!, for some fixed x > 0, so that, for every n ≥ 1,
un = (x/n)un−1. If x is integer then u0 < u1 < · · · < ux−1 = ux and
ux > ux+1 > . . .. If x is not integer then u0 < u1 < · · · < ubxc and ubxc >
ubxc+1 > . . .. The desired result follows.

From Lemma 1, the proposed claim, see (1), is true if and only if

lim
x→+∞

xbxc

bxc!ex
(3)

exists and it is zero. The fact that Lemma 1 requires x > 0 causes no
difficulty because we can always assume without loss of generality that we
are looking for some T > 0.

When restricted to integer sequences, (3) is easily shown to be zero. The
proof uses Stirling’s formula: for all n sufficiently large,

√
2nπ <

n!en

nn
<
√

2nπ

(
1 +

1

12n− 1

)
.

Thus, nn/(n!en) goes to zero as n goes to infinity. The proof that (3) exists
and it is zero turns out to be harder.

A related limit is easy to compute. Let Γ denote the Gamma function
which is defined by

Γ(x) =

∫ ∞

0
tx−1e−t dt (x > 0).

This function extends the factorial function over the positive reals. Stirling’s
asymptotic formula — see [1, page 105] — states that

ln Γ(x) ∼ ln

(√
2π

x

xx

ex

)
+

1

12x
− 1

360x3 +
1

1260x5 − · · ·

where the ’∼’ sign means that the alternating series indicated is divergent
for all x but, when x > 0, it has the property that any partial sum differs
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from ln Γ(x) by an amount which in absolute value is less than the last term
of the partial sum. Thus, for all x > 0,∣∣∣∣ln(Γ(x)ex

xx

√
x

2π

)
− 1

12x

∣∣∣∣ ≤ 1

12x

which implies
Γ(x)ex

xx

√
x

2π
≥ 1,

or, by using the fact that Γ(x + 1) = xΓ(x),

Γ(x + 1)ex

xx
≥
√

2πx.

Thus,

lim
x→+∞

xx

Γ(x + 1)ex
= 0. (4)

3. The main result
The limiting functions in (3) and (4) are related in the following way,

xbxc

bxc!ex
=

(
xx

Γ(x + 1)ex

)(
Γ(x + 1)

Γ(bxc+ 1)

)(
xbxc

xx

)
, for every x > 0. (5)

In Lemma 2 below we show that the product of the last two factors in (5) is
bounded.

Lemma 2. There exists T > 0 such that for every x > T ,(
Γ(x + 1)

Γ(bxc+ 1)

)(
xbxc

xx

)
≤ eγ+1, (6)

where γ denotes the Euler’s constant (γ = 0.55721 . . .).

Proof : Since Γ(x + 1) = xΓ(x) for every x > 0,

Γ(x + 1)

Γ(bxc+ 1)
=

bxc−1∏
j=0

(
1 +

x− bxc
bxc − j

)(Γ(x− bxc+ 1)

Γ(1)

)
.

The last factor is smaller than Γ(2)/Γ(1) = 1. Now, we need to show thatbxc−1∏
j=0

(
1 +

x− bxc
bxc − j

)(xbxc

xx

)
≤ eγ+1, (7)
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for all x large enough. From the arithmetic-geometric mean inequality, the
left-hand-side of (7) is less than or equal to 1

bxc

bxc−1∑
j=0

(
1 +

x− bxc
bxc − j

)bxc(
xbxc

xx

)
=

=

1 +
(

x−bxc
bxc

)(
1 + 1

2 + 1
3 + · · ·+ 1

bxc

)
x(x−bxc)/bxc

bxc

. (8)

Now, we recall that limn→∞ (1 + 1/2 + 1/3 + · · ·+ 1/n− ln n) = γ. Thus,
for all x large enough, (8) is less than1 +

(
x−bxc
bxc

)
(ln(bxc) + (γ + 1))

bxc(x−bxc)/bxc

bxc

. (9)

From the power series of the exponential function, (9) is always less than(
e(

x−bxc
bxc )(ln(bxc)+γ+1)

e(
x−bxc
bxc )(ln(bxc))

)bxc

= e(x−bxc)(γ+1)

The desired result follows.

The upper bound (6) is clearly not tight. Lemma 2 would still hold with
eγ+δ, where δ is an arbitrary positive real, instead of eγ+1. We are now ready
to prove the claim.

Proposition 2. For every ε > 0, there exists T such that

max
n=0,1,...

{
e−xxn

n!

}
≤ ε, for every x ≥ T. (10)

Proof : From Lemma 2, the product of last two factors in (5) is bounded for
all x large enough. Thus, from (4) and (5) we conclude that (3) exists and
it is zero. The desired result follows.

4. Consequences
Now, we present a number of consequences from Proposition 2. The first

result can also be derived through uniform convergence arguments. The other
three results require Proposition 2 to the best of our knowledge.
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Corollary 1. For every ε > 0, there exists T such that
∞∑

n=0

e−xxn

n!
pn ≤ ε, for every x ≥ T, (11)

holds for any sequence {pn} of nonnegative real numbers such that
∑∞

n=0 pn <
+∞.

Proof : Clearly, for every n ≥ 0 and x ∈ R,
∞∑

n=0

e−xxn

n!
pn ≤

∞∑
n=0

(
max

k=0,1,...

e−xxk

k!

)
pn = max

n=0,1,...

e−xxn

n!
. (12)

The desired result follows from Proposition 2.

A proof of Corollary 1 that uses uniform convergence arguments would be
as follows. The sequence of functions {fn(x)}, defined by

fn(x) ≡ e−xxn

n!
pn (n = 0, 1, . . .)

is such that the sequence of functions {
∑n

j=0 fj} converges uniformly in
R. This follows from well-known Weirstrass test, taking into account that
|fn(x)| ≤ pn, for every x ∈ R and every n, and

∑∞
n=0 pn < +∞. Thus, a

generalization of [2, Theorem 7.11,p.149]) shows that

lim
x→∞

∞∑
n=0

e−xxn

n!
pn = 0.

which is another way of expressing (11). We remark that the proof of Corol-
lary 1 didn’t make any explicit use of uniform convergence.

Corollary 2. The sequence of functions {e−xxn/n!} converges uniformly to
the function zero everywhere.

Proof : We need to show that, for every ε > 0, there exists an integer N such
that

max
x∈R

{
e−xxn

n!

}
≤ ε, for every n ≥ N. (13)

From Proposition 2, there exists T such that (10) holds. On the other hand,

e−xxn

n!
≤ e−TT n

n!
, for every x ≤ T.
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The sequence {e−TT n/n!} converges to zero as n goes to infinity. Let N be
such that e−TT n/n! ≤ ε, for all n ≥ N . For this N , (13) follows.

Corollary 3. For every ε > 0, there exists T such that

max
n=0,1,...

{
n∑

j=0

e−xxj

j!
pn

j

}
≤ ε, for every x ≥ T,

holds for any sequence {pn} such that pn ≡ (pn
1 , p

n
2 , . . . , p

n
n) ∈ Rn+1 and sat-

isfies
∑n

j=0 pn
j = 1 and pn

j ≥ 0, for every j = 0, 1, . . . , n.

Proof : Clearly, for every n ≥ 0,
n∑

j=0

e−xxj

j!
pn

j ≤
n∑

j=0

(
max

k=0,1,...

e−xxk

k!

)
pn

j = max
n=0,1,...

e−xxn

n!
.

The desired result follows from Proposition 2.

Corollary 4. For every ε > 0, there exists T such that

max
n=0,1,...

{
1

n + 1

∫ +∞

x

e−ttn

n!
dt

}
≤ ε, for every x ≥ T. (14)

Proof : From calculus,

1

n + 1

∫ +∞

x

e−ttn

n!
dt =

1

n + 1

n∑
j=0

e−xxj

j!
.

The desired result follows from Corollary 3.

Note the factor 1/(n + 1) in (14). Had this factor not been there and we
would have zero as limit when x goes to +∞ (for a fixed n) and one as limit
when n goes to ∞ (for a fixed x). For the type of property studied in this
paper to hold in other settings we must have zero in both limits.

It is interesting to observe the type of property studied in this paper with
other functions. Here is an example where the property holds with a minor
adjustment. The value of xn, for every n = 0, 1, . . ., bounds from below the
value of the function 1/(1−x) for every real x ∈ [0, 1). For every fixed ε > 0,
we have that

lim
x→1−

xn

ε
1−x

= lim
x→1−

(1− x)xn

ε
= 0 = lim

n→∞

(1− x)xn

ε
.



8 MARIA BARBOSA AND JOÃO SOARES

Hence, the necessary condition stated in the previous paragraph holds. It is
not hard to show that, for every ε > 0, there exist N ∈ {0, 1, . . .}, such that

xN = max
n=N,N+1,...

{xn} ≤ ε

1− x
, for every x ∈ [0, 1). (15)

Thus, the sequence of functions {xn(1 − x), x ∈ [0, 1)} converges uniformly
to the function zero everywhere. Note that statement (15) can also be un-
derstood as an adjusted version of (1) with T = 0.

It seems that the property studied in this paper, which is shared by the
functions ex and 1/(1− x), may happen to be shared by other functions. It
would be interesting to analyze this property for the class of real analytic
functions f , say

f(x) =
∞∑

n=0

f (n)(0)

n!
xn, for every |x| < Rf ≤ +∞,

for which there exists b, with 0 < b ≤ Rf , such that the following properties
hold:

(1) f (n)(0)xn/n! bounds from below the value of f(x), for every x ∈ [0, b)
and all n = 0, 1, . . .;

(2) f(x) > 0 for all x ∈ [0, b);
(3) limx→b− 1/f(x) = 0.

For every function f in such class we would like to know if the following is
true: for every ε > 0, there exists T ∈ [0, b) and an integer N such that

max
n=N,N+1,...

{
f (n)(0)xn

n!f(x)

}
≤ ε, for every x ∈ [T, b).

This property implies the uniform convergence of the sequence of functions{
(f (n)(0)xn)/(n!f(x)), x ∈ [0, b)

}
to the function zero everywhere.
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