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Abstract: Recent advances in artificial intelligence algorithms are leveraging massive amounts of data
to optimize, refine, and improve existing solutions in critical areas such as healthcare, autonomous
vehicles, robotics, social media, or human resources. The significant increase in the quantity of data
generated each year makes it urgent to ensure the protection of sensitive information. Federated
learning allows machine learning algorithms to be partially trained locally without sharing data,
while ensuring the convergence of the model so that privacy and confidentiality are maintained.
Federated learning shares similarities with distributed learning in that training is distributed in both
paradigms. However, federated learning also decentralizes the data to maintain the confidentiality of
the information. In this work, we explore this concept by using a federated architecture for a multi-
mobile computing case study and focus our attention on the impact of unreliable participants and
selective aggregation in the federated solution. Results with Android client participants are presented
and discussed, illustrating the potential of the proposed approach for real-world applications.

Keywords: federated learning (FL); federated averaging (FedAvg); federated SGD (FedSGD);
unreliable participants; selective aggregation

1. Introduction

Mobile and wearable devices, as well as autonomous vehicles, are just some of the
applications that are part of modern distributed networks that generate an abysmal quantity
of data every day [1–3]. With increased computing power, energy efficiency, lower latency
between communications, greater bandwidth, better data management solutions, and even
storage capacity on these devices, as well as concerns about the disclosure of private
information, it is becoming increasingly attractive to allocate data locally (e.g., on mobile
devices) and push data processing to the edge so that users’ private information is not
exposed [4].

The concept of edge computing is not new. In fact, computing simple instructions in
low-power, distributed devices is an area of research that is several years old. Recently,
works have emerged, which consider training machine learning (ML) models centrally but
serving and storing models locally in these distributed devices [5].

As the computational and storage capabilities of devices in a distributed network
grow, local resources can be used on each device. This has led to an increase in interest
in federated learning (FL) [6–8]. Federated learning is a machine learning technique in
which an algorithm is trained on multiple decentralized edge devices or servers using
local private data samples without sharing them. It has numerous applications, such as
healthcare systems, industry, telecommunications, etc., as shown in Figure 1.

This concept shares some similarities with distributed learning. In distributed learning,
the training model is distributed across different nodes, while FL assumes a decentralization
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of both the data and the model and generates a global model that aggregates all the clients’
models [9] (see Figure 2).

Figure 1. Federated Learning Applications.

Figure 2. Difference Between Centralized Machine Learning, Distributed Learning and Federated Learning.

With the wide availability of mobile phones, we investigate the feasibility of im-
plementing machine-learning-based techniques in these devices. Specifically, this paper
explores federated learning for multimobile computing applications towards real-world
deployment scenarios, by focusing on the implementation of a federated solution in An-
droid devices. It also aims to preliminarily investigate different methods for aggregating
and updating the global model managed by the central server, using unreliable client
participants. In addition, the challenges and drawbacks of the FL process are discussed.
Thus, the main contributions are:

• The implementation of a real-world FL application with up to eight Android mobile devices;
• A comparison of results obtained with the developed FL solution against a baseline

obtained with a centralized ML approach;
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• We demonstrate that a more advanced aggregation method, such as a weighted
average instead of an arithmetic average, can significantly improve the overall result
of an FL solution;

• Based on existing challenges, we conclude that eligibility criteria can benefit the FL
framework in the presence of unreliable participants.

2. Background and Related Work

The federated learning concept aims to build a machine learning model based on data
distributed across multiple sites [10]. It offers clients the ability to collaboratively train a
common model without sharing personal data stored on their devices [8,11].

FL consists of two processes: model training and model inference. Typically, in an
FL framework there are two main players: clients/workers/parties who contribute to
the training of the model, and the server where the aggregation and update of the global
model is performed. Thus, model training consists of sharing information between the
workers and the server. However, the training data can never be shared. On the other hand,
during the inference phase, the model is trained based on new data. Lastly, FL provides
a mechanism to distribute the benefit of the whole process through all the collaborative
parties. As described in [11,12], FL is a framework for building ML models that can be
characterized by the following features:

• Two or more parties are interested in jointly creating an ML model. Each party has
some data that will be used as input to train the model;

• It is imperative that during model training, the data kept by each party never leave
that party;

• The locally trained model can be partially transferred from one party to another under
an encryption scheme, so that other parties cannot reproduce the training data of a
particular party;

• Theoretically, the performance of the resulting model is a reasonable approximation of
an ideal ML model built using data from all parties.

More technically, let N = {1, . . . , N} be the set of N parties, each of which has a
private dataset Di∈N . Each data owner i uses its dataset Di to train a local model wi.
The local model parameters are then forwarded to the FL server. All collected local model
parameters w = ∪i∈Nwi are then aggregated to create a global model WG [13].

The conventional architecture of an FL system is illustrated in Figure 3. In that system,
the parties jointly train an ML model with the assistance of an aggregate server. It is
assumed that all parties involved in the process are trustworthy, which means that they use
their private data to perform the training and pass the locally obtained model parameters
to the FL server in each training round. Evidently, this assumption may not be practical,
as discussed further ahead.

Typically, the FL process involves the following three steps [13].

• Step 1 (task initialization): The FL server determines the training assignment, i.e.,
the application goal and the corresponding data requirements. Moreover, the server
determines the hyperparameters of the global model and the training process. Finally,
the server transmits the initialized global model w0

G to the selected parties.
• Step 2 (local model training and update): Following the global model Wt

G, where t
represents the current iteration index, each party individually uses its local data to
update the local model parameters wt

i . The purpose of a party i in iteration t is to find
ideal parameters wt

i that minimize the loss function L(wt
i), for example,

wt∗
i = arg min

wt
i

L(wt
i). (1)

Then, the local model parameters are sent to the FL server.
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• Step 3 (global model aggregation and update): the FL server aggregates the local
models received from all selected parties and sends the updated model parameters
wt+1

G back to the participants.

Steps 2–3 are repeated until the global loss function converges or a desired training
accuracy is achieved, i.e.,

L(wt
G) =

1
N

N

∑
i=1

L(wt
i). (2)

Figure 3. Federated Learning Architecture.

The FL training process can be applied to several ML models using the stochastic
gradient descent (SGD) method. Typically, a training dataset contains a set of n data feature
vectors x = {x1, . . . , xn} and a set of corresponding data labels. In the case of unsupervised
learning, there is no data label. y = {y1, . . . , yn}. Moreover, ŷj = f (xj; w) denotes the
predicted result from the model w updated/trained by data vector xj [13].

Most of the recent successful deep learning [14] applications use variants of SGD for
optimization. In fact, many advances can be understood as an adaptation of the structure
of the model (and hence the loss function) to facilitate optimization using simple gradient-
based methods. Therefore, it is only natural that federated optimization algorithms are
built based on SGD.

After training and updating the local model comes an essential part of the FL process:
global model aggregation. There are several proposed solutions to this issue.

Experiments by Chen et al. [15] show that large-batch synchronous state-of-the-art
SGD optimization outperforms asynchronous approaches, in a data center application.
To apply this approach in a federated context, a C-fraction of clients/parties is selected
at each round, and the gradient of the loss over all the data held by these parties is
computed. Thus, C controls the global batch size, with C = 1 corresponding to full-batch
(nonstochastic) gradient descent. While the batch size selection mechanism is different
than selecting a batch by choosing individual examples uniformly at random, the batch
gradients g computed by FedSGD still satisfies E[g] = 5 f (w). The baseline algorithm is
FederatedSGD (FedSGD) [14].

A typical implementation of FedSGD with C = 1 and a fixed learning rate η has each
client k compute gk = 5Fk(wt), the average gradient on its local data at the current model
wt, and the central server aggregates these gradients and applies the update wt+1 ←−
wt − η ∑K

k=1
nk
n gk, since ∑K

k=1
nk
n gk = 5 f (wt) [16]. An equivalent update is given by ∀k,

wk
t+1 ←− wt − ηgk and then wt+1 ←− ∑K

k+1
nk
n wk

t+1. That is, each client locally performs a
gradient descent step on the current model using its local data, and the server takes a
weighted average of the resulting models. Within the algorithm, more computation steps
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can be added to each client by iterating the local update wk ←− wk − η5 Fk(wk) multiple
times before the averaging step [14]. This approach is called FederatedAveraging (FedAvg).

The number of computational steps is controlled by three key parameters: C, the fraction
of clients performing computations in each round; E, the number of training passes each
client makes over its local dataset in each round; and B, the local batch size used for
client updates. Selecting B = ∞ and E = 1 is equivalent to FedSGD. In FedAvg, for a client
with nk local examples, the number of local updates per round is given by uk = E nk

B [14].
Algorithm 1 is a complete pseudocode of the FedAvg procedure.

Algorithm 1: FederatedAveraging (FedAvg). The K clients are indexed by k;
B is the local minibatch size, E is the number of local epochs, and η is the
learning rate.

Server executes:
initialize w0
for each round t = 1, 2, . . . do

m←− max(C · K, 1)
St ←− (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ←− ClientUpdate(k, wt)

wt+1 ←− ∑K
k=1

nk
n wk

t+1

ClientUpdate(k, w): //Run on client k
B←− split Pk into batches of size B
for each local epoch i from 1 to E do

for batch b ∈ B do
w←− w− η5 l(w; b)

return w to server

Typical FL solutions prioritize the privacy and security of all the parties involved.
In fact, the server does not need to access individual information from each party involved
to perform SGD. The server only requires the weighted averages of the update vectors.
In [17], the authors proposed the secure aggregation protocol to compute these weighted
averages. This method ensured that the server became aware of what types of data were
present in the dataset, but without knowing the data that each user contained.

In mobile contexts, devices have limited resources in terms of energy and network
connectivity. This introduces some unpredictability in terms of the number of parties
that can participate in each round of updates, and the system must be able to respond to
disconnections and new participants. Since ML models can be parameterized with millions
of different values, model updates can involve a large quantity of data, which imposes a
direct cost on users on metered network plans.

Secure aggregation proposes to work with high-dimensional vectors, uses efficient
communication strategies, even considering the addition of new parties at each round and
being robust to users dropping out, and finally, provides the strongest possible security
measures under the constraints of a server-mediated, unauthenticated network model.

Pillutla et al. [18] introduced the use of the robust federated averaging (RFA) algorithm.
RFA replaces the mean aggregation of FedAvg with a geometric median (GM) based robust
aggregation oracle. Similar to FedAvg, RFA trades off communication for local computation
by running multiple local steps. The communication efficiency and privacy preservation of
RFA follow from computing the GM as an iterative secure aggregate.

Challenges

Some challenges distinguish the FL framework from other classical ML problems,
such as distributed learning or traditional private data analytics [5]. Below, we describe
four of the most important challenges identified for federated learning:
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Expensive Communications

Client–client and client–server communication is a critical bottleneck in FL solu-
tions [8]. When paired with privacy concerns over the transmission of raw data, it becomes
necessary for the data generated on each side to remain local. It is undeniable that FL
networks potentially include a huge number of devices, and network communications can
be many orders of magnitude slower than local computations, due to limited resources
such as bandwidth, energy, and power [19,20].

To fit a model to the data generated by devices in the federated network, it is important
to develop communication-efficient methods that iteratively send small messages or model
updates as part of the training process, rather than sending the entire dataset across the
network. To reduce communication in such an environment, there are two key aspects to
consider: minimizing the total number of communication rounds and the size of messages
transmitted in each round [5,20].

Systems Heterogeneity

The storage, computational, and communication capacities of individual devices in
federated networks may differ due to differences in hardware (CPU and memory), network
connectivity (3G, 4G, 5G, and Wi-Fi), and power (battery level) [19]. In addition, the network
size and systems-related constraints on each device typically result in only a small fraction
of the devices being active at once. Moreover, it is not uncommon for an active device to
lose connection with the server (dropout) in a given iteration due to connectivity or power
constraints [8].

These system-level characteristics dramatically increase the number of challenges,
such as straggler mitigation and fault tolerance [5]. Proposed FL approaches must therefore
anticipate a low amount of participation, tolerate heterogeneous hardware, and be robust
enough to dropped devices in the communication network [5,8].

Statistical Heterogeneity

Devices often generate and collect data that are not identically distributed across the
network, e.g., smartphone users have a varied use of language in the context of a next-
word prediction task [5]. Furthermore, the number of data points may vary significantly
between devices, and there can be an underlying statistical structure present that captures
the relationship among devices and their associated distributions [21]. This data-generation
paradigm frequently violates the independent and identical distribution (i.i.d.) assumptions
commonly used in distributed optimization and can increase the complexity of problem
modeling, theoretical analysis, and empirical evaluation of solutions [5].

Although the canonical FL problem aims to learn a single global model, there are
other alternatives such as learning different local models simultaneously via multitask
learning frameworks [21]. In this respect, there is also a close connection between leading
approaches for FL. This multitasking perspective allows personalized or device-specific
modeling, which is often a more natural approach to handling statistical heterogeneity in
the data for better adaptation [5,8].

Privacy Concerns

FL makes a step toward protecting data generated on individual devices by shar-
ing model updates, e.g., gradient information, instead of raw data. However, sending
model updates throughout the network during the training process can expose sensitive
information, either to third parties or to the central server [22].

Although recent methods aim to improve the privacy of FL using tools such as secure
multiparty computation (SMC) or differential privacy, these approaches often provide
privacy at the cost of reduced model performance or system efficiency [17,22]. Under-
standing these tradeoffs, both theoretically and empirically, is a significant challenge in
implementing private FL systems [5].

FL is already a case study for many applications. Simsek et al. [23] presented a study
on AI-driven autonomous vehicles, and in [24], an energy efficient distributed analyt-
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ics solution for IoT was proposed. In addition, Malekzadeh et al. [25] used FL for the
transmission of sensor-data transformations.

The next section details the implementation of a mobile FL framework using Android
devices as a case study, focusing on the impact of unreliable participants and selective
aggregation methods in a multimobile computing application. Since this is the focus of the
work, we do not explicitly address some of the challenges mentioned above, such as client
heterogeneity or privacy concerns.

3. Proposed Federated Learning Infrastructure

In what follows, we describe an implementation which aims to serve as a guide to
design a real-world multimobile FL solution.

3.1. Training Parameters

For our FL implementation, there were 4 controllable variables that allowed the testing
of various training scenarios.

The first parameter (num_clients) represented the total number of clients participating
in the federated solution. The dataset was divided among these clients so that each client
received a predetermined number of dataset elements.

The second parameter represented the number of rounds that the training should
take (num_rounds), and the third parameter represented the total number of local training
rounds on each selected client’s device (epochs). The fourth and last parameter was the
batch size (batch_size). Data were loaded per batch, so it was important to choose a value
that did not allow too little data to be loaded at once, as this would degrade training
performance by not utilizing the full processing power of the client devices. However,
it was also important not to select a value that was too high, as this could lead to data
overload on the clients.

After the initial definition of num_clients and num_rounds, in each communication
round (a communication round in federated learning represents the server–client and
client–server data exchange associated to the training performed at each client), training on
the client’s devices with the local dataset took place, according to the number of epochs
and the batch_size. Then, the server aggregated the individual models by weighting the
corresponding parameters into one global model.

Below, we present the training parameters chosen in this work. The values for
num_rounds were set empirically, since for the chosen dataset (see Section 5), we achieved
an accuracy after 100 rounds that was approximately equal to the maximum achieved
by Zhu et al. [26]. The num_clients was limited by the resources available for Android
deployment in our work. The values of epochs and batch_size were fixed to eliminate
their influence on the results and to allow a comparison of different configurations under
the same test conditions.

num_rounds = {10,30,500,100}
num_clients = {2, 4, 8}
epochs = 5
batch_size = 32

3.2. Model Architecture

The chosen architecture of the neural network was VGG19. This network can be seen
as a successor to AlexNet [27], which builds on its predecessors and improves them by
using deep convolutional neural layers to achieve a higher accuracy [28].

The architecture of the VGG19 network provides 19 weight layers (16 CNN layers,
3 fully connected layers, and a final layer for a softmax function) as seen in Table 1.
It assumes 224 RGB channels as input, leading to a 3D matrix of size 224× 224× 3. In a
first preprocessing stage, the average RGB value calculated for the whole training set is
subtracted from each pixel. A 3× 3 kernel with a stride size of 1 pixel is used, allowing the
entire image to be covered. Spatial padding is used to preserve the spatial resolution of the



Appl. Sci. 2023, 13, 3135 8 of 19

image. A max-pooling is performed over a 2× 2 pixel windows with a stride of 2. This
is followed by a rectified linear unit (ReLu) to introduce a nonlinearity that improves the
classification performance of the model and the computation time compared to previous
models that used tanh or sigmoid functions. Finally, there are three fully connected layers.
The first two have a size of 4096 and the last one has 1000 channels. The final layer is a
softmax function. This network is widely used for image classification in various fields,
such as face recognition.

Table 1. Configuration of the VGG-19 Network.

Input (224 × 224 RGB Image)

conv3-64 + ReLu

conv3-64 + ReLu

maxpool

conv3-128 + ReLu

conv3-128 + ReLu

maxpool

conv3-256 + ReLu

conv3-256 + ReLu

conv3-256 + ReLu

conv3-256 + ReLu

maxpool

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

maxpool

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

maxpool

FC-4096 + ReLu

FC-4096 + ReLu

FC-1000 + ReLu

softmax

3.3. Training the FL Model

At this stage, a global model and the individual client models were initialized. In this
solution, SGD was used as an optimizer for all client models. The training process took
place within a cycle, i.e., training was performed by the clients before each round of
communication. After receiving the updates from the local modules, the aggregation of
the weights was performed on the server according to a specific aggregation method,
which updated the global model that was then used to validate the training. This process
continued for num_rounds, i.e., 100 communication rounds for all the tests performed.
Accordingly, Algorithm 2 summarizes the FL training process in our implementation.
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Algorithm 2: Training steps of our FL implementation.

for i in num_rounds do
for j in num_clients do

Perform local training
end
Send the global model to the server
Aggregate the global model
Validate the global model

end

3.4. System Design

The server–client and client–server communication was done through a REST server.
Since we focused exclusively on the impact of unreliable participants and alternative
aggregation methods, a REST server presented a simple way to communicate through
POST messages with a JSON formatted body. This allowed us to perform a proof-of-concept
study while ignoring aspects that were outside the scope of this work, such as protecting
clients and the server from external attacks.

Another major point of our solution was the implementation of all the training logic
on several clients using a mobile Android application.

The logic implemented on the server included a function that aggregated the weights
coming from the clients and a function to test the updated global model. Figure 4 presents
a high-level diagram of the interaction between server and clients in the proposed solution.

Finally, it only remains to define the last point of our solution: the deployment
of clients on Android devices. Acquiring multiple devices to test this solution would
represent a significant investment. Therefore, we decided to use Android mobile device
emulation. There are numerous emulation software applications, such as BlueStacks
(https://www.bluestacks.com/, accessed on 28 February 2023), Nox Player (https://www.bignox.com/,
accessed on 28 February 2023), MEmu Play (https://www.memuplay.com/, accessed on
28 February 2023), etc., as well as Android Studio (https://developer.android.com/studio,
accessed on 28 February 2023) itself where the Android application (.apk) development
is done.

Server Client

Distribute the global model via REST message

Client trains the model with private data

Sends the training weights via REST message

Aggregates all the weights into 
an updated global model

Repeats the whole process for each training round

Figure 4. Federated Learning Server–Client Interaction in the Proposed Solution.

https://www.bluestacks.com/
https://www.bignox.com/
https://www.memuplay.com/
https://developer.android.com/studio
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3.5. Development and Implementation

In this section, we first describe the implementation of the FL server and then we
provide details about the implementation of the mobile clients.

REST Server (Server Implementation)

As seen before, the REST server started the communication rounds and monitored
whether all updated weights were sent to the server by the clients. This server also sent the
updated model to all clients.

The services supported by the REST API were as follows:

• A GET method to retrieve the latest shared model on the server;
• A POST method to upload the updates from the clients;
• A GET method to retrieve the information about the current round.

The first training round started immediately after the server was initialized. Once the
local training was finished, the server asynchronously received updates from all clients.
When a client sent the updated weights to be aggregated to the global model, the server
stored them in a file in JSON format. This file contained all the information about each
client’s training rounds known so far.

After the server received information from all clients, it proceeded to aggregate the
weights to create the global model. In a production environment, the server should have
protection mechanisms to prevent it from receiving new information during the model
aggregation process, as this can lead to system degradation. It was assumed that all
available clients participated in each training round. Therefore, this paper did not consider
the elimination or addition of clients during the training process.

Once the model aggregation was complete, the server sent it back to all participating
clients in response to the previously received update message.

Android Application (Client Implementation)

An Android client application was developed using Android Studio based on the
above-mentioned strategy. A functional .apk file was created that allowed any user to
install the application for local training on an Android mobile device.

This application had to be able to communicate with the server. To do this, each
client sent a REST message to an endpoint created for the server described above and with
a known IP address. The clients sent weights from the local training and received in a
response the updated global model to be used in the next round.

The client side implementation consisted of four phases:

• Setting up the connection to the server and loading the client dataset into memory;
• Receiving the global model through a REST message;
• Performing training on the client dataset;
• Sending the resulting weights to the server through a REST message.

The training function was developed using TensorFlow Federated for Android
(https://www.tensorflow.org/federated, accessed on 28 February 2023). For our imple-
mentation, tests were initially performed with Android devices emulated in Android
Studio. These tests showed that the software application would consume large amounts
of computational resources and would therefore affect scalability with a larger number of
clients. After further testing with alternative solutions, BlueStacks software was selected as
it proved to scale better.

Like any other emulator, BlueStacks creates a virtual version of an Android device
that runs locally on any computer. On this virtual device, the application was installed to
run the developed FL client.

The multi-instance manager lets a user create multiple instances of BlueStacks. Using
this feature, one can emulate several Android devices to test scenarios with multiple clients.

Ideally, one should consider the computational capacity and energy efficiency of
each client, since in most real-world cases, client devices are heterogeneous. This has a
significant impact on training, as there are clients that perform their local training faster

https://www.tensorflow.org/federated
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than others. This not only affects the total training time but also the ability of each client to
train with a considerably large dataset. However, in our work, all devices were considered
homogeneous. The effect of using training devices with different capabilities is therefore
reserved for future work.

4. Evaluation Design

The final goal of this paper was to implement a multimobile Android-based solution
for federated learning. To reach this goal, we outlined a succession of tests to perform.

First, the dataset to be used for experimental evaluation was selected, and a baseline
method was run to serve as a reference for the remaining results. Then, tests were run with
2, 4, and 8 clients, with the selected dataset evenly distributed

In a real-world implementation, clients do not have the same quantity of data available
for training. Therefore, we also tested an uneven distribution of the dataset across all clients
to get a clearer picture of how a federated solution would perform in such scenarios.

In all the tests described previously, the arithmetic mean was used as the aggregation
method. Alternatively, we repeated these tests using an aggregation method that used a
weighted average. The weighted average benefited clients with a larger dataset over ones
that had less data, so conclusions about the effects of selective aggregation could be drawn
by directly comparing the results.

We then performed cross-validation tests that allowed us to test the generalization
capability of the implemented solution, i.e., we evaluated the results obtained with different
parts of the dataset.

Finally, we experimented with another, more complex dataset to validate the im-
plemented solution and the proposed alternative aggregation method. Figure 5 shows a
diagram of the experimental methodology for the results discussed in Section 5.

Distribute the
Dataset Uniformly

Through:

Distribute the
Dataset Non-

Uniformly Through:

2 Clients 8 Clients

Establish the
Dataset

Implement a 
Multi-Mobile 

Solution

4 Clients

Introduce a Weighted 
Average when 

Aggregating the Model

Repeat the Previous 
Tests

Perform Cross-
Validation Tests

Perform Tests With a 
Different Dataset

Figure 5. Experimental Methodology.

In all experiments, the performance measure used was the average accuracy after
multiple rounds. This was calculated by the server, which progressively recorded the
arithmetic mean of the accuracy achieved in each round. Moreover, each test configuration
was repeated for five trials.
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5. Results and Discussion

After a thorough survey of existing datasets, the CIFAR10 dataset was selected due to
its appropriate balance between complexity and size. This allowed a clear analysis of the
accuracy curve per round of an FL solution, while ensuring that the tests performed did
not take too long and thus a reasonable number of configurations could be tested.

The CIFAR10 dataset consists of 60,000 color images of 32× 32 pixels, divided into
10 different classes. There are 50,000 images available for training and 10,000 images for
testing [29].

For all tests performed, the parameters mentioned in Section 3.1 were used.

5.1. Machine Learning Baseline Test

To make accurate comparisons between the models, a baseline ML method was run
locally with the same parameters, i.e., the same dataset (CIFAR10), the same neural network
(VGG 19), the same training rounds (100), epochs (5), and batch size (32).

According to [26], the VGG19 network can achieve up to 94.71% accuracy on CIFAR10
with sufficient training rounds. Based on this, our preliminary test was performed on a
local machine to establish a baseline. Note that we used 100 rounds of training, as this was
an adequate balance between training time and achieved accuracy.

After running these tests with the above parameters, an average accuracy of 92.87% was
achieved. That is, we assumed 93% as the baseline value for the locally achieved accuracy.

5.2. Uniform Distribution of the Dataset

Here, we performed tests while splitting the dataset evenly across the Android devices
(see Table 2).

Table 2. Average accuracy results obtained with 2 devices for a uniformly distributed dataset.

Elapsed Rounds Average Accuracy

10 79%

30 88%

50 90%

100 91%

Although the training time was not analyzed, it is important to note that the average
training time for each test performed in this scenario was about 24 h. This long training
time was quite expected since the server and the Android devices were emulated on the
same machine. In an ideal scenario, each node computes only its own training, and this is
done entirely in parallel.

This first experiment was conducted to verify whether an FL solution could achieve
a similar maximum accuracy as the same solution using centralized ML. From Table 2,
it can be seen that the maximum accuracy achieved was close to the maximum accuracy
mentioned in the previous subsection.

5.3. Nonuniform Distribution of the Dataset

Next, we examined how a client with an incomplete dataset affected the accuracy
across rounds. In this work, only the set of images available for local training at each client
determined whether the dataset was incomplete. In general, a dataset may be incomplete
under various conditions, such as the quality of the images used, e.g., blurred images,
pixelated images, etc., which is reserved for future work on this topic.

With this in mind, three test cases were conducted (see Table 3). In the first case, two
clients performed the training, one using half of the CIFAR10 dataset (25,000 images) and
the second using only 10 images (one image for each class in CIFAR10).
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Table 3. Average accuracy for nonuniformly distributed datasets with 2 devices (one with 50% of
CIFAR10 images and another with 0.0002%), 4 devices (15%, 25%, 60%, and 0.0002% of CIFAR10
images) and 8 devices (two clients with 7.5%, two with 12.5%, two with 30%, and two with 0.0002%
of CIFAR10 images).

# Devices

Elapsed Rounds 2 4 8

10 27% 22% 12%

30 34% 43% 26%

50 42% 78% 44%

100 48% 90% 89%

In the second case, the number of clients was increased to four. The dataset was
divided unevenly among them, but one of the clients saw its dataset allocated with only
0.0002% of the full training batch of CIFAR10 (one image for each class in CIFAR10). The
other three clients had 15%, 25%, and 60% of the dataset, respectively.

In the last scenario, the number of clients was increased to eight. Two clients had 7.5%
of the dataset, two had 12.5%, and two had 30%. The remaining two clients had 10 images
each, i.e., one image for each class in CIFAR10.

The first case led to very poor accuracy results. This was to be expected since the train-
ing was performed on only half of the entire dataset. The second and third cases showed
that increasing the number of clients and consequently each client having a smaller local
dataset, together with introducing clients that hardly contributed to the overall training,
still allowed an accuracy close to the maximum achieved in previous tests. However, it
could also be observed that the accuracy in the first training rounds was significantly worse
than in the previously presented case.

From this point on, no more tests were performed with just two clients. In order to
test the implemented solution for as many clients as possible, we proceeded only with tests
with four and eight clients.

5.4. Proposing a Weighted Average for Model Aggregation

The preceding results demonstrated the need to use an aggregation method that
benefited those clients that contributed the most to the global model. This could be achieved
by giving more weight to the contributions of clients with a more complete dataset, i.e.,
clients that predictably contributed more to a higher accuracy of the model.

Therefore, a new aggregation model was tested to meet this premise. Instead of an
arithmetic average with equal weights for each client, we introduced a weighted average
where the weights were computed as a fraction of the number of images each client had
locally compared to the total number of images used for training.

Equation (3) represents the weighted average used hereafter.

w←−
K

∑
k=1

nk
n

wk, (3)

where n represents the total number of images considered for training in all clients in a
round and nk represents the number of images in each client k. With this aggregation
method, little importance is given to clients with a small number of images.

Once again, we performed tests with a nonuniform distribution of the dataset with
four clients: one client with 15%, one with 25%, one with 60% of the CIFAR10 images, and
one client with only 10 images; and with eight clients: two with 7.5%, two with 12.5%, two
with 30% of the dataset, and two clients with 10 images for each class of CIFAR10 (see
Table 4).
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Figure 6 shows that using a weighted average in the aggregation of the global model
improved the accuracy of the training in the first rounds compared to an aggregation
method using an arithmetic average with both four and eight clients. However, given a
sufficient number of rounds of training, nearly identical accuracy was achieved at the end
of training in both cases. As expected, training accuracy converged faster in both cases
when a weighted average was used, as clients with large assigned datasets were favored
over clients with only a few images that had almost no effect on model aggregation.

To further evaluate the performance of our solution for as many clients as possible,
only the tests with eight clients were performed in the following sections.

Table 4. Average accuracy for a weighted average aggregation method using nonuniformly dis-
tributed datasets with 4 devices (15%, 25%, 60%, and 0.0002% of CIFAR10 images) and 8 devices (two
clients with 7.5%, two with 12.5%, two with 30%, and two with 0.0002% of CIFAR10 images).

# Devices

Elapsed Rounds 4 8

10 73% 36%

30 84% 55%

50 88% 79%

100 91% 90%
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Figure 6. Training 100 Rounds with 4 and 8 Devices (Weighted Average vs Arithmetic Average).

5.5. Cross-Validation

A cross-validation test was performed to obtain a more comprehensive evaluation
of the proposed approach. In this case, the 50,000 training images were divided into five
batches of 10,000 images. These five batches were again divided into two batches of 12.5%,
two batches of 7.5%, and two batches of 30% images (see Figure 7). A training run was
performed for each batch of 10,000 images. The aim of that test was to validate the presented
solution for different image samples used for training, demonstrating the generalization
capacity of the proposed model.
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3000 Batch 3000 Batch

Figure 7. Division of the CIFAR10 dataset for the cross-validation tests.

Table 5 shows the average results obtained for the two aggregation models discussed.
The results show that the presented solution was valid for a wide range of cases and not
only for the cases presented in this study, since the maximum accuracy obtained after
100 rounds of training in previous tests (91%) and the maximum accuracy obtained after
100 rounds of training with the cross-validation tests (90%) were only slightly different.

Table 5. Results obtained with cross-validation for 8 devices.

Elapsed Rounds Weighted Average Accuracy Arithmetic Average Accuracy

10 28% 8%

30 42% 17%

50 74% 42%

100 90% 89%

5.6. Increasing the Complexity of the Dataset

The use of the weighted average aggregation led to an overall improvement in training.
However, for CIFAR10, both the weighted average and the arithmetic average achieved
a similar maximum accuracy. Therefore, we performed a final test on a larger and more
complex dataset—CIFAR 100 [30]—to further evaluate the performance of our FL solution.

This dataset has the same number of training and test images as CIFAR10. The main
difference is in the number of image classes. While CIFAR10 considers 10 image classes,
CIFAR100 considers 100 image classes.

In Table 6, we present the results obtained by repeating the tests with eight clients
with an unbalanced dataset for both the arithmetic average and the weighted average
aggregation methods.
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Table 6. Results obtained from 8 clients (two clients with 7.5%, two with 12.5%, two with 30%, and
two with 0.0002%) with the more complex CIFAR100 dataset.

Elapsed Rounds Weighted Average Accuracy Arithmetic Average Accuracy

10 6% 2%

30 21% 12%

50 32% 24%

100 63% 51%

Note that for the same rounds of training with this dataset, only a maximum accuracy
of 63% was achieved. This was to be expected since the dataset had a much higher
complexity. Sterneck et al. [31] showed that with the CIFAR100 dataset, the VGG19 CNN
achieved a maximum accuracy of 70.3% after 100 training rounds, which was obtained with
a balanced dataset and a centralized machine learning method with access to all training
data. In our case, since we performed distributed training with unreliable clients (due to
the lack of dataset balance), we would need a much larger number of rounds to converge
closer to that maximum accuracy.

These results support the use of aggregation methods that benefit those clients who
contribute more to training.

6. Lessons Learned

Although the advantages of using FL are obvious, it is also important to note that
a solution based on an FL architecture has some potential weaknesses that need to be
addressed, such as:

• The need for communication between clients and server also brings the need to deal
with asynchronous client connection or disconnection (client dropout), which will
have an impact on the system. For these cases, both the server and the FL architecture
need to be extremely resilient. If the system is not prepared to handle connection
dropouts or a large influx of users during a communication round, the end result may
be significantly degraded or the system may suddenly fail.

• The need to protect the privacy of every client also brings with it the need to protect
against cyberattacks or malicious clients. Therefore, all communications must be
secured, as well as the access to the dataset at each client.

• In a federated solution, there is no prior knowledge of the data that each client contains
locally. This means that there may be clients that do little to improve the accuracy of
the global model. Moreover, in most cases, the clients are heterogeneous, meaning that
not all clients have the same computational power or energy efficiency. Accordingly,
some clients may take significantly longer to train locally than others. In these cases,
the training time in each round depends on the slowest client training and transmitting
its local updates.

However, FL has very important strengths compared to centralized ML. Above all,
client data protection is the focus of the concept presented. Moreover, two main advan-
tages arise: (i) distributed training, i.e., it is no longer necessary to have a superpowerful
machine on the server to run computationally intensive algorithms, and training becomes
easier while being performed in parallel; (ii) the need for distributed training implies the
decentralized use of data. A federated solution has the potential to use a dataset that grows
exponentially with the number of clients connected to the system, i.e., the model becomes
more complete and robust and responds more accurately to a wider variety of situations.

Based on the analysis performed, this work suggests the inclusion of admission criteria
in the implementation of an FL solution. This would allow the introduction of several
requirements in the system, for example:
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• Ensure that all clients have sufficient computing capacity to make a positive contribu-
tion to the training;

• Ensure that all clients have sufficient data to ensure model convergence;
• Ensure that all clients are trustworthy, i.e., do not pose a risk to the privacy of others;
• Ensure that all clients have a stable and secure connection to the server.

We strongly believe that the inclusion of admission criteria should be further explored
as it would improve the overall quality of an FL architecture.

We also believe that FL could benefit from other aggregation methods. A clear
example of this is reported in [32], where a protocol with user selection was proposed to
reduce the negative effect of correlation within the training data of nearby participants,
which impaired the optimization of the FL process. In our work, we demonstrated that
using a slightly more complex method improved the overall accuracy of the solution. In
addition to a weighted averaging of each client’s contribution, other approaches could be
explored, such as:

• Performing a validation of the local model in each client and giving preference to the
clients that achieve a higher accuracy locally;

• Maintaining and updating a historical score on the server side to weight each client’s
contribution according to training performance over time;

• Sending updates to the server along with the relevant client status (e.g., connection
status, local dataset size, etc.) to continuously adjust the aggregation method.

7. Conclusions

This paper presented a multimobile Android-based implementation of a federated
learning solution and studied the impact of unreliable participants and selective aggregation
in the federated solution towards the deployment of mobile FL solutions in real-world
applications.

After establishing a baseline using a traditional ML approach, we showed that we were
able to achieve similar performance using an FL solution with two clients and a uniformly
distributed dataset. When the dataset was not evenly distributed among participants, a
lower accuracy was observed in the early stages of training, and the network typically
required a higher number of rounds before performance converged. After the introduction
of a weighted average selective aggregation, we found a significant improvement in con-
vergence when using a dataset unevenly distributed among clients. However, the accuracy
achieved for four and eight clients after the 100 rounds of training was not different from
the previous tests. This was due to the complexity and dimension of the dataset, which led
to a training accuracy near the accuracy that was close to the known maximum accuracy
when enough training rounds were performed.

Afterwards, we ran cross-validation tests to demonstrate the generalizable nature of
our results. Finally, we conducted experiments with a more complex dataset and found that
using the weighted average aggregation method not only improved the accuracy across
rounds but also improved the maximum accuracy achieved after 100 rounds of training.

By comparing an arithmetic average aggregation method and a weighted average
aggregation method, we concluded that there was room for improvement in the aggregation
methods used for FL. In the context of the existing challenges of FL, we also concluded that
FL would benefit from the introduction of admission criteria for clients.

For future work, it would be important to test the implemented solution for a larger
number of clients (i.e., higher than eight) and further analyze the impact of the number
of clients in the training process and communications. In addition, our experience has
shown that the proper handling of disconnections and newly added clients during training
is critical for real-world deployment. Other opportunities to be explored include using
heterogeneous clients with different computational capacities, investigating the impact
of clients with unfavorable data (e.g., blurred or pixelated images), improving the ag-
gregation method to further optimize model convergence, testing the federated solution
with even larger and more complex datasets to validate the applicability of the model to
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other use cases, and exploring cybersecurity techniques and secure connections for privacy
preservation to enable sustainability for all participants.
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