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LOGIC OF IMPLICATIONS

JIŘÍ ADÁMEK, MANUELA SOBRAL AND LURDES SOUSA

Abstract: A sound and complete logic for implications (or quasi-equations) is
presented, extending naturally Birkhoff’s equational logic. This is based on a general
logic for injectivity, following an idea of G. Roşu.

1. Introduction
The aim of the present paper is an extension of the equational logic of G.

Birkhoff to a logic of implications (or quasi-equations) of the form
(

n∧
i=1

ui = vi

)
⇒ u = v

We follow an idea of G. Roşu [5] who presented a logic of injectivity in an
abstract category K: recall that an object K is injective w.r.t. an epimor-
phism e : A → B if and only if for every morphism f : A → K there exists
g : B → K with f = g ·e. The logic of injectivity is devoted to characterizing
the logical consequences of a set E of epimorphisms: a logical consequence is
an epimorphism e such that an object is e-injective whenever it is f -injective
for every f ∈ E . We formulate deduction rules for injectivity and we prove
that the deduction system is sound and complete whenever one restricts to
epimorphisms between finitely presentable objects. In our previous work [4]
and [6] we investigated similar topics: an abstract characterization of injec-
tivity classes. In [4] we worked with injectivity w.r.t. morphisms (not neces-
sarily epimorphisms) having finitely presentable domains and codomains. In
fact, by using one result of that paper we are able to prove the completeness
result of our rules in a few lines; see Theorem 2.12 below. The main idea of
[4] was to use the calculus of fractions of Gabriel and Zisman [3], and this
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leads us to a deduction system for injectivity which is (very similar, but)
slightly different from that of G. Roşu in [5]. Using our injectivity deduction
system we obtain, in the last section, a logic of implications which extends
the equational logic of G. Birkhoff.

2. Logic of Injectivity
2.1. Remark In the present section a logic of deriving injectivity (=orthog-
onality) w.r.t. a class of epimorphisms is presented. This is a variation of the
logic presented by G. Roşu: the rules are slightly different and the assump-
tions for proving the completeness of the logic are also slightly different. We
use ideas of the classical work [3] of Gabriel and Zisman on the calculus of
fractions, as exploited by Hébert, Adámek and Rosický in [4], see also [6].
We start by recalling that concept.

2.2. Definition A class E of morphisms in a category A is said to satisfy
the calculus of fractions provided that

(i) E contains all identity morphisms,
(ii) E is closed under composition,
(iii) for every span

A
e∈E

ÄÄ~~
~~

~~
~ f

ÂÂ@
@@

@@
@@

B C

there exists a commutative square

A
e∈E

~~~~
~~

~~
~~ f

ÃÃ@
@@

@@
@@

B

f ′ ÃÃ@
@@

@@
@@

C

e′∈E~~~~
~~

~~
~

D

and

(iv) given parallel morphisms h1, h2 : B → C in A such that h1e = h2e
for some morphism e ∈ E then there exists e′ ∈ E with e′h1 = e′h2.

2.3. Remark (a) In particular, whenever a category has pushouts, every
class E of epimorphisms containing all identity morphisms and closed under
composition and pushout satisfies the calculus of fractions.
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(b) If E is a class of epimorphisms, the condition (iv) can be omitted: from
h1e = h2e we conclude h1 = h2.

2.4. Notation Given a category A, we denote by Afp a full subcategory
representing up to isomorphism all finitely presentable objects, i.e., objects
A such that hom(A,−) : A → Set preserves filtered colimits.

2.5. Proposition(see [4]) Let A be a cowellpowered category with colimits,
and let E be a class of epimorphisms of Afp satisfying the calculus of fractions
in Afp. Then every finitely presentable object A in A has an E-injective
reflection rA : A → A∗ obtained by a filtered colimit of all morphisms e :
A → X of E with X ∈ Afp.

More detailed: let A ↓ E be the full subcategory of the comma category
A ↓ Afp (of all morphisms with domain A and codomain in Afp) formed by
members of E . Then the diagram

DA : A ↓ E → A, e 7→ X

is filtered, and if A∗ is the colimit of DA with the colimit cone e∗ : X → A∗

(for e : A → X in A ↓ E) then rA = id∗A is the reflection of A in the full
subcategory of A of all E-injective objects. This means that A∗ is E-injective,
and given a morphism f : A → B such that B is E-injective, then f factorizes
through rA. This was proved in [4] assuming that A is a finitely accessible
category. But finite accessibility was only used to make the diagram DA

essentially small. Since in the present paper E is a class of epimorphisms,
this follows from A being cowellpowered.

2.6. Notation An epimorphism e is said to be a logical consequence of a
class E of epimorphisms if every E-injective object is e-injective. Notation:

E |= e

2.7. Remark It was an idea of G. Roşu to present logical rules for axiom-
atizing the logical consequence |= above. The calculus of fractions above
(minus rule (iv) which we do not need since we work with epimorphisms)
inspires us to a slightly different selection of rules:



4 JIŘÍ ADÁMEK, MANUELA SOBRAL AND LURDES SOUSA

2.8. Injectivity Deduction System consists of one axiom

Axiom :
idA

and the following three deduction rules:

Composition:
e, e′

e′ · e if the codomain of e is the domain of e′

Cancellation:
e′ · e
e

Pushout:
e
e′

for every pushout
· e //

f
²²

·
g

²²· e′ // ·

2.9. Notation Let E be a class of epimorphisms of a category A. We use

E ` e

to denote the fact that e can be proved from E by using the Injectivity
Deduction System. That is, there exists a list e1, e2, · · · , en of morphisms
such that en = e and, for every i = 1, 2, · · · , n, either ei is an identity
morphism, or ei is the conclusion of one of the above rules such that the
assumptions of that rule are among e1, · · · , ei−1.
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2.10. Lemma The deduction system 1.8 is sound, i.e., E ` e implies E |= e.

Proof (1) Every object is injective with respect to idA, for all A.

(2) Injectivity w.r.t. e and e′ implies, obviously, injectivity w.r.t. e′ · e.
(3) Injectivity w.r.t. e′ · e implies, obviously, injectivity w.r.t. e.

(4) Let X be e-injective and let f be an arbitrary morphism from the
domain of e′ to X

· e //

u

²²

·

v

²²
g

ºº/
//

//
//

//
//

//
//

//
//

//
//

//
//

//

· e′ //

f

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOO ·
h

ÂÂ?
??

??
??

??
??

??
??

??

X

The e-injectivity of X yields g with ge = fu, and the universal property
yields h with f = he′. 2

2.11. Example The above Injectivity Deduction System is not complete in
general. Indeed, consider the signature Σ consisting of a countable set of
nullary symbols a0, a1, a2, · · · and let E be the collection of all epimorphisms

en : I → I ′ in Alg Σ (n = 1, 2, ...)

such that I is the initial algebra and the kernel of en has one equivalence
class {aI

0, · · · , aI
n} and all other equivalence classes are singleton sets.

It is obvious that an algebra A is E-injective iff all the constants in A are
equal. Consequently, the trivial quotient

e0 : I → 1

has the property that

E |= e0.

Nevertheless

E 0 e0.

In fact, for every epimorphism

e : B → B′ with E ` e
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we see that

(1.1) The number of pairs i, j ∈ ω with aB
i 6= aB

j but aB′
i = aB′

j is finite.

Indeed, identity morphisms satisfy (1.1), and the collection of all morphisms
satisfying (1.1) is closed under composition, cancellation and pushout. Ob-
viously e0 does not satisfy (1.1).

2.12. Completeness Theorem Given a cowellpowered category A with col-
imits, the Injectivity Deduction System is complete in Afp. That is, for every
set E ∪ {e0} of epimorphisms in Afp,

E |= e0 implies E ` e0.

Proof Let E denote the set of all epimorphims e inAfp such that E ` e inAfp.
Clearly E contains all identity morphisms and is closed under composition
and pushout. By 2.3(a), E satisfies the calculus of fractions. By 2.10, E-
injectivity implies E -injectivity.

Given a logical consequence e0 : A → B of E in Afp, let rA : A → A∗ be
the E-injective reflection of 2.5. Since A∗ is e0-injective, we have a morphism
f with rA = f · e0.

Since B is finitely presentable, hom(B,−) preserves the filtered colimit
A∗ = ColimDA. Thus, f factorizes as f = e∗ · f ′, for some colimit morphism
e∗ : X → A∗ of DA:

A
e0 //

e
²²

B
f ′

}}||
||

||
||

f
²²

X
e∗

// A∗

The diagram DA is filtered and the colimit morphism e∗ : X → A∗ merges
the pair e, f ′ · e0 : A → X. Since A is finitely presentable, this implies the
existence of an object of A ↓ E (i.e., a morphism d : A → Y in E) and a
morphism g : X → Y such that g · e = d and g also merges the above pair.
Hence g · f ′ · e0 = d, and then

E ` d implies E ` e0,

by Cancellation in 2.8. 2

2.13. Remark (i) Our assumptions differ from those used by G. Roşu in [5]
for his completeness theorem: he only required the morphism e0 : A → B
to be finitely presentable as an object of the comma category A ↓ A, which
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is strictly weaker than our assumption that e0 and all morphisms of E have
finitely presentable domains and codomains. However G. Roşu assumed that
the domains of his epimorphisms are projective, which is a strong assumption
that our intended application (to quasivarieties) does not fulfill. Furthermore,
instead of composition in 2.8 G. Roşu uses “union” stating that a pushout of
two morphisms derived from E is derived from E . This follows clearly from
Pushout and Composition in 2.8. On the other hand, our formulation of the
pushout rule is somewhat more restrictive than that used by G. Roşu : in
applications of the above rule Pushout, e is any morphism derived from E ,
whereas Roşu’s rule works with e ∈ E .

(ii) Every cowellpowered category with colimits has a factorization system
(epi, strong mono), see [1]. Theorem 2.12 can be generalized to any co-
complete and E-cowellpowered category with a factorization system (E, M),
which is the approach taken in [5].

2.14. Example Here we demonstrate that in Completeness Theorem 2.12
we cannot weaken the assumptions that the domains and codomains of mor-
phisms E ∪ {e0} be finitely presentable to the assumption, used in [5], that
these morphisms are finitely presentable, as objects of the arrow category.

In fact, in the category Alg(Σ), where Σ consists of nullary symbols an, n ∈
N, we exhibit finitely presentable epimorphisms E ∪ {e} with

E |= e but E 0 e.

A Σ-algebra A is finitely presentable iff

(i) all but finitely many elements of A have the form aA
n , for some n ∈ N

and
(ii) there are only finitely many pairs m,n with aA

m 6= aA
n .

An epimorphism h : A → B in Alg(Σ) is finitely presentable iff there are
only finitely many pairs m,n with aA

m 6= aA
n and aB

m = aB
n .

Denote by 1 the terminal Σ-algebra, by I = {a0, a1, a2, · · · } the initial Σ-
algebra and by C the algebra C = {0, 1} having aC

0 = 0 and ai
C = 1 for all

i ≥ 1.
Let

e0 : C → 1

be the trivial epimorphism and for every k ≥ 1 define the quotient

ek : I → Ik = I/∼k

of I modulo the least congruence ∼k with ak congruent to ak+1.
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For

E = {e0, e1, e2, · · · }
an algebra is E-injective iff all constants of Σ in it are equal. Thus if

e : I → I/ ≈
denotes the quotient modulo the least congruence with a0 ≈ a1, we have that
E |= e.

We will prove that E 0 e by finding a set E of epimorphisms with

{idA|A ∈ Alg(Σ)} ∪ E ⊆ E but e /∈ E
which is closed under pushout, composition and left cancellation. This proves
that E contains all consequences of E , thus E 0 e.

Let E be the set of all epimorphisms g : B → B′ such that

(1) g is a finitely presentable morphism,
(2) if g(x) = g(x′) and x 6= x′ then x = aB

i and x′ = aB
j for some i, j, and

(3) if B is finitely presentable and aB
0 6= aB

j for all j ≥ 1, then aB′
0 6= aB′

j

for all j ≥ 1.

It is clear that E contains {idA|A ∈ Alg(Σ)} ∪ E but it does not contain e
(since e does not fulfil (3)).

a. E is closed under pushout. In fact, let

B
g

//

h
²²

B′

l
²²

D
f

// D′

be a pushout with g ∈ E . It is easy to see that, since g is finitely
presentable, so is f . Thus it remains to verify (2) and (3). By the
description of pushouts (in Set, hence in Alg(Σ)) f merges a pair of
elements x 6= x′ of D iff there exist the following zig-zag of elements
x = x0, · · · , xn+1 = x′ of D and elements y0, · · · , y2n+1 of B

y0 y1

||yy
yy

yy
yy

y

##FF
FF

FF
FF

F
y2

~~}}
}}

}}
}}

. . . y2n−1

##FF
FF

FF
FF

F
y2n y2n+1

yyssssssssss

%%JJJJJJJJJJ

x x1 . . . xn x′

such that xk = h(y2k−1) = h(y2k) for k = 1, ..., n, and g(y2k) =
g(y2k+1), with y2k 6= y2k+1, for all k = 0, · · · , n.
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To prove (2), let f(x) = f(x′) with x 6= x′ and let us choose a zig-zag
as above. Since g fulfils (2), the equality g(y0) = g(y1) implies y0 = aB

i

for some i, thus x = h(y0) = aD
i . Analogously with x′.

To prove (3), we assume that there exists a k ≥ 1 with aD′
0 = aD′

k , but
aD

0 6= aD
j , for all j ≥ 1, then we verify that D is not finitely presentable.

We have aB
0 6= aB

j , for all j ≥ 1, and we will prove that aB′
0 = aB′

l for
some l ≥ 1: it then follows that B is not finitely presentable, since g
fulfils (3). Consequently, there exist infinitely many pairs (u, v) with
aB

u = aB
v but u 6= v. For each such pair we have aD

u = aD
v , thus D is

not finitely presentable.
b. E is closed under composition. In fact, given two composable mor-

phisms

B
g

// B′ g′
// B′′

in E it is easy to see that g′ · g is finitely presentable. It fulfils (2)
because, given g′(g(x)) = g′(g(x′)) and x 6= x′, then either g(x) =
g(x′) and we apply (2) to g, or g(x) 6= g(x′) and then (2) applied to
g′ yields g(x) = aB

i and g(x′) = aB
j , and then, again, we apply (2) to

g. Finally, g′ · g fulfils (3): assume

aB′′
0 = aB′′

k for some k, but aB
0 6= aB

j for all j ≥ 1.

If aB′
0 = aB′

l for some l ≥ 1, then B is not finitely presentable due
to (3) applied to g. If aB′

0 6= aB′
l for all l ≥ 1 then B′ is not finitely

presentable, due to (3) applied to g′. The latter implies again that
B is not finitely presentable: recall that g : B → B′ is a finitely
presentable morphism, thus, B is a finitely presentable object iff B′ is
one.

c. E is closed under left cancellation. Given

B
g

// B′ g′
// B′′

with g′ · g in E , then g clearly fulfils (1) and (2). It fulfils (3) because
g′ · g does.

3. Logic of Implications
3.1. Assumption Σ denotes a finitary, one-sorted signature. We assume
a fixed countable set V of variables. A free Σ-algebra on a set W ⊆ V is
denoted by φ(W ).
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An equation is a pair of elements of φ(V ), notation: u = v. An implication
is a formal expression

P ⇒ u = v

where P is a finite set of equations.

3.2. Remark (a) If P = {s1 = t1, . . . , sn = tn} and {x1, . . . , xk} is the set of
all variables which appear in the implication, then the implication

I ≡ (P ⇒ u = v)

is a shorthand for the first-order formula

(∀x1) . . . (∀xk)

(
(

n∧
i=1

si = ti) ⇒ (u = v)

)
.

Thus a Σ-algebra A satisfies I iff for every interpretation of variables, i.e.,
every homomorphism f : φ(WI) → A, we have:

f(si) = f(ti) for i = 1, . . . , n implies f(u) = f(v).

(b) Below we work with a (non specified) finite set W ⊂ V of variables. Since
we always deal with finitely many implications at a time, some set W like
that is always sufficient.

3.3. Notation Given an implication

I ≡ (P ⇒ u = v),

we denote by ∼P the congruence on φ(W ) generated by the equations in P
with the corresponding quotient map

qP : φ(W ) → φ(W )/ ∼P .

And we denote by ∼I the congruence on φ(W ) generated by the equations
in P ∪ {u = v} with the corresponding quotient map

qI : φ(W ) → φ(W )/ ∼I .

We obtain a quotient map

eI : φ(W )/ ∼P −→ φ(W )/ ∼I

such that the triangle
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φ(W )
qP

xxqqqqqqqqqq qI

&&LLLLLLLLLL

φ(W )/ ∼P eI

// φ(W )/ ∼I

commutes.

3.4. Notation A substitution is a function assigning to every variable a term
or, equivalently, a homomorphism σ : φ(W ) → φ(W ′), for W, W ′ ⊆ V . We
write uσ instead of σ(u), and for every equation u = v we denote by (u = v)σ

the equation uσ = vσ; for every implication I ≡ (P ⇒ u = v) we denote by
Iσ the implication Pσ ⇒ uσ = vσ where Pσ = {eσ : e ∈ P}.
3.5. Remark It has been first observed by B. Banaschewski and H. Herrlich
[2] that a Σ-algebra satisfies an implication I iff it is injective w.r.t. the
regular epimorphism eI . And conversely: for every regular epimorphism e in
Alg Σ whose domain and codomain are finitely presentable, e-injectivity can
be expressed by a finite family of implications.

3.6. Deduction System for Implications Our deduction system consists
of two axioms

Axiom 1: {u = v} ⇒ u = v

Axiom 2: ∅ ⇒ u = u

and the following deduction rules

Symmetry: P ⇒ u = v
P ⇒ v = u

Transitivity: P ⇒ u = v, P ⇒ v = w
P ⇒ u = w

Congruence:
P ⇒ u1 = v1, . . . , P ⇒ un = vn

P ⇒ f(u1, . . . , un) = f(v1, . . . , vn)

for all n-ary symbols f in Σ.
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Invariance:
P ⇒ u = v
Pσ ⇒ uσ = vσ

for all substitutions σ.

Weakening: P ⇒ u = v
P ∪ {u′ = v′} ⇒ u = v

Cut:
P ⇒ u′ = v′, P ∪ {u′ = v′} ⇒ u = v
P ⇒ u = v

In all these axioms and rules u, v and w, with additional indices and
primes, denote arbitrary terms in φ(V ) and P denotes an arbitrary finite set
of equations.

3.7. Remark This deduction system extends naturally Birkhoff’s equational
logic (consisting of Axiom 2 and the first four deduction rules with P = ∅).
3.8. Notation For a given set E of implications and an implication I, we
write

E |= I

if I is a logical consequence of E, i.e., whenever an algebra satisfies all im-
plications in E, then it satisfies I. And we write

E ` I

if there exists a formal proof of I from E using the Deduction System 3.6.

3.9. Lemma The following deduction rules follow from 3.6:

(i) P ⇒ u = u

(ii) P ⇒ u = v if u = v is a member of P.

(iii) P ⇒ si = ti(i = 1, . . . , n), P ∪ {si = ti}n
i=1 ⇒ u = v

P ⇒ u = v

Proof (i) Axiom 2 and Weakening yield



LOGIC OF IMPLICATIONS 13

{u′ = v′} ⇒ u = u

which, using Weakening again, yields

{u′ = v′, u′′ = v′′} ⇒ u = u

etc.
(ii) Analogous to (i): use Axiom 1 and Weakening.
(iii) If n = 1, this is Cut. For n = 2 use Weakening and Cut to get

P ⇒ s1 = t1, P ⇒ s2 = t2, P ∪ {s1 = t1, s2 = t2} ⇒ u = v
P ∪ {s1 = t1} ⇒ s2 = t2, (P ∪ {s1 = t1}) ∪ {s2 = t2} ⇒ u = v
P ∪ {s1 = t1} ⇒ u = v

Another application of Cut gets the desired result

P ∪ {s1 = t1} ⇒ u = v, P ⇒ s1 = t1
P ⇒ u = v

Analogously for n ≥ 3. 2

3.10. Remark The rule 3.9(iii) has a stronger form, namely,

P ⇒ si = ti(i = 1, . . . , n), {si = ti}n
i=1 ⇒ u = v

P ⇒ u = v

In fact, from {si = ti}n
i=1 ⇒ u = v, we obtain P ∪ {si = ti}n

i=1 ⇒ u = v by
applying Weakening successively.

3.11. Lemma If P is a finite set of equations in φ(W ) then for every pair
u ∼P v of congruent terms we have a proof of P ⇒ u = v. Shortly

` (P ⇒ u = v) whenever u ∼P v.

Proof The relation R of all pairs (u, v) ∈ φ(W )×φ(W ) such that P ⇒ u = v
is reflexive by 3.9 (i). Using Symmetry, Transitivity and Congruence in 3.6
we conclude that R is a congruence on φ(W ). Since R contains P , due to
3.9(ii), it contains ∼P . Thus, u ∼P v implies uRv. 2

3.12. Lemma Given homomorphisms

φ(W )/ ∼P
f

²²

e // φ(W )/ ∼P∪Q

φ(W ′)/ ∼P ′
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for some finite sets of variables W and W ′ and some finite sets P ,Q and
P ′ of equations, where e is the canonical quotient morphism, there exists a
substitution σ : φ(W ) → φ(W ′) with

Pσ included in ∼P ′
such that the canonical quotient homomorphism e′ : φ(W ′)/ ∼P ′→ φ(W ′)/ ∼P ′∪Pσ∪Qσ

forms a pushout of e along f :

φ(W )/ ∼P
f

²²

e // φ(W )/ ∼P∪Q
²²Â
Â
Â

φ(W ′)/ ∼P ′
e′

// φ(W ′)/ ∼P ′∪Pσ∪Qσ

Proof For the given homomorphism

f : φ(W )/ ∼P−→ φ(W ′)/ ∼P ′
find a substitution σ such that the square

φ(W )
qP //

σ
²²

φ(W )/ ∼P
f

²²

φ(W ′) qP′
// φ(W ′)/ ∼P ′

commutes. (To do so, choose a function i splitting qp′, i.e., qP ′ · i = id. The
morphism

W
η

// φ(W )
qP // φ(W )/ ∼P f

// φ(W ′)/ ∼P ′ i // φ(W ′)

has a unique extension to a substitution, i.e., an homomorphism σ : φ(W ) →
φ(W ′) such that σ · η = i · f · qP · η. Composed with qP ′ this yields (qP ′ ·
σ) · η = (f · qP) · η, thus the square above commutes.) Observe that a
pushout of the quotient map eF : φ(W )/ ∼P−→ φ(W )/ ∼P∪{uj=vj , j∈J} along
f is a quotient map q : φ(W ′)/ ∼P ′−→ φ(W ′)/ ≈, where ≈ is the smallest
congruence containing ∼P ′ and such that q · f : φ(W )/ ∼P−→ φ(W ′)/ ≈
factorizes through eF . The latter condition implies that given t, s ∈ φ(W )
with eF · qP(t) = eF · qP(s) then q · f · qP(t) = q · f · qP(s). Now eF · qP is the
quotient map of ∼F and q · f · qP = q · qP ′ ·σ where q · qP ′ is the quotient map
of ≈. Thus, the latter condition states that

t ∼F s implies tσ ≈ sσ.
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In other words, ≈ is the smallest congruence containing P ′ and Pσ ∪ {uσ
j =

vσ
j , j ∈ J}. Thus, a pushout of e and f has the form

φ(W )/ ∼P e //

f
²²

φ(W )/ ∼P∪Q
g

²²

φ(W ′)/ ∼P ′
e′

// φ(W ′)/ ∼P ′∪Pσ∪Qσ

where e′ is the canonical quotient morphism.
Moreover Pσ is included in ∼P ′ because qP ′ · σ = f · qP implies that

given u = v in P then uσ ∼P ′ vσ. 2

3.13. Remark It is well known that the finitely presentable objects of Alg Σ
are precisely those isomorphic to the quotient algebras φ(W )/ ∼P where
W ⊆ V is a finite set of variables and P a finite set of equations in φ(W ).
And it is easy to verify that, analogously, the epimorphisms between finitely
presentable objects are precisely those isomorphic (in the arrow-category)
to the canonical quotient maps e : φ(W )/ ∼P→ φ(W )/ ∼P∪Q (where P
and Q are finite sets of equations in φ(W )). The set of all these canonical
epimorphisms is denoted by Efp. Taking into account that Efp is closed under
composition and left-cancellable, and using Lemma 3.12, it is obvious that
the Completeness Theorem 2.12 remains true if we apply it (instead of to all
epimorphisms of Afp) just to the set Efp.

3.14. Theorem The deduction system of 3.6 is sound and complete. That
is:

E |= I iff E ` I

for every set E of implications and every implication I.

Proof It is easy to verify the soundness.
To prove that 3.6 is complete, we use the completeness theorem of Section

2 and translate it to the deduction system 3.6. For doing so we are going to
work with finite nonempty sets F of implications having the same antecedent,

F = {P ⇒ u1 = v1, . . . , P ⇒ un = vn}.
We denote by F the set of all such sets F and put

PF = P and QF = {u1 = v1, . . . , un = vn}
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which are finite sets of equations in φ(W ) (for some finite set W ⊆ V of
variables).

An implication I ≡ (P ⇒ u = v) is considered as a member of F by
identifying it with the corresponding singleton set I. We write

F ` G (F, G ∈ F)

if every member of G can be derived from the finite set F by applying the
rules of 3.6.

For every F ∈ F we form the canonical epimorphism

eF : φ(W )/ ∼P−→ φ(W )/ ∼P∪Q
(where P = PF and Q = QF , we drop the index F whenever no confusion
can arise). This is consistent with Notation 3.3. Let A be the category
of Σ-algebras and let Afp be the category of finitely presentable algebras
of the form φ(W )/ ∼P , where W ⊆ V is a finite set of variables and P
is a finite set of equations (with ∼P denoting the congruence generated by
P). By Theorem 2.12 and Remark 3.13, the Injectivity Deduction System is
complete for epimorphisms in Efp, and we will use this completeness to prove
the present theorem by verifying the following:

(A) an application of the rules of 2.8 to morphisms eF1
, · · · , eFn

(Fi ∈ F)
always lead to a conclusion of the form eF (F ∈ F) with

n⋃

i=1

Fi ` F

and

(B) if eF = eF ′ (F, F ′ ∈ F) then F ` F ′.

By proving (A) and (B), the completeness of 3.6 follows: given a set E of
implications with a logical consequence I,

E |= I,

we know from Remark 3.5 that the injectivity w.r.t. eI is a logical conse-
quence of the injectivity w.r.t. Ê = {eÎ , Î ∈ E}. By the Completeness

Theorem 2.12 we conclude that a formal proof of eI from Ê exists in the
deduction system 2.8, that is, there are implications I1, · · · , In ∈ E such
that eI1

, · · · , eIn
` eI in Injectivity Deduction System. Due to (A), every

step in that proof is of the form eF for some F such that {I1, · · · , In} ` F .
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In particular, the last line, eI , is equal to some such eF , which by (B) im-
plies F ` I. Consequently, we obtain {I1, · · · , In} ` I, and thus E ` I, as
required.

The statement (B) follows immediately from 3.10 and 3.11.

Proof of (A). Our task is to prove for every rule of 2.8 that if the premises
have the form eF1

, · · · , eFn
then the conclusion has the form eF where ∪Fk `

F .
We proceed by inspecting the rules individually.

(1) Axiom. Suppose that eF is an identity morphism. Then the two con-
gruences ∼P and ∼P∪Q coincide, thus for each u = v in Q we have

u ∼P v

and Lemma 3.11 gives us ` P ⇒ u = v.

(2) Composition Rule. Let eF and eF ′ be two morphisms in Efp which
compose, with F and F ′ members of F:

φ(W )/ ∼PF∪QF
= φ(W )/ ∼PF ′

eF ′

++VVVVVVVVVVVVVVVVVV

φ(W )/ ∼PF

eF
44iiiiiiiiiiiiiiiii

e
// φ(W )/ ∼PF ′∪QF ′

Since PF ∪ QF generates the same congruence as PF ′, it follows that PF ∪
QF ∪QF ′ generates the same congruence as PF ′ ∪QF ′, consequently,

e = eF ′′

for

F ′′ = F ∪ {PF ⇒ u = v; u = v in QF ′}.
It is our task to prove that

F ∪ F ′ ` F ′′.

That is, given u = v in QF ′, we are going to derive the implication PF ⇒
u = v from F ∪ F ′.

Using Lemma 3.11 on any s = t in PF ′, we get

` PF ∪QF ⇒ s = t,

therefore,

F ` (PF ⇒ s = t) (for all s = t in PF ′)
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see 3.9(iii). Since for u = v in QF ′ we have, trivially,

F ′ ` (PF ′ ⇒ u = v)

we conclude (by Weakening) that

F ∪ F ′ ` (PF ′ ⇒ u = v) and F ∪ F ′ ` (PF ⇒ s = t) for all s = t in PF ′.

It follows from 3.10 that

F ∪ F ′ ` (PF ⇒ u = v)

as requested.

(3) Cancellation Rule. We are given a commutative diagram

φ(W )/ ∼P eF //

e
²²

φ(W )/ ∼P∪Q

φ(W )/ ∼P∪R
e′

66lllllllllllll

.

Then e = eF ′ for
F ′ = {P ⇒ u = v; u = v in R}.

We now have to prove that F ` F ′, i.e., for every u = v in R we have to
verify

F ` P ⇒ u = v.

Since eF = e′ · eF ′, we conclude u ∼P∪Q v, thus, by Lemma 3.11,

` P ∪ Q ⇒ u = v.

Therefore, 3.9(iii) yields
F ` P ⇒ u = v

as requested.

(4) Pushout Rule. Let

φ(W )/ ∼P eF //

f
²²

φ(W )/ ∼P∪Q
g

²²
φ(W ′)/ ∼P ′

e′
// B

(3.1)

be a pushout where F ∈ F (and we put PF = P and QF = Q), and e′ ∈ Efp.
By Lemma 3.12 we have a substitution σ with Pσ included in ∼P ′, and

e′ = eF ′ for F ′ = {P ′ ⇒ uσ = vσ; u = v in P ∪Q}.
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Thus, we need to show that F ` F ′. First for every u = v in P we have

` P ′ ⇒ uσ = vσ,

since u = v in P implies uσ ∼P ′ vσ, see Lemma 3.11. Secondly, for every
s = t in Q we verify

F ` P ′ ⇒ sσ = tσ.

In fact, from Invariance in 3.6 we know that

F ` Pσ ⇒ sσ = tσ

and since ` P ′ ⇒ uσ = vσ (for all uσ = vσ in Pσ), this yields by 3.10 the
desired statement F ` P ′ ⇒ sσ = tσ. Consequently, F ` F ′. 2
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Departamento de Matemática da Universidade de Coimbra, Apartado 3008, 3000 Coimbra,
Portugal

Lurdes Sousa
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