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Abstract: Brown macroalgae are an important source of polysaccharides, mainly fucose-containing
sulphated polysaccharides (FCSPs), associated with several biological activities. However, the
structural diversity and structure–function relationships for their bioactivities are still undisclosed.
Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina
latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities,
helping to pinpoint a structure–activity relationship. Alginate, laminarans (F1, neutral glucose-
rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied.
Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%)
and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B
lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a
significant effect in reductions in in vitro cholesterol’s bioaccessibility attributed to the sequestration
of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and
hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem
to be relevant for the bioactive and healthy properties.

Keywords: seaweed; Laminariales; sulphated polysaccharides; fucans; fucoidans; mice; lymphocytes;
flow cytometry; hypocholesterolemic effect; NMR

1. Introduction

Macroalgae (also known as seaweed) represent a sustainable source of natural bioac-
tive compounds with potential for the development of new products and biomaterials
to improve human health. These include compounds, such as polysaccharides, proteins,
lipids, and pigments, which have great potential for commercial exploitation in the food,
nutraceutical, pharmaceutical, and cosmetic industries [1,2].
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Polysaccharides are major constituents of macroalgae, acting as structural compo-
nents of cell walls and energy storage compounds. Brown macroalgae (Phaeophyceae)
synthesize unique polysaccharides, which are the following: alginates, laminarans, and
fucose-containing sulphated polysaccharides (FCSPs) [3]. Together, these polysaccharides
could represent more than 50% of the dry weight of brown macroalgae [4]. Alginates
are used for many commercial applications, mainly in food as thickening, gelling, and
emulsifying agents [5]. Specifically, FCSPs have been subject of intensive research due
to their biological activities and health-promoting functions [6]. However, alginates [7]
and laminarans [8] have also been recognized for their bioactive properties, such as im-
munomodulatory, anti-obesity, and anti-diabetic.

Structurally, alginates are copolymers composed of (β1→4)-D-mannuronic acid (M),
(α1→4)-L-guluronic acid (G), and alternating (MG) blocks. Laminarans, also known by
their old name laminarins [9], are storage β-glucans and the most abundant glucose
polysaccharides in brown seaweed, which also contain cellulose [10]. The laminarans
are composed of a backbone of (β1→3)-linked D-glucose with branches of (β1→6)-linked
D-glucose. Depending on their reducing ends, laminarans are classified as G chains (end
with a glucose residue) and M chains (end with a mannitol) [4]. FCSPs in brown macroalgae
represent a structurally diverse and complex fraction, including fucans and fucoidans. As
a common structural feature, FCSPs are composed of sulphated α-L-fucose residues, which
can be in the main backbone and/or side chains. The terms “fucans” and “fucoidans”
are still misused in the literature. Fucans are polysaccharides with a backbone of fucose
residues. Most of the fucans found in brown macroalgae have a backbone of (α1→3)- or
alternating (α1→3)- and (α1→4)-linked residues of L-fucose, classified, respectively, as
type I and type II. Fucoidans are heteropolysaccharides, presenting diverse backbones,
which include other monosaccharides, such as uronic acids, galactose, mannose, and xylose.
Acetyl groups have also been described in FCSPs [11,12].

In the case of brown seaweed Saccharina latissima, the main FCSPs are fucans com-
posed of a backbone of (α1→3)-linked fucose residues sulphated at C4 and/or C2 and
branched at C2 by a single sulphated fucose residue [13]. More recently, the presence of
fucans in S. latissima was also reported, consisting of a backbone of (1→3)-linked fucose
residues with (1→4)-linked fucose branches [14]. Moreover, other structures of FCSPs are
described for S. latissima, including the following three types of fucoidans: (1) fucogalactans
having a backbone of (β1→6)-linked D-galactose residues branched mainly at C4 and
containing both terminal galactose and fucose residues; (2) fucoglucuronans with a back-
bone of (β1→3)-linked glucuronic acid residues branched at C4 by single fucose residues;
and (3) fucoglucuronomannans composed of a backbone of alternating (β1→4)-linked
D-glucuronic acid and (α1→2)-linked D-mannose and branches of single fucose residues at
C3 of mannose [13].

FCSPs (mostly referred as fucoidans) have been associated with several biological
activities, including anticoagulant, anti-inflammatory, antiviral, antitumor, immunomodu-
latory [4,15,16], and hypocholesterolemic activity [17]. The biological properties of FCSPs
depend on their structural details, such as molecular size, degree of sulphation, and con-
stituent monosaccharides [15,18]. Further, it is known that the content and composition
of FCSPs are variable between brown seaweed species [19,20], as well as the distinct en-
vironmental conditions associated with different geographical locations and harvesting
seasons [10,21,22]. The composition of identified FCSPs is also dependent on the methods
used for extraction and purification [19]. However, there is no standard protocol for the
separation of these fractions [23], and the structural diversity and heterogeneity of the
FCSPs impair the isolation of fucans/fucoidans in pure and homogeneous fractions [24].

Among the most commercially relevant brown macroalgae [25], S. latissima (previously
named as Laminaria saccharina) is native to the North Atlantic and North Pacific [10].
S. latissima, commonly known as sugar kelp, is listed in European Union novel food
catalogue, a list of authorized novel foods safe for human consumption [25]. As natural
stocks are limited, the collection of S. latissima from the wild needs to be restricted to
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maintain the integrity of coastal marine ecosystems. Indeed, cultivation of S. latissima has
been developed to increase stocks for commercial uses, namely with European funding
(e.g., GENIALG project). However, a deeper knowledge on the S. latissima bioactive
compounds is still needed to boost their added value and potential applications. Specifically,
an understanding of the structures of its polysaccharides (mainly of FCSPs) and their
bioactivities is far from being known.

In this context, this work aims to characterize the chemical structure of water-soluble
Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholes-
terolemic activities. S. latissima polysaccharides were selected for this work considering
previous studies that reported bioactive properties of FCSPs and laminarans extracted from
other brown macroalgae, namely of Saccharina genus (S. japonica and S. sculpera) [26–29].
In addition, unfractionated hot water extract of S. latissima showed immunomodulatory
properties towards human THP-1-derived macrophages [30]. Herein, for the first time,
the potential of fractionated water-soluble S. latissima polysaccharides for immunostimu-
latory and hypocholesterolemic purposes was assessed, helping to pinpoint a structure–
activity relationship. For that, polysaccharides from cultivated S. latissima were extracted
and fractionated using a green solvent-based procedure, including ethanol extraction of
non-polysaccharide compounds, hot water extraction, alginate precipitation with calcium
chloride, and anion exchange chromatography. In addition to the chemical characterization,
polysaccharide-enriched fractions of S. latissima were tested for their in vitro lymphocyte
stimulatory activity using BALB/c mice splenocytes. Their effects on cholesterol solubility
were also evaluated using a simplified in vitro model composed of glycodeoxycholic acid
(GDCA) bile salt.

2. Results and Discussion
2.1. Fractionation and Characterization of S. latissima Polysaccharides

The hot-water-soluble polysaccharides of S. latissima were extracted from the alcohol-
insoluble residue (AIR) obtained with 80% ethanol. Afterwards, alginate was separated via
precipitation with CaCl2 (Ppt_CaCl2) and the polysaccharides present in the supernatant
(Sn_CaCl2) were further fractionated by anion-exchange chromatography (Figure 1). The
S. latissima biomass and all the fractions were characterized by total sugars content and
monosaccharide composition (Table 1).
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Table 1. Yield, sugars composition (mol%), and total sugars content of macroalga S. latissima biomass
and fractions obtained during fractionation.

Sample Yield
(%, w/w) Sugars Composition (mol%) Total Sugars

(%, w/w)

Fuc Xyl Man Gal Glc UA

Biomass - 4.2 ± 1.1 0.9 ± 0.4 29.9 ± 6.5 2.1 ± 0.3 25.6 ± 9.4 37.3 ± 5.9 42.0 ± 9.5
Sn_AIR 38.2 a 0.2 ± 0.1 ND 91.2 ± 1.1 1.7 ± 0.2 6.9 ± 0.9 ND 24.9 ± 0.2

AIR 56.3 a 6.8 ± 1.2 1.6 ± 0.8 3.9 ± 1.4 1.9 ± 0.3 26.0 ± 2.6 59.8 ± 4.8 53.4 ± 6.6
Hot-water extraction of AIR

Res_H2O 58.7 b 3.6 ± 0.1 1.1 ± 0.1 4.6 ± 0.8 1.5 ± 0.3 25.2 ± 0.9 64.1 ± 2.2 50.8 ± 2.8
Ext_H2O d - 11.4 1.6 15.1 3.2 35.3 33.4 53.5

Precipitation with calcium chloride of Ext_H2O
Ppt_CaCl2 5.0 b 3.8 ± 0.3 ND 1.9 ± 0.2 ND 0.7 ± 0.03 93.5 ± 0.5 62.1 ± 3.3
Sn_CaCl2 5.4 b 23.7 ± 2.1 2.5 ± 0.4 1.5 ± 0.1 6.7 ± 0.7 47.7 ± 3.4 17.9 ± 1.6 55.9 ± 5.0

Anion-exchange chromatography of Sn_CaCl2
F1 28.6 c ND ND 2.3 ± 1.9 ND 97.7 ± 1.9 tr 76.2 ± 3.4
F2 19.3 c 28.7 ± 0.1 5.7 ± 0.2 5.6 ± 0.2 8.5 ± 0.2 6.8 ± 0.6 44.7 ± 0.3 42.7 ± 4.8
F3 18.4 c 59.1 ± 2.7 3.0 ± 1.1 2.0 ± 0.6 20.8 ± 4.2 3.2 ± 1.6 12.0 ± 2.1 42.6 ± 7.2

a Results are expressed as weight % of macroalga biomass; b Results are expressed as weight % of AIR; c Results
are expressed as weight % of Sn_CaCl2; d Results for a single aliquot taken before precipitation with calcium
chloride. ND, not detected. tr, traces.

S. latissima biomass accounted for 42.0% (w/w) of total sugars. Uronic acids (UA,
37.3 mol%), mannose (Man, 29.9 mol%), and glucose (Glc, 25.6 mol%) were the main
sugars, followed by fucose (Fuc, 4.2 mol%), galactose (Gal, 2.1 mol%), and xylose (Xyl,
0.9 mol%). Glc is mainly associated with the presence of glucose-rich polysaccharides
(laminarans and cellulose), whereas Fuc and Gal are components of fucose-containing
sulphated polysaccharides (FCSPs). UA should mostly derive from alginates but may
also be constituents of FCSPs. Most of the Man detected may derive from free mannitol,
which occurs naturally in Phaeophyta (including S. latissima) and has a recognized role in
osmotic regulation [31]. Therefore, the sugars composition corroborated the presence of
different polysaccharides in S. latissima, as reported for this species [10] or brown seaweed
in general [11].

Mannitol and mannose were previously identified (by HPAEC-PAD) in dried biomass
of S. latissima from Iceland in a proportion of 2:1, together accounting for about 3% [19]. In
the same biomass (total sugars of 68%), UA represented about 47% of S. latissima biomass,
including mannuronic acid (36%) and guluronic acid (9%), components of alginate, and
glucuronic acid (2%) [19]. The differences in monosaccharide composition and content of
our results compared with the results from the literature may be related to the geographical
origin and harvesting time, as well as to different conditions of macroalgae processing
(i.e., washing step) and experimental procedures (i.e., hydrolysis step). Specifically, S. latis-
sima is known to have wide seasonal variation in the content of mannitol (0.5–24%) [10].

In this work, the extraction with ethanol was carried out to eliminate non-polysaccharide
components, such as lipids [32], pigments [33], and mannitol [31], from macroalga biomass.
The AIR, containing the S. latissima polysaccharides, was recovered with a yield of 56.3%
(w/w of macroalga biomass), whereas supernatant (Sn_AIR), containing the non-
polysaccharide components, represented 38.2%. The AIR had a total sugars content of
53.4% and contained UA (59.8 mol%, Glc (26.0 mol%), and Fuc (6.8 mol%) as main sugars.
The Sn_AIR comprised 24.9% of total sugars, of which Man (91.2 mol%) was predominant.
The Man identified in Sn_AIR may derive from naturally occurring mannitol [31], which
was extracted from macroalga biomass with 80% ethanol.

Hot-water extraction from AIR allowed us to obtain a residue (Res_H2O) with a yield
of 58.7% (w/w of AIR). This residue was composed of 50.8% of sugars, of which UA
(64.1 mol%) and Glc (25.2 mol%) were the most abundant. The hot-water extract (Ext_H2O;
53.5% of total sugars) revealed a composition of similar amounts of Glc (35.3 mol%) and
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UA (33.4 mol%), followed by Man (15.1 mol%) and Fuc (11.4 mol%). The higher percentage
of Fuc found in Ext_H2O than in Res_H2O suggests that most FCSPs are soluble in water at
90 ◦C. This is also corroborated by the amount of Man in Ext_H2O, as Man is also described
as a constituent of FCSPs. The Glc found in the hot-water-insoluble fraction (Res_H2O) was
probably derived from cellulose present in S. latissima cell walls, whereas the Glc found in
the soluble one (Ext_H2O) most likely derived from laminarans [10].

2.1.1. Precipitation with Calcium Chloride

As UA found in Ext_H2O may derive in part from alginate, calcium chloride (CaCl2)
was added to the Ext_H2O to separate this polysaccharide by precipitation. The precipitate
recovered after centrifugation (Ppt_CaCl2) had 62.1% of sugars, mostly UA (93.5 mol%),
corroborating the presence of alginates. Further, minor amounts of neutral sugars, mainly
Fuc (3.8 mol%), were identified in Ppt_CaCl2, possibly due to a small proportion of co-
precipitated FCSPs. Glc (47.7 mol%) and Fuc (23.7 mol%) were the main sugars found in
the supernatant (Sn_CaCl2), probably due to the presence of laminarans and FCSPs, respec-
tively. Total sugars (neutral and UA) accounted for 55.9% of the Sn_CaCl2 fraction, whereas
sulphate esters (as -SO3

−) represented 6.4% and proteins represented 11.2% (Figure 2 and
Supplementary Table S1).
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and proteins found in polysaccharide-enriched fractions obtained from S. latissima (Sn_CaCl2, F1,
F2, and F3). Mean values are represented. Mean ± SD are presented in Table 1 (for sugars) and
Supplementary Table S1 (for sulphates and proteins).

2.1.2. Anion-Exchange Chromatography

To fractionate the polysaccharides present in Sn_CaCl2, this fraction was subjected to
anion-exchange chromatography, recovering three fractions with increasing ionic strength:
F1 (eluted with 0.05 M HCl), F2 (eluted with 1 M NaCl), and F3 (eluted with 2 M NaCl)
(Figure 3).
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Figure 3. Anion-exchange chromatography on DEAE-Trisacryl M of Sn_CaCl2 fraction, with stepwise
elution using 0.05 M HCl (F1), 1 M NaCl (F2), and 2 M NaCl (F3). Elution profile was moni-
tored by phenol-sulfuric acid method (490 nm). No signal was observed with 4 M NaCl used for
column cleaning.

Fraction F1, eluted without ionic strength, had a total content of sugars of 76.2%,
mainly composed of Glc (97.7 mol%) (Table 1). No sulphate was detected in this fraction
and protein was found in low amounts (2.6%) (Figure 2). Considering the neutral character
and sugars composition, it can be confirmed that F1 is a laminaran-enriched fraction. The
low amount of Man (2.3 mol%) found in F1 may derive from mannitol located at the
reducing end of laminarans (classified as M chains) [10].

Fraction F2, eluted with the lowest ionic strength, was composed of 42.7% of sugars.
UA (44.7 mol%) and Fuc (28.7 mol%) were the main sugars, together with minor amounts
of Gal (8.5 mol%), Glc (6.8 mol%), Xyl (5.7 mol%), and Man (5.6 mol%) (Table 1). Sulphate
content (as SO3

−) represented 4.8% of this fraction. In addition, F2 also had 20.7% of
protein (Figure 2).

The fraction F3, eluted with the strongest ionic strength, showed a total content of
sugars of 42.6%. F3 was mainly composed of Fuc (59.1 mol%), Gal (20.8 mol%), and UA
(12.0 mol%), containing also Glc (3.2 mol%), Xyl (3.0 mol%), and Man (2.0 mol%) (Table 1).
Sulphates accounted for 14.3% of F3 and a low content of protein was detected in this
fraction (6.2%) (Figure 2).

F2 and F3 are not pure/homogeneous fractions of FCSPs, which is in accordance with
previous studies on FCSPs of S. latissima that also used anion-exchange chromatography
for fractionation [13,19]. F2 is possibly a complex mixture, containing mainly (β1→3)-
glucuronan chains [13]. F3 fraction probably contains mainly sulphated fucans, among
other polysaccharide structures [13]. As described in the literature, FCSPs are complex
heteropolysaccharides composed of several types of monosaccharides that, due to the
presence of uronic acid residues and sulphate groups, are highly charged. Regarding the
protein content found in F2 and F3, other studies also reported the presence of proteins
in FCSP-enriched fractions of brown macroalgae (including S. latissima), suggesting that
proteins are tightly associated with certain FCSPs [34,35].

2.2. In Vitro Lymphocyte Stimulatory Activity

The selected fractions Sn_CaCl2, Ppt_CaCl2, F1, F2, and F3, containing different pro-
portions of water-soluble polysaccharides from S. latissima (alginate, laminarans, and
FCSPs), were incubated with murine splenocytes to evaluate in vitro lymphocyte stimula-
tory activity. For all the fractions and concentrations tested (25, 100, and 250 µg/mL), the
cell viability was not significantly decreased when compared to the negative control with
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cells cultured only with medium. The same occurred in the presence of polymyxin B (PB),
used to assess possible endotoxin contamination (Supplementary Figure S1).

The percentage of T cells activated in the presence of polysaccharide-enriched fractions
from S. latissima ranged from 1.3 to 4.2% for all tested concentrations, inferred by the
expression of the early activation marker CD69 on the surface of CD3+ cells (Supplementary
Figure S2). Only the Sn_CaCl2 fraction (mixture of FCSPs and laminarans) at 250 µg/mL
induced significant T-cell activation when compared to the negative control (4.2% vs. 1.4%)
but negligible when compared to concanavalin A (ConA) used as a positive control of T-cell
activation (84.4%) (Supplementary Figure S2).

On the other hand, CD19+ cells (B cells) were significantly stimulated by all fractions,
except for F1 (laminaran-enriched fraction). The B-cell activation occurred in a dose-
dependent manner. The percentage of B cells expressing CD69 (8.0% in negative control)
increased upon incubation with the different polysaccharide concentrations used, ranging
from 25 to 250 µg/mL, as follows: 58.1% to 84.4% for Sn_CaCl2 (containing FCSPs and
laminarans); 17.3% to 39.9% for Ppt_CaCl2 (mainly alginates); 61.8% to 76.9% for F2
(moderate charged FCSPs); and 59.7% to 72.4% for F3 (high charged FCSPs) (Figure 4).
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In addition, the percentage of B cells activated by incubation with S. latissima fractions
was evaluated in the presence of polymyxin B (PB) to assess possible contamination of the
samples with bacterial endotoxin (LPS). PB is known to bind LPS and inhibit LPS-induced
B-cell activation [36,37]. Indeed, the treatment of cells with PB reduced B-cell activation
induced by LPS (used as positive control) from 95.0% to 14.6%. PB also reduced the extent
of B-cell activation in cultures stimulated with S. latissima fractions, indicating that LPS
contamination cannot be completely excluded. However, even in the presence of PB and
for the three concentrations tested, the percentage of B cells activated by incubation with
fractions containing FCSPs (Sn_CaCl2, F2, and F3) remained significantly higher than
the negative control (7.3%). This effect was also dose-dependent, increasing from 25 to
250 µg/mL of polysaccharides, as follows: 15.5% to 30.6% (Sn_CaCl2), 17.7% to 32.6% (F2),
and 14.0% to 36.7% (F3) (Figure 4). Moreover, the activation percentages found for cells
stimulated with 100 and 250 µg/mL of Sn_CaCl2, F2, and F3 in the presence of PB were
significantly higher than those observed for LPS stimulation with PB.

Considering that F1 (only containing laminarans) did not exhibit immunostimulatory
activity on B lymphocytes, the activity of Sn_CaCl2, F2, and F3 can be directly associated
with the presence of FCSPs. These results are in line with a previous study comparing
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fucoidans and laminarans extracted from other Laminariaceae species (Laminaria japonica),
where fucoidans exhibited a stronger immune activation ability [29]. The co-precipitation
of FCSPs in Ppt_CaCl2 (enriched in alginates) may contribute to the immunostimulatory
activity on B lymphocytes observed in this fraction. However, studies have shown that
alginates (including oligomer derivatives) themselves have immunostimulating effects,
namely by inducing B cells to express CD69 [38]. Even so, the B-cell activation induced
with Ppt_CaCl2 was significantly lower than that observed for Sn_CaCl2, F2, or F3 fractions,
suggesting that FCSPs have a higher activation capacity than alginates. The presence of
sulphate esters in the polysaccharides, as occurs in FCSPs, has been reported to be relevant
for immunostimulatory activity [39,40]. On the other hand, co-extracted laminarans in
Sn_CaCl2 had no negative impact on B-cell activation promoted by FCSPs. The possibility
of eliminating the fractionation step of the Sn_CaCl2 may be advantageous considering
potential applications, namely in the formulation of functional foods or nutraceuticals.

Regarding the importance of lymphocyte activation, it is worth noting that B cells are
found along the intestinal tract in Peyer’s patches. This is a possible route for direct B-cell
activation by FCSPs, as hypothesized for other polysaccharides [41]. Indeed, intestinal
immunomodulating activity via Peyer’s patch cells was reported for fucoidans extracted
from two brown seaweed species (Sargassum crassifolium and Padina australis) [42]. Another
hypothesis is indirect B-cell activation promoted by cytokines produced by polysaccharide-
stimulated enterocytes or phagocytes [41].

2.3. In Vitro Hypocholesterolemic Effect

The effect of polysaccharide-enriched fractions obtained from S. latissima (Sn_CaCl2,
F1, F2, and F3) in the sequestration of GDCA bile salt and in reductions in cholesterol
solubilized in GDCA micelles was evaluated by quantitative NMR and compared with
cationic resin colestipol used as a positive control (Supplementary Figure S3).

The F2 fraction, containing FCSPs eluted with a lower ionic strength in the anion-
exchange chromatography, significantly decreased the amount of GDCA in solution when
compared to the negative control (GDCA with cholesterol), whereas no significant differ-
ences were observed for Sn_CaCl2 (containing neutral laminarans and charged FCSPs), F1
(laminarans), and F3 (containing highly charged FCSPs) (Figure 5a). In addition, cholesterol
solubility decreased significantly in the presence of fraction F2 when compared to the
negative control (Figure 5b), being coincident with a decrease in bile salt concentration.
Indeed, the quantity of solubilized cholesterol in the presence of F2 was proportional to
the amount of GDCA in solution (Figure 5a,b). A chemical shift to lower ppm was also
noticed in bile salt resonances, being evidence of the interaction between bile salt and the
polysaccharide (Supplementary Figure S3). This corroborates that the mechanism behind
reductions in cholesterol solubilization is the sequestration of bile salts by moderately
charged FCSPs. Considering its composition, the F2 fraction is rich in uronic acids but has
a lower content of fucose and sulphate groups in comparison with F3. Therefore, uronic
acids (contrarily to sulphate groups) may have an important role on GDCA sequestration.
Other types of polysaccharides primarily composed of uronic acids have been reported
to interact with bile acids [43,44], namely pectins, with a degree of methylesterification of
62% [43]. Considering that GDCA is negatively charged at the intestinal lumen pH, the
interactions behind the negatively charged polysaccharides and bile salts should be mostly
due to hydrophobic interactions, possible involving the fucose (a deoxy sugar) present
in FCSPs.
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solubilized in the presence of polysaccharide-enriched fractions obtained from S. latissima (Sn_CaCl2,
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indicate statistically significant differences between compared groups (p < 0.05).

In the present work, laminarans (F1) from S. latissima showed no effect, either in the
sequestration of GDCA or cholesterol solubility. Although other β-glucans from cereals
(barley and oat) and mushroom have been known to sequestrate bile salts and decrease
cholesterol solubility, their structure is different from brown macroalgae laminarans. Cereal
β-glucans have (β1→3)- and (β1→4)-Glc linkages. Both laminarans and mushroom β-
glucans are composed of (β1→3) and (β1→6)-Glc, but laminarans have a reported lower
average molecular weight [44]. This structural difference could explain the absence of a
hypocholesterolemic effect of laminarans.

Like colestipol, a cationic resin used as a cholesterol-lowering drug, FCSPs from
the F2 fraction seem to have the capacity (albeit to a lesser effect) to sequester bile salts,
reducing their concentration in the intestinal lumen, lowering the cholesterol solubility, and
limiting cholesterol absorption through the intestine. Considering other brown macroalgae,
the fraction of Sargassum zhangii containing moderately charged FCSPs (eluted with 1 M
NaCl) showed the best ability to bind bile acids and reduce the content of intracellular total
cholesterol in HepG2 cells compared to those eluted with 0.5 M or 2 M NaCl [45]. These data
also corroborate the higher potential of moderately charged FSCPs as hypocholesterolemic
agents able to decrease cholesterol absorption, which is especially relevant considering the
prevalence of the high cholesterol levels in human blood, a well-established risk factor for
cardiovascular diseases [46].

3. Materials and Methods
3.1. Extraction and Fractionation of S. latissima Polysaccharides

The macroalga S. latissima was cultivated by the Scottish Association for Marine
Science (Oban, UK) at the Port a’ Bhuiltin seaweed farm (56.4886◦ N, −5.4698◦ E) and
harvested in May 2017 [32]. Freeze-dried and milled biomass was used for extraction and
fractionation of S. latissima polysaccharides, as represented in Figure 1.

3.1.1. Alcohol-Insoluble Residue (AIR) Preparation

S. latissima biomass (20 g) was suspended in distilled water (160 mL) and kept under
stirring for 10 min at room temperature. Then, absolute ethanol (640 mL) was added,
and the mixture was left for 15 min at 80 ◦C. The solution was filtered with a funnel with
porous plate and a 110 nm filter under vacuum. The alcohol-insoluble residue (AIR) was
washed with ethanol and acetone and left in the hood overnight to dry. The filtrate (Sn_AIR)
was also recovered, concentrated on rotary evaporator at 40 ◦C to remove ethanol, and
freeze-dried.
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3.1.2. Hot Water Extraction

To extract hot-water-soluble polysaccharides, AIR (5 g) was suspended in distilled
water (560 mL) and then kept at 90 ◦C for 1 h under stirring. An extract (Ext_H2O) and a
residue (Res_H2O) were recovered by filtration under vacuum. Res_H2O and an aliquot of
the Ext_H2O (1 mL) were dialyzed (cut-off 12 kDa) against distilled water and freeze-dried
for further analysis.

3.1.3. Precipitation with Calcium Chloride

For alginate precipitation, CaCl2 2% (3.8 g) was added to the Ext_H2O recovered by
filtration (with a volume of 380 mL) and stirred for 25 min at room temperature. The
solution was kept for 2 h at 4 ◦C and then centrifuged at 15,000 rpm for 20 min at 4 ◦C.
The resulting precipitate (Ppt_CaCl2) and supernatant (Sn_CaCl2) were dialyzed and
freeze-dried.

3.1.4. Anion-Exchange Chromatography of Fraction Sn_CaCl2
Sn_CaCl2 fraction (100 mg) was dissolved in 2 mL of 0.05 M HCl and applied to a

DEAE-Trisacryl M (Sigma-Aldrich, St. Louis, MO, USA) column (15 cm × 1.6 cm internal
diameter), pre-equilibrated with 0.05 M HCl and an adjusted flux of 0.5 mL/min. The
retained material on the column was eluted with a stepwise elution with solutions increas-
ing ionic strength. A first fraction was eluted with 0.05 M HCl (F1) and collected until
reaching a total volume of 35 mL. Two fractions (40 mL each) were then recovered by
elution with 1 M NaCl (F2) and 2 M NaCl (F3). Each fraction (F1, F2 and F3) was dialyzed
and freeze-dried. A solution of 4 M NaCl was used for column cleaning. The elution profile
was obtained by recovery of the fractions (1.9 mL), which were assessed by the colorimetric
phenol-sulfuric acid method [47].

3.2. Neutral Sugars Analysis and Uronic Acid Determination

Polysaccharide fractions (2 mg) were subjected to pre-hydrolysis for 3 h at room
temperature with 72% H2SO4 (w/w), followed by hydrolysis at 100 ◦C with 1 M H2SO4
for 2.5 h. Neutral sugars were determined by converting the hydrolyzed sugars in alditol
acetates, as described previously [48], using 2-desoxyglucose as an internal standard.
Alditol acetates were analyzed on a GC-FID (Perkin-Elmer Clarus 400, Waltham, MA,
USA) equipped with DB-225 column (30 m of length, 0.25 mm of internal diameter and
0.15 µm of film thickness; Agilent J&W GC columns, Santa Clara, CA, USA), operating with
injector temperature of 220 ◦C, detector temperature of 230 ◦C, and hydrogen flow rate of
1.7 mL/min. The oven was programmed as follows: 200 ◦C (held for 1 min), 40 ◦C/min to
220 ◦C (held for 7 min), and 20 ◦C/min to 230 ◦C (held for 1 min).

For uronic acid (UA) determination, the polysaccharide fractions were hydrolyzed for
1 h with 1 M H2SO4 at 100 ◦C. Uronic acids were estimated by colorimetry using phenol-
sulfuric acid method using D-galacturonic acid as standard, as previously detailed [48].

3.3. Sulphate and Protein Content

Sulphur (S) and nitrogen (N) contents of the fractions Sn_CaCl2, F1, F2, and F3
(2 mg per replicate) were determined by elemental analysis (Leco Truspec-Micro CHNS
630-200-200 elemental analyser) [48]. Considering the determined sulphur content, the
content of sulphate groups (calculated as -SO3

−) was estimated. The protein content was
obtained using nitrogen–protein conversion factor of 4.37, a specific factor determined for
S. latissima [49].

3.4. In Vitro Lymphocyte Stimulatory Activity

BALB/c mice were purchased from Charles River (Barcelona, Spain) and kept at i3S
animal facilities. Spleen cell suspensions were obtained from naïve mice included in the
project licensed by the competent national authority (Direção Geral de Alimentação e Vet-
erinária, Lisbon, Portugal) with the reference number 001879/2021-01-06. The preparation
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of spleen lymphocytes for stimulation assays and analysis by flow cytometry were con-
ducted as previously described [37,50]. Spleens were aseptically removed and splenocyte
suspensions were obtained by mechanically disrupting the organ in Hanks’ balanced salt
solution (HBSS, Sigma, St. Louis, MO, USA) and filtering through 100 µm cell strainers.
Splenocytes were resuspended in ammonium-chloride-potassium (ACK) lysing buffer for
3 min, to lyse erythrocytes, washed with HBSS, and resuspended in RPMI-1640 medium
(Sigma, St. Louis, MO, USA) supplemented with 10% foetal calf serum (Biowest, Nuaillé,
France), 10 mM HEPES solution (Sigma), 100 IU/mL penicillin (Sigma, St. Louis, MO,
USA), 50 mg/L streptomycin (Sigma, St. Louis, MO, USA), and 50 nM 2-mercaptoethanol
(Merk, Darmstadt, Germany) (RPMI). Spleen cell suspensions were distributed in 96-well
plates (106 cells/well) and cultured for 6 h at 37 ◦C in a humidified atmosphere containing
5% CO2. Cells were stimulated with RPMI medium alone (negative control), 2.5 µg/mL
of bacterial lipopolysaccharide (LPS) from Escherichia coli O111:B4 (Sigma, St. Louis, MO,
USA; B cell positive control), 2.5 µg/mL of concanavalin A (Sigma, St. Louis, MO, USA; T
cell positive control), or with one of the selected S. latissima fractions (Sn_CaCl2, Ppt_CaCl2,
F1, F2, and F3) at 25, 100, and 250 µg/mL (of total sugars). Co-incubation with 100 µg/mL
polymyxin B (PB; Sigma, St. Louis, MO, USA) was also tested to assess possible con-
tamination of the samples with bacterial LPS. Monoclonal antibodies used (diluted 1:100)
were as follows: anti-CD19 (PE-conjugate; clone 1D3; Biolegend, San Diego, CA, USA),
anti-CD3 (PE-Cy7-conjugate; clone 145-2C11; BD Biosciences, Franklin Lakes, NJ, USA),
and anti-CD69 (FTIC-conjugate; clone H1.2F3; Biolegend, San Diego, CA, USA). Prior to
analysis, 5 µg/mL propidium iodide (Sigma) was added to the samples. Lymphocytes
were analyzed in a BD FACSCanto™ II flow cytometer using BD FACSDiva™ Software
6.3.1 version (BD Biosciences, Franklin Lakes, NJ, USA). Data analysis was performed
using FlowJo™ software 10.8.1 version (Ashland, OR, USA). Gating strategy used in FACs
analysis is shown in Supplementary Figure S4.

3.5. In Vitro Assessment of Hypocholesterolemic Effect

To assess the potential of S. latissima polysaccharides in reductions in cholesterol’s solu-
bility, mixtures of selected fractions (Sn_CaCl2, F1, F2, and F3) were tested using an in vitro
intestinal model composed of a 50 mM bile salt sodium glycodeoxycholate (GDCA) and
3.5 mM [4-13C]Cholesterol, as described previously [51,52]. The solutions were prepared in
aqueous buffer, containing 10 mM Tris-HCl (pH 7.4), 0.15 M NaCl, 1 mM EDTA, and 0.02%
sodium azide (NaN3) in deuterated water (D2O) containing 3-(Trimethylsilyl)propionic-
2,2,3,3-d4 acid sodium salt (TSP). Cationic resin colestipol was used as positive control
at a similar concentration as the S. latissima extracts (5 mg/mL). Before measurements,
the mixtures were left under stirring at 100 rpm and 37 ◦C for 24 h. 13C NMR spectra
were acquired at 37 ◦C using a 90◦ pulse, with a 25,252 Hz spectral width, acquisition
time of 1.3 s, relaxation delay of 5 s, and 2040 acquisition scans. Proton decoupling was
accomplished by using a WALTZ-16 decoupling sequence. Nuclear Overhauser Enhance-
ment (NOE) was obtained through the comparation between 13C spectra with full proton
decoupling and with proton decoupling only during acquisition [52]. 1H NMR spectra
were acquired with a 90◦ pulse, a 7500 Hz spectral width, acquisition time of 1 s, relaxation
delay of 5 s, and 128 acquisition scans. These experiments were acquired in 500 MHz NMR
Bruker spectrometer and spectra were treated using MestreNova 6.1.1 (Mestrelab Research,
Santiago de Compostela, Spain). With this methodology, due to their size, polysaccha-
rides with GDCA or cholesterol aggregates and cholesterol precipitated as crystals are
not observed by liquid state NMR, because the motion of these aggregates leads to a
line-width broadening resulting from spin–spin relaxation (T2) phenomena. Therefore,
bile salt sequestration and cholesterol emulsified in GDCA micelles (small aggregates)
were determined by quantitative 13C NMR using the area of TSP (10 mM) resonating at
0 ppm, as internal standard for quantification. The area of carbon 4 from 13C enriched
cholesterol, which resonates at 44.4 ppm, was used for its quantification, normalized by
13C enrichment factor (1.109/99.8). Regarding bile salt GDCA, several resonances CH3,
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CH2, CH, and C areas were used for quantification by 13C NMR (assignments are shown
in Supplementary Table S2). In Supplementary Figure S3, the resonance CH position 5 of
GDCA (45.0 ppm) is highlighted in the insert. All the areas obtained in 13C NMR spectrum
were corrected for the NOE effect, which was used to decrease the length of the 13C NMR
experiment per assay, without compromising the quantitative outcome of the experiment.
Crosscheck of the results obtained by 13C NMR with NOE correction factors was conducted
by comparison with the results obtained by quantitative 1H NMR experiments in the case
of GDCA. The same approach was not addressed for cholesterol because no distinctive
resonance from cholesterol was assigned by 1H NMR.

3.6. Statistical Analysis

Statistical analysis was performed using Minitab 17. Data from in vitro assays were
analyzed by one-way ANOVA, followed by Tukey’s test. The confidence level was set at
95% (α = 0.05).

4. Conclusions

The consumption of macroalgae has long been related with health benefits, which
can be related to the presence of structurally different polysaccharides. In this work, two
fractions of fucose-containing sulphated polysaccharides (FCSPs) of Saccharina latissima
with distinct charge and composition revealed similar immunomodulatory activity on B
lymphocytes. The presence of sulphate esters in the structure of FCSPs seems to be a key
feature for its immunomodulatory activity. However, for the bile salt sequestration, the
content in uronic acids in FCSPs seems to be more relevant. Only moderately charged
FCSPs, which have a higher content in uronic acids but lower fucose and sulphate con-
tent, showed hypocholesterolemic potential, exhibiting the capacity to sequester bile salts
and reduce cholesterol solubility. On other hand, laminarans of S. latissima showed no
immunostimulatory or hypocholesterolemic effect. Overall, fucose-containing sulphated
polysaccharides of brown macroalga Saccharina latissima showed immunostimulatory and
hypocholesterolemic activities, having potential to be used as functional ingredients.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md21030183/s1, Table S1: Content (%, w/w) of sulphur (S)
and nitrogen (N) determined by elemental analysis, as well as sulphates (calculated as -SO3

-) and pro-
teins (calculated as N × 4.37); Table S2: 13C NMR assignments of bile salt, cholesterol, Trizma buffer,
and TSP standard resonances; Figure S1: Viable cells (%) cultured for 6 h with polysaccharide-enriched
fractions obtained from S. latissima (Sn_CaCl2, Ppt_CaCl2, F1, F2, and F3) at the concentrations of 25,
100, and 250 µg/mL, in the absence and presence of polymyxin B (PB). Culture medium alone (RPMI)
was used as negative control. Lipopolysaccharide (LPS) and concanavalin A (ConA) were used
as positive controls. Mean (±SD) values are represented. Different letters above the bars indicate
statistically significant differences between compared groups (p < 0.05); Figure S2: Percentage of
T cells activated by incubation with polysaccharide-enriched fractions obtained from S. latissima
(Sn_CaCl2, Ppt_CaCl2, F1, F2, and F3) at the concentrations of 25, 100, and 250 µg/mL, in the absence
and presence of polymyxin B (PB). Culture medium alone (RPMI) was used as negative control.
Concanavalin A (ConA) was used as positive control. Mean (±SD) values are represented. Different
letters above the bars indicate statistically significant differences between compared groups (p < 0.05);
Figure S3: Representative 13C NMR spectrum of GDCA bile salt solution 50 mM (grey), GDCA bile
salt solution 50 mM with labelled 13C4 Cholesterol 3.5 mM (black) in the presence of cationic resin
colestipol 5 mg/mL (green) or polysaccharide fucoidan (F2) 5 mg/mL (blue); Figure S4: Gating strat-
egy for flow cytometry analysis. Representative dot plots are presented showing the gating strategy
for lymphocytes (FCS vs. SSC), non-aggregated cells (FCS-H vs. FCS-A), live cells (propidium iodide),
B and T cells (CD3 vs. CD19), and activated cells (CD69 vs. CD3 and CD69 vs. CD19).
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