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Abstract 

 

Bayesian networks are powerful instruments to learn genetic models 

from association studies data, since they allow to derive the correlation 

between genetic markers and phenotypic traits, as well as the relationships 

between the markers themselves. However, learning Bayesian networks is 

often non-trivial due to the high number of variables to be taken into 

account in the model. Therefore, we developed a Matlab environment 

software tool, SNP2Net, which implements an approach based on 

classification trees to create an abstraction of the variable space that 

suitably reduces its dimensionality without losing information. Specifically, 

the SNPs (genetic variables in the model) related to the same gene are 

mapped to one meta-variable. 

The tool allowed testing the innovative approach on several datasets 

and, furthermore, to evaluate the phenotype predictive performance of the 

models built using this method. The results showed that the approach 

presented is able to derive a gene-based predictive model based on SNPs 

data, obtaining higher predictive performances than the single-SNP model. 

Such model is more parsimonious than the one based on single-SNPs, while 

preserving the capability of highlighting predictive SNPs configurations. 

The tool can then be applied to analyze the data coming from 

association studies, using genes as predictors for the phenotype, as a 

suitable alternative to haplotypes, which are often used as prediction 

factors, too. 
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Resumo 

 

As redes Bayesianas são instrumentos poderosos para aprender modelos 

genéticos de dados de estudos de associação, uma vez que a correlação 

entre marcadores genéticos e traços fenotípicos pode ser derivada, bem 

como as relações entre os próprios. No entanto, o aprendimento das redes 

Bayesianas é muitas vezes não-trivial, devido ao elevado número de 

variáveis que devem ser tidas em conta no modelo. Desta forma, 

desenvolvemos uma aplicação de software em ambiente Matlab, SNP2Net, 

que implementa uma abordagem baseada em árvores decisionais para criar 

uma abstracção do espaço de variáveis que reduz a sua dimensão de forma 

adequada, sem perder informação. Especificamente, os SNPs (variáveis 

genéticas do modelo) pertencentes ao mesmo gene são mapeados para 

uma meta-variável. 

A aplicação desenvolvida permitiu testar a abordagem inovadora em 

vários conjuntos de dados e, além disso, permitiu também avaliar o 

desempenho do método no que diz respeito à previsão fenotípica. Os 

resultados mostraram que a abordagem apresentada é capaz de extrair um 

modelo predictivo baseado em informação sobre genes a partir de dados de 

SNPs, obtendo desempenhos predictivos superiores aos obtidos pelo modelo 

baseado num único SNP. Este modelo é mais parcimonioso do que um 

modelo baseado em conjuntos de um único SNP, preservando 

simultaneamente a capacidade de destacar configurações de SNPs 

predictivas. 

A ferramenta pode então ser aplicada na análise de dados provenientes 

de estudos de associação, usando genes como factores predictivos do 

fenótipo, e sendo uma alternativa adequada aos haplotipos, que muitas 

vezes são também utilizados como elementos de previsão. 
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Introduction 

 

One of the most challenging goals of current biomedical research is to 

link the genotypic and phenotypic information generated by high-

throughput experimental technologies (Botstein & Risch, 2003). 

Nowadays, an investigator can sample hundreds of thousands of 

variables in parallel; thus, the traditional data inspection and analysis 

methods are quickly becoming inadequate. In an era in which an entire 

genome can be sequenced and annotated in a matter of days, ad-hoc 

analysis methods need to be developed in order to address the problems 

related with the statistical significance of the analysis results. These tools, 

however, should be easily accessible to the average researcher, facilitating 

the discovery process by providing high usability and effective automation. 

Therefore, the Biomedical Informatics has an increasingly crucial role, by 

developing the methods and tools that will allow researchers to bridge the 

gap between biomedical research and clinical applications. 

The objective of the work described in this thesis is to address the 

problems mentioned above, by developing a user-friendly software tool for 

supporting studies aiming at linking genotypic and phenotypic information. 

Specifically, the goal is to develop a tool for phenotype prediction, through 

an approach of Bayesian networks (BNs), using genotype data (SNPs) 

coming from Genome-Wide Association Studies (GWAS).  

BNs are a general modeling framework for knowledge representation, 

reasoning and probabilistic inference, and have been successfully applied in 

genetic analysis and association studies to study overt stroke in sickle cell 

anemia (Sebastiani, Ramoni, Nolan, Baldwin, & Steinberg, 2005). The 

complex association between phenotype and genetic factors can, in fact, be 

represented using a small number of parameters. However, learning these 

models from datasets with a high number of variables is often non-trivial. 

In our work we built a model that uses an abstraction of the variable 

space that suitable reduces its dimensionality without losing information. 

We present a new strategy to achieve this goal by mapping the SNPs 

related to the same gene to one meta-variable, by employing an approach 

based on classification trees (CTs). 
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Outline of the thesis 

 

This thesis is organized as follows: 

 Chapter 1 describes the scientific context in which the work takes 

place. Then a background section is provided, reporting the 

biological processes underlying the developed work. 

 Chapter 2 introduces the specific problem which the tool here 

presented aims to address: genome-wide association studies. 

 Chapter 3 presents the novel approach to find a new way of 

explaining genotype-phenotype correlation. In this the 

implemented algorithms to achieve this goal are described and 

discussed. 

 Chapter 4 describes SNP2Net at work: the developed tool, and the 

implemented options available to the user. 

 Chapter 5 presents a summary of main results obtained when 

testing SNP2Net on two different datasets. We also briefly discuss 

these results. 

 



1 - Scientific Context 

7 

1. Scientific Context 

 

The work developed and described in this thesis addresses a specific 

characteristic of the post-genomic era: the correlation of genotypic and 

phenotypic information. The availability of modern biological high-

throughput technologies and experiments is the basis of the emerging 

discipline of Biomedical Informatics, which may provide knowledge and 

tools for dealing with such an ambitious goal. In this context, the studies 

aimed at the so-called genetic dissection of complex traits represent a first 

crucial benchmark for Biomedical Informatics (Payne, Johnson, Starren, 

Tilson, & Dowdy, 2005) (Butte, 2008). 

In this first chapter, the basic concepts of molecular biology are reported 

with particular focus on the biological entity containing genetic information: 

DNA molecules. Then the fundamental concepts of Medical Genetics are 

introduced, addressing the relationship between the information contained 

in genes and the visible phenotypic traits. 

 

1.1. Linking genotype to phenotype 

 

The most visible consequence of the rapid and widespread adoption of 

high-throughput experimental technologies is an exponential increase of the 

amount of data produced by each experiments, from DNA sequencing to 

genotyping, to gene expression analysis, to proteomics, to high-level 

observations on genotype/phenotype correlations. It is therefore quite clear 

that scientific advances will depend on being able to turn experimental data 

into new knowledge, by combining, transforming and interpreting them in 

an automated way. This is an essential requirement for Systems Biology 

(Boyle, Cavnor, Killcoyne, & Shmulevich, 2008) (Philippi & Kohler, 2006), 

which investigates biological processes on a large scale, relying on the 

measurement and analysis of thousands of variables in order to elucidate 

the structure and behavior of complex biological systems. 

The emerging discipline of Biomedical Informatics will play an 

increasingly crucial role in modern biomedical research, by developing the 
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methods and tools that will allow researchers to fill the gap between 

biomedical research and clinical applications (Martin-Sanchez, et al., 2004), 

dealing with the ambitious goal of finding correlation between genotypic and 

phenotypic information (Botstein & Risch, 2003) (Lander & Stork, 1994). 

 

1.2. Biological Background 

 

This section introduces and defines biological terms used through the 

following chapters, and gives a brief explanation of the biological processes 

underlying the technological development discussed thereafter. 

 

1.2.1. The genome 

 

The cell is the structural unit of every living organism and they can be 

uni- or multicellular. Moreover, regarding the cell anatomy they can be 

prokaryotic, with no internal organelles, or eukaryotic, with a well defined 

nucleus. Is in the nucleus that is contained the genome, a structure 

keeping the biological information needed to the organism living. The 

genome is the entire content of genetic information, stored and encoded in 

DNA. 

DNA (deoxyribonucleic acid) is a polymer consisted of a pair of 

molecules, organized as strands held together by weak hydrogen bonds 

along their lengths, forming a double helical structure. Each strand is a 

chain of its structural unit, the nucleotide. The nucleotides are 

differentiated by a nitrogenous base, which can be adenine (A), cytosine 

(C), guanine (G) or thymine (T). Hydrogen bonding occurs between laterally 

opposed bases, base pairs, of the two strands of the DNA duplex according 

to Watson-Crick rules: adenine specifically binds to thymine (A-T) and 

cytosine specifically binds to guanine (C-G) (Watson & Crick, 1953). 
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Figure 1.1 On the left the chemical structure of DNA and the antiparallel nature of the 
two strands. The two strands are antiparallel because they have opposite directions for 
linking of 3′ carbon atom to 5′ carbon atom. On the right the double helical structure of DNA 

(Strachan & Read, 1999). 

 

The biological information contained in the genome is divided in main 

functional units, the genes (the zone between two genes is called 

intergenic region), that encode information to construct proteins, enzymes 

and other regulators. Gene expression, or simply expression, is the 

complex multi-step process by which the information encoded into a gene is 

used to produce the corresponding coded protein. 
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1.2.2. Human genome 

 

The human genome is almost all1 contained in the nucleus of each cell, 

comprises about 3.000.000.000 base pair (bp) and is divided in 24 linear 

molecules of DNA, each one contained in one different chromosome. 

 These chromosomes consist in 22 autosomal chromosomes and 2 

sexual chromosomes, X and Y. Most cells are diploid, i.e. have 2 copies of 

each autosomal chromosome plus the 2 sexual chromosomes (XX in female 

and XY in male individuals), in a total of 46 chromosomes. The sexual cells, 

gametes, have only one copy of each autosomal chromosome and 1 sexual 

chromosome (23 chromosomes). The bunch of chromosomes of an 

individual is called karyotype. Nowadays it is estimated that the human 

genome comprises about 80.000 genes, that consist however only 3% of 

the nuclear genome. 

 

1.2.3. Genetic variability: SNP 

 

The information for the proper living of cells (and thus of the living 

organisms) is contained on genes. 

The specific position where a gene is located inside the genome is 

called locus; the different possible forms of the gene are called alleles. The 

allele makeup of an individual is its genotype, while combinations of alleles 

at multiple loci that are transmitted together on the same chromosome are 

called haplotypes. The expression of an organism’s genes, as well as the 

influence of environmental factors and possible interactions between the 

two, result in observable characteristics of the organism, which is called the 

phenotype.  

Regarding their karyotype, human cells can be somatic diploid cells, 

containing two sets of homologous chromosomes (with parental and 

maternal origins), or haploid germinal cells (gametes), in which the process 

of meiosis halves the number of chromosomes. Therefore, meiosis 

represents the first level of genetic diversification: homologous parental 

                                       
1 A small portion of the genome (16.569 bp), called mitochondrial genome, is 

contained in the organelles that produce energy, the mitochondria, in the form of 

circular molecules of DNA (about 10 copies in each mitochondria). 
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chromosomes of a diploid cell are subjected to recombination, so that 2 

germinal cells are generated, each of which contains a chromatid2 made of 

genetic materials coming from both maternal and paternal chromosomes 

(Figure 1.2).  

 

 
 
 
Figure 1.2 Five possible gametes among the 223 possible combinations of genetic 

material coming from 2 homologous paternal and maternal chromosomes (Strachan & Read, 
1999). 

 

The fecundation process is the second level of genetic variability. 

During the fusion of the gametes, transforming the cell in a diploid cell 

again, there can take place the so-called crossing-over, i.e. the genetic 

material swap between maternal and paternal chromatids. 

These variability features are the bases of the scientific formulation of 

the genetic heritability developed by Gregor Mendel (1822-1884). He 

observed living organisms (originally pees plants) and tried to identify the 

variability of the observed traits through planned mating among the 

individuals of the species. He was in fact measuring allele frequencies. 

Observing the phenotype variation over the generations, the aim was to 

identify the genes involved and next localize them. Even in the absence of 

molecular validation tools, a first rough “map” of the genome was done, 

with an order of magnitude comparable to genes. 

                                       
2 A chromatid is one among the two identical copies of DNA making up a replicated 

chromosome; in other words, a chromatid is “one-half of a replicated 

chromosome”. 
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Then, during the XX century, the genome has been mapped with 

higher and higher resolution. In particular, the relation between genes 

mutations and some diseases have been found, as well as genes locations 

(Botstein & Risch, 2003). In 2000, the Human Genome Project made 

possible to decode the whole human genome (IHGSC, 2001) and provided a 

fine mapping at the level of single nucleotides, so that new genetic markers 

became available, in particular also within intergenic regions. 

Those new markers are called Single Nucleotide Polymorphisms, SNP 

(“snip”), and are natural variations affecting single nucleotides. SNPs are 

the most part of all variation elements in almost all genomes. In classical 

population genetics, loci are considered to be polymorphic if the frequency 

of the most common allele (a.k.a. wild-type) is lower than a threshold, 

commonly assumed to be 1% (Web 1). 

 

 

Figure 1.3 A Single Nucleotide Polymorphism: SNP (Web 2). 

 

SNPs are classified according to the nucleotide type and function3. If 

SNPs are located on the 5’ or 3’ regions, which are neither transcript (NTR) 

or traduced (UTR), within an intron or in intergenic regions they are called 

non coding. On the contrary, if they cause an amino acid substitution (and 

                                       
3 SNPs are divided in transitions, in which either a purin (A,G) became another 

purin or a piramidin (C,T) became another piramidin, and transversions, in which a 

purin became a piramidin and vice versa. 



1 - Scientific Context 

13 

then the protein translation) they are called coding SNPs. Or they may be 

synonymous SNPs (the transcript codon changes, not the amino acid). The 

two last ones may also alter gene functions by affecting regulatory 

mechanisms and they are particularly interesting because most of the SNPs 

are non coding and also because of the serious changes they cause on the 

normal behavior of many genes. 

 SNPs may allow the positional identification of loci involved in 

polygenic variation of the phenotype, the so-called quantitative trait loci 

(QTL). However, most of QTL effects may be due to SNP which have not yet 

been sequenced. In fact, the identification of significant variations in SNPs 

distributions between two groups of individuals showing different phenotypic 

variations is the aim of the association studies, which we will describe later 

in this chapter. 

 

1.2.4. Genotyping microarrays 

 

Genotyping provides a measurement of the genetic variation between 

members of a species. The challenge of the applications developed to detect 

SNPs, by hybridizing complementary DNA probes to the SNP site, is to 

reduce cross-hybridization between the allele-specific probes, what can be 

actually overcome by manipulating the hybridization stringency conditions 

(Rapley & Harbron, 2004). 

Hundreds of thousands of probes are arrayed on a small chip, 

allowing for many SNPs to be interrogated simultaneously, in high density 

(HD) oligonucleotide SNP arrays (Rapley & Harbron, 2004). Several 

redundant probes are used to detect each SNP, as a way to somewhat 

overcome the target DNA potential to hybridize to mismatched probes. In 

fact, this is due to the fact that SNP alleles only differ in one nucleotide and 

because it is difficult to achieve optimal hybridization conditions for all 

probes on the array. This approach consists in having the SNP site in 

several different locations as well as containing mismatches to the SNP 

allele. Then, it is possible to determine specific homozygous and 

heterozygous alleles by comparing the differential amount of hybridization 

of the target DNA to each of these redundant probes (Rapley & Harbron, 
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2004). Although oligonucleotide microarrays have a comparatively lower 

specificity and sensitivity, the scale of SNPs that can be interrogated is a 

major benefit. 

There are two main DNA arrays available today: those produced by 

Illumina (http://www.illumina.com) and those produced by Affymetrix 

(http://www.affymetrix.com). Illumina recently proposed new technologies 

with which more than 1.1 million markers can be sequenced per sample, 

with a median marker spacing of 1.5 kilo base (kb), by using a new 

generation of multi-sample Infinium HD products that support integrated 

SNP and copy number variation (CNV4) analysis. The Affymetrix Genome-

Wide Human SNP Array 6.0 is a single array that features more than 1.8 

million markers for genetic variation, including more than 906.600 SNPs 

and more than 946.000 additional probes for the detection of CNVs. 

 

                                       
4 A copy number variation (CNV) is a segment of DNA in which copy-number 

differences have been found by comparison of two or more genomes. The segment 

may range from one kilo base to several mega bases in size (Iafrate, et al., 2004) 

(Sebat, et al., 2004). 
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2. Genome-Wide Association Studies 

 

The research of genetic causes for many complex diseases requires 

the use of innovative and powerful strategies: in this chapter we introduce 

and describe alternative approaches to the classic Mendelian genetics, 

represented by the Genome-Wide Association Studies. After a background 

section on this kind of studies, we present graphical models to formalize the 

relations between genotype and phenotype, widely used in Bayesian 

networks as an application of statistical association evidence research. 

 

2.1. From Mendelian genetics to complex traits 

 

The work of Gregor Mendel signed the beginning of the quantitative 

biology, resulting in the classic genetics. He tried to understand the 

biological causes of the variations in the morphology of pees plants when 

mating them over several generations and proposed the existence of the 

nowadays called genes and built two laws: 

 The Law of Segregation states that when any individual 

produces gametes, the copies of a gene separate, so that each 

gamete receives only one copy. A gamete will receive one 

allele or the other. So, for each individual, the gene coding for 

a characteristic is present as a couple of alleles, one inherited 

from the father and the other from the mother; the allele that 

manifests in phenotype is the dominant allele, while the 

other is the recessive allele. 

 The Law of Independent Assortment, also known as 

"Inheritance Law", states that alleles of different genes assort 

independently of one another during gamete formation. 

This approach led to better and better comprehend the inheritance 

mechanisms, but it could not be applied to the Man species, because studies 

in human genome were not available yet. The discovery of new genetic 

variability elements enabled to come up with a methodology of inheritance 
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analysis in Man: the linkage analysis. Genetic linkage occurs when 

particular genetic loci or alleles for genes are inherited jointly, having a co-

segregation more frequent than they would have if they segregated in a 

completely casual way.  

 

 

Figure 2.1 Principle of linkage analysis. The top diagram shows paternal (blue) and 
maternal (red) chromosomes aligned in a germ cell, a cell that gives rise to eggs or sperm. 
Three DNA sequences are shown, labeled A, B and C. The capital letters represent the 
paternal alleles and the lower case letters represent the maternal alleles. The middle panel 

shows the physical process of recombination, which involves crossing over of DNA strands 
between the paired chromosomes. The bottom panel shows what happens when the 
crossover is resolved. The maternal and paternal alleles are mixed (recombined) and these 
mixed chromosomes are passed to the sperms or eggs. If A is the disease gene and B and C 
are genetic markers, recombination is likely to occur much more frequently between A and C 
than it is between A and B. This allows the disease gene to be mapped relative to the 

markers B and C (Web 3). 

 

The principle of linkage analysis is simple. All our chromosomes come 

in pairs, one inherited from our mother and one from our father. Each pair 

of chromosomes contains the same genes in the same order, but the 

sequences are not identical. This means it should be easy to find out 

whether a particular sequence comes from our mother or father. The 

linkage analysis indicates how much the distribution of the allelic 

frequencies departs from the second Mendelian law. This distribution is 
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reconstructed by positioning certain genetic traits along a family tree or 

pedigree: it is like reconstructing an experiment of laboratorial cross 

without the need of really perform it.  

 

 

 

Figure 2.2 Principal symbols used when drawing a pedigree. Representation of the pedigree of a 
trait controlled by dominant gene action (Web 4). 

 

This ability to determine the parental origin of a DNA sequence allows 

us to show whether recombination has taken place. As recombination occurs 

more or less at random, if there is a large distance between two DNA 

sequences on a chromosome, there is a good chance that recombination will 

occur between them and the maternal and paternal alleles will be mixed up 

(see A and C in Figure 2.1). In contrast, if two DNA sequences are very 

close together, they will recombine only rarely. The maternal and paternal 

alleles will tend to stay together (see A and B in Figure 2.1).  

Disease genes are mapped by measuring recombination against a 

panel of different markers spread over the entire genome. In most cases, 

recombination will occur frequently, indicating that the disease gene and 

marker are far apart. Some markers however, due to their proximity, will 

tend not to recombine with the disease gene and these are said to be linked 

to it. Ideally, close markers are identified to flank the disease gene and 

define a candidate region of the genome between 1 and 5 million bp in 
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length. The gene responsible for the disease lies somewhere in this region 

(Web 3).  

This kind of analysis doesn’t produce however evidence of association 

between genotype and phenotype in the cases of rare diseases, which small 

amount of available data weakens the statistical validation of the used 

method, or in the cases of non Mendelian diseases, those that do not 

present dominant or recessive inheritance attributable to a single locus. 

These diseases are defined as complex traits. In these cases it is not 

enough to perform linkage analysis, because the variations observed and 

measured are of the order of genes. 

Therefore, we next discuss the association studies as a way to 

overcome this problem. 

 

2.2. Genetic Association Studies 

 

Association studies (AS) aim to find statistically significant differences in 

the distribution of a set of markers (the frequency of SNP alleles or 

genotypes) between a group of individuals showing a trait of interest (the 

cases) and a group of unrelated individuals who do not exhibit the trait (the 

controls) (Balding, 2006) (Cordell & Clayton, 2005). The fact that the 

presence of the SNP may enhance the risk of disease is indicated by an 

increase of the frequency of a SNP genotype or allele in cases compared 

with controls. However, it is not trivial to consider a genetic difference 

between cases and controls as directly linked to the disease of interest and 

not to other factors. One fundamental problem is that the genome is so 

large that patterns that are suggestive of a causal polymorphism could well 

arise by chance. In fact, as represented in Figure 2.3Figure 2.3, association 

may arise due to three main reasons: 

 The association is mono-genic and it is verifiable all over the 

population because the target allele is the cause of the disease 

(Mendelian disease). 
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 The target allele is in linkage disequilibrium5(LD) with the 

causal variant but it is not the direct cause of the disease. 

 The difference in frequencies due to the presence of subgroups 

of different ethnical origin (population stratification) can lead to 

fake association. 

 

 

Figure 2.3 Different type of association (Balding, 2006). 

 

Thus, to help distinguish causal from spurious signals, tight standards 

for statistical significance need to be established. The next sections address 

the tests of association, based on single-SNPs and haplotypes. 

 

2.2.1. Single-SNP association 

 

Because of the computational problems in analyzing such large 

datasets as those used in GWA studies, single-SNP tests remain the primary 

statistical tool used for this kind of analysis. In case-control studies, the 

most natural analysis of SNP genotypes and case–control status is to test 

the null hypothesis of no association on the data consisting of counts of the 

number of alleles (allele A and B) or genotypes (the two homozygotes and 

the heterozygote, AA, BB and AB) among cases and controls. The resulting 

2x2 or 2x3 contingency tables can be directly analyzed using, among 

others, a Pearson chi-square test (with 1 or 2 degrees of freedom 

respectively for the allelic or genotypic association tests): 

                                       
5 The Linkage Disequilibrium is the statistical association within gametes in a 

population, of the alleles at two loci. It can be due to linkage, but it can also arise 

at unlinked loci; for example, because of selection or non-random mating. 
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where  is the number of cases for the -th state,  is the expected 

number of cases if  is true (null hypothesis), and  is the number of 

possible states of the categorical variable to be tested. 

If we perform association tests on a set of SNPs covering the whole 

genome, we are performing a Genome-Wide Association Study, which is 

particularly helpful when there is little or no a priori information about the 

location of the genetic cause of the phenotype of interest.  

While in the case of association of a single-SNP the significance level 

 ensures the test significance, in GWAS it could lead to mistaken results, 

since hundreds of thousands of SNPs are tested at the same time. Even 

though each SNP is analyzed independently, some recognition of multiple 

testing is necessary. Considering, for example, a GWAS using a 500K array 

(500.000 SNPs) and the standard 5% level of significance for biomedical 

tests, we would have  SNPs wrongly associated 

to the trait. A generally used strategy to overcome this problem is to use 

the Bonferroni correction, defining the appropriate significance level  for 

each single test as follows: 

 

where  is the number of considered SNPs. By applying this kind of 

correction we obtain a re-scaled significance level ’ ( ’ = 0.05/500.000 = 

1*10-7) to be applied to each single test of a 500K SNPs GWAS dataset. 

 Although the power of GWAS is often low, they represent useful 

instruments to pinpoint areas of the genome that may contain candidate 

genes, and to guide a subsequent, more targeted analysis step. Since the 

number of known, well characterized genetic markers in the human genome 
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is increasing, the genome-wide approach represents an increasingly cost 

effective way of generating testable research hypotheses. 

 

2.2.2. Multilocus analysis: haplotypes association 

 

As seen before, association studies commonly test a series of SNPs 

within a candidate gene, one at a time, so that each marker is analyzed 

independently. These tests can suffer from problems that are associated 

with many predictors. Despite of the Bonferroni correction application to 

overcome the multiple testing issue, the results from each test may not be 

independent if the tested SNPs are in linkage disequilibrium. 

So, analysis methods based on single-SNPs have limited power to 

detect a true genetic effect that requires a specific allele at several SNPs, 

that may be detected with a strategy suggested by the block-like structure 

of the human genome, using haplotype-based methods. This approach tries 

to capture the correlation structure of SNPs in regions of little recombination 

by analyzing all SNPs concurrently. 

An immediate problem is that haplotypes are not observed; they 

must be inferred instead, leading to some uncertainty when assessing the 

significance of the tests.  

The simplest analysis on haplotypes is to test for independence in a 2 

x k contingency table, where k is the number of distinct haplotypes, using 

the described techniques. 

Several problems still exist when performing haplotype-based 

analyses. What should be done about rare haplotypes? Including them in 

analyses can lead to loss of power because there are too many degrees of 

freedom. How should similar but distinct haplotypes that might share recent 

ancestry be accounted for? Both might carry the same disease-predisposing 

variant but simple analyses will not consider their effects jointly and might 

miss the separate effects. Another problem with defining haplotypes is that 

block boundaries can vary according to the population sampled, sample 

size, SNP density and block definition. Often some recombination events 

can occur within a block, and conversely there can be between-block LD 

that will not be exploited by a block-based analysis. 
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Although haplotype analysis seems to be a natural approach, it might 

ultimately confer little or no advantage over analyses of multipoint SNP 

genotypes. 

 

2.2.3. Multivariate approaches: proposed method 

 

The methods described above do not include interaction analysis and 

other similar approaches capable to grasp the effect of interactions and 

across-genome combinations, rather than the major effect of single-SNPs or 

(despite more importantly) the major contribution of a specific haplotype in 

a locus. 

So, a suitable alternative to the use of both single-SNP and 

haplotype-based association may be the use of a multivariate approach that 

takes into account the experience of gene annotation. This approach tries to 

exploit some biological knowledge, by taking into account the SNPs 

annotation to the corresponding gene and use genes as markers. 

In the next chapter we describe the details of the proposed method 

and we also present some encouraging results about the utility of the 

approach. 
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3.  The proposed method: gene-based networks 

 

As seen before, genetic association studies are a powerful method to 

assess correlations between SNPs and traits differences occurring in a 

population. Once high-throughput technologies (section 1.2.4) allow 

performing these studies at a genome wide level, it is possible to take into 

account hundreds of thousands of different SNPs (Hirschhorn & Daly, 2005) 

but learning predictive models from such huge sets of data is often non-

trivial due to the high number of variables (McCarthy, et al., 2008), with 

respect to the instances of the dataset. So, together with representing 

complex associations between phenotype and SNPs, finding the relations 

between the SNPs themselves can be extremely interesting and permits to 

highlight the genes associated to the phenotype allowing an abstraction of 

the variable space that suitably reduces its dimensionality without losing 

information. In this way, it is possible to identify how genes affect the 

phenotype by building a more parsimonious model with more easily 

interpretable connections between variables. 

Therefore, the basic strategy applied is made of the following main 

steps: 

1. Candidate SNPs and candidate genes selection, from genetic 

association studies. 

2. Mapping SNPs to genes (positional annotation) and generation of 

meta-variables (each one representing a gene). Assignment of 

values to genes in order to use them as predictors by using an 

approach based on classification trees for the set of SNPs mapping 

to the same gene and this way identifying the most relevant 

combination of SNPs values to predict the phenotypic status. 

3. Learning gene-based Bayesian networks for phenotype prediction, 

in which the nodes are the genes and the phenotypic status. Every 

gene has a number of states which is a minimal subset of the 

Cartesian product of the values of each gene SNPs. 

Aiming to predict the phenotype of the individuals, the model learned 

from data is then used to do inference and estimate the probability of a 

phenotypic trait given the genotype of an individual, represented as a 
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suitable collection of attributes (SNPs and genes). The classification 

accuracy (CA) of the BN inferred on genes is quantitatively assessed and 

compared with that achievable with a BN built using single-SNPs for the 

same data (Malovini, Nuzzo, Ferrazzi, Puca, & Bellazzi, 2009). 

This approach has already been applied on arterial hypertension (AH) 

and led to the published paper Phenotype forecasting with SNPs data 

through gene-based Bayesian networks (Malovini, Nuzzo, Ferrazzi, Puca, & 

Bellazzi, 2009), in which it was shown that in fact meta-variables can really 

summarize the relationships between genes and phenotype without losing 

information. This way, using genes as predictors for the phenotype can be a 

suitable alternative to haplotypes, which are on the contrary frequently 

used also as prediction factors. 

So, in this chapter we describe the main steps of the approach, from 

the SNPs and genes selection, through the Classification Tree learning on 

genes to the Bayesian network learning on both SNPs and genes datasets. 

Finally, we point the limitations of the approach and the specific objectives 

of the work developed in this thesis. 

 

3.1. SNPs and genes selection 

 

Using PLINK software (Web 5) it is possible to perform some standard 

preliminary analyses by calculating: i) genotyping/missing rate statistics 

(removal of samples and SNPs with missing rate > 10%); ii) minor allele 

frequency (MAF) (removal of SNPs with MAF < 1%); iii) Hardy Weinberg 

Equilibrium (removal of SNPs deviating from the Hardy Weinberg 

Equilibrium (p-value < 0.001) in the control population). In order to identify 

and remove genetic outliers, we also perform a multidimensional scaling 

plot (MDS plot) and a neighbours plot, based on the genome-wide identity-

by-state (IBS) information. After this pre-processing phase, we perform 

both allelic and genotypic association tests (see section 2) to compare 

frequencies distribution between cases and controls in order to select only 

top-significant SNPs after the selection of an appropriate significance 

threshold (p<1*10-4, corrected with permutation tests). To perform a 

positional annotation on the top associated markers we use Genephony, an 
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online tool for genomic dataset annotation (Web 6): one SNP is annotated 

to a certain gene if it is located in a 10Kb region around the coding 

sequence. After performing all the association tests we export the 

genotypes corresponding to the selected top-ranked SNPs and get, in 

output, two files: the PED file (.ped file) and the MAP file (.map file). The 

PED file has six descriptive columns: Family ID, Individual ID, Paternal ID, 

Maternal ID, Sex and a Phenotype column, a categorical affection status like 

“non-affected” or “affected” (values 1 and 2 respectively) for a certain 

disease and genotypes corresponding to the SNPs. From column 7th 

onwards we have genotypes corresponding to the SNPs, coded as A, C, G or 

T. By default, the missing genotype character is 0. An important note is that 

all SNPs have two alleles specified or both alleles are missing (i.e. 0 0). 

Concerning the MAP file, each row describes a single-SNP and contains 

exactly four columns: chromosome (coded in 1 to 22, X, Y or 0 if unplaced), 

SNP identifier, genetic distance (genetic distance is a measure of the 

dissimilarity of genetic material between individuals, presented in 

centimorgan6) and base-pair position (bp units). Each row in the MAP file 

corresponds to one column on the PED file. We use the MAP file as the input 

for Genephony and in the output we get the genes annotation (annotated 

MAP file) containing both SNPs and genes identification. 

 

Family ID 
Individual 

ID 

Father 

ID 

Mother 

ID 
Sex Phenotype 

SNP 

A 

SNP 

B 

SNP 

C 

SNP 

D 

SNP 

E 

ipert10001c ipert10001c 0 0 2 1 1 3 2 2 3 

ipert10002c ipert10002c 0 0 2 1 1 1 3 1 3 

ipert10003c ipert10003c 0 0 1 2 3 2 2 1 1 

ipert10004c ipert10004c 0 0 1 1 2 2 3 1 2 

ipert10006c ipert10006c 0 0 2 2 1 2 1 2 1 

 

Figure 3.1 Representation of the PED file. 

                                       
6 In genetics, a centimorgan (abbreviated cM) or map unit (m.u.) is a unit of 

recombinant frequency for measuring genetic linkage. It is often used to imply 

distance along a chromosome. The number of base-pairs it corresponds to varies 

widely across the genome (different regions of a chromosome have different 

propensities towards crossover). One centimorgan corresponds to about 1 million 

base pairs in humans on average (Scott, et al., 2004). 
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Chromosome SNP ID Genetic distance Base-pair position 

1 SNP A 0 46853252 

1 SNP B 0 46853328 

1 SNP C 0 111571946 

1 SNP D 0 111597206 

2 SNP E 0 46247319 

 

Figure 3.2 Representation of the non-annotated MAP file. 

 

 

Chromosome SNP ID Genetic distance Base-pair position Gene ID 

1 SNP A 0 46853252 Gene 1 

1 SNP B 0 46853328 Gene 2 

1 SNP C 0 111571946 Gene 1 

1 SNP D 0 111597206 Gene 1 

2 SNP E 0 46247319 Gene 2 

 

Figure 3.3 Representation of the annotated MAP file. 

 

 

Note that the grey header lines in both files don’t exist in the real 

PED and MAP files coming from PLINK (Web 5) and Genephony (Web 6). We 

merge this PED and MAP files in one single file, eliminating the unnecessary 

columns and so creating our original SNPs dataset, containing n examples in 

rows, the phenotype c and v SNP genotypes in columns. The final SNPs 

dataset is represented in Figure 3.4. 

 

 

 

 



3 – The proposed method: gene-based networks 

27 

Original dataset:     SNPs 

 Gene 1 Gene 2 Gene 1 Gene 1 Gene 2 

Status SNP A SNP B SNP C SNP D SNP E 

1 a1 b3 c2 d2 e3 

1 a1 b1 c3 d1 e3 

2 a3 b2 c2 d1 e1 

1 a2 b2 c3 d1 e2 

2 a1 b2 c1 d2 e1 

 

Figure 3.4 Final SNPs dataset, with the genotypes and the genes annotation. 

 

 

3.2. Meta-variables generation: Classification Trees 

 

Having selected our dataset with  examples, a class  and  variables 

(as many as the number of selected SNPs), we want to convert it into a new 

meta-dataset containing the same number of examples , the same class  

but only  new meta-variables (as many as the number of selected genes). 

Each meta-variable (gene) shall contain, for each example, the information 

from all gene mapping SNPs values for that example. 

 

Meta-dataset:     Genes 

Status Gene 1 Gene 2 

1 g2 f3 

1 g4 f3 

2 g3 f1 

1 g4 f2 

2 g1 f1 

 

Figure 3.5 Meta-dataset with one column for each gene present in the SNPs dataset. 

 

We do this by learning a Classification Tree (CT), one of the most widely 

used classification tools (Mitchell, 1997). 
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By definition, classification is the task of learning a target function f that 

maps an input attribute set  into its predefined class value  (Tan, 

Steinbach, & Kumar, 2006).  

The learned classification model can be either predictive or descriptive. 

Descriptive models are those able of distinguish examples of different 

classes and explain what combination of features values define each class. 

Predictive models aim at predicting the class of unknown examples. In fact, 

our input is a collection of SNPs and we want to both describe data and 

predict unknown genotype values. The learning algorithm is employed to 

identify a model that best fits the relations between the attribute set and 

the class of the input data and its main goal is to build a model with good 

generalization capability (Tan, Steinbach, & Kumar, 2006). 

There are three different types of nodes in the classification tree: 

 The root node that has no incoming edges and zero or more 

outgoing edges. 

 Internal non-leaf nodes, each of which has exactly one incoming 

edge and two or more outgoing edges. 

 Leaf nodes, which have exactly one incoming edge and no 

outgoing edges. 

Accordingly, each SNP in the dataset is represented by a non-leaf or 

interior node, which is associated with a test on the value (genotype) of 

that SNP; at the beginning of the process there is only the root node, 

containing the original set, with all examples and all SNPs. Each leaf node is 

assigned a class value (phenotype). So, classifying a test example is 

straightforward once a classification tree has been built. Starting from the 

root node we apply the test condition on each node to the example and 

follow the appropriate branch based on the outcome of the test, leading us 

either to another internal node, for which a new test condition is applied, or 

to a leaf node. Thereby, the path from the root to the final leaves give us 

the combination of the SNPs values that we expect to be able to correctly 

predict the phenotype for each example. 
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3.2.1. C4.5 algorithm 

 

There are different available algorithms to learn a classification tree from 

a dataset. Recursive partitioning enables to create a classification tree that 

intends to correctly classify examples of the population based on several 

dichotomous dependent variables. The method presents several 

advantages: it provides a simple and intuitive method for classification, it 

may identify nonlinear relationships and it considers prior probabilities and 

penalties for misclassification during its attribute selection process.  

In applying this strategy, we use an implementation of the C4.5 

algorithm (Quinlan, 1993) (Witten & Frank, 2000) to learn a classification 

tree for each gene, separately. We recursively split the source set in each 

node into successively purer subsets based on the most informative SNP 

value test, i.e. the SNP that better separates instances with respect to their 

class value. The algorithm provides a method for specifying the SNP 

splitting condition test, discussed later in this section. 

If, in one node, the most informative SNP has three possible values (1, 2 

and 3) the algorithm will create three child nodes, each one containing the 

examples in which the splitting SNP (corresponding to the parent node) has 

the value 1, 2 or 3 respectively. In the new node, the most informative SNP 

for the “parent set” is no longer present and the new most informative SNP 

is chosen among the other SNPs of the “child set”. 
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Figure 3.6 Example of recursive partitioning, strategy used in the C4.5 algorithm. 

 

So, for every possible value of that SNP, there is a branch descending to 

a child, corresponding to a logical conjunction (AND). It is also possible to 

use disjunctions (OR) to join two or more paths together, as long as they 

lead to the same classification result. 

This process is repeated on each derived subset until the recursion is 

completed: when splitting is either non-feasible (all the examples in the 

node have identical SNPs values) or the same classification can be applied 

to each example of the derived subset (if all the examples in one node have 

the same class value regardless of the SNPs values, it is possible to split the 

data again but it will be useless because the classification cannot be 

improved). On both cases, the node is declared a leaf node with the same 

class value as the majority class of the examples associated with this node. 

Thus, a leaf node represents the phenotype given the values of the SNPs 

represented by the path from the root and is assigned a class value. 

Therefore the path going from the root node to a leaf node can be described 

with a classification rule of the kind “IF SNP C2 = BB AND (SNP C1 = Aa OR 

http://en.wikipedia.org/wiki/Recursion
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SNP C1 = aa) THEN Phenotype = affected” that allow the classification of 

each example. 

In a more intuitive way for health care providers, we can say that 

recursive partition creates a rule such as “If a patient has findings x, y, or z 

then probably he/she has disease q”. 

 

Figure 3.7 Example of a classification tree obtained by recursive partition. The path from 

the ROOT to a leaf node creates a rule IF … THEN. 

 

CTs can be very large and complex; when complexity increases they are 

susceptible to a phenomenon known as overfitting. To soften the data 

overfitting we use a couple of pruning techniques, some of them provided 

by the implementation of the algorithm. Pruning helps by trimming the 

branches of the initial tree in a way that improves the generalization 

capability of the classification tree (Tan, Steinbach, & Kumar, 2006). 

Overfitting and pruning are discussed later, in section 3.3. 
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Choosing the best split 

 

There are many measures that can be used to determine the best 

way to split the examples set in one node of the classification tree, where 

all of them are based on the class distribution of the examples before and 

after splitting: entropy, Gini index or classification error.  

Regarding the information theory, some information, , is needed to 

classify an object. Once we know the value of the attribute, we only need a 

certain amount of residual information to perform the classification, . 

So, the most informative attribute is that minimizing the value of , i.e. 

maximizing the Gain of the attribute. 

 

     Equation 3.1 

 

Given an example with  the probability of occurrence, the associated 

information is: 

 

          Equation 3.2 

 

 

The mean amount of information (in bits) necessary to classify an 

object (assigning one of  values for the class) is given by the measure of 

the object entropy: 

 

       Equation 3.3 

 

After using the attribute , the examples set  is divided in subsets 

according to the values of , . The residual information of the attribute, 

 is the weighted sum of the information  in each subset. 

 

     Equation 3.4 
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     Equation 3.5 

 

The most informative attribute is chosen as the one having the higher 

Gain value. 

However, impurity measures such as entropy (the same for Gini 

index) tend to favor attributes that have a large number of distinct values. 

These attributes divide the set S in many subsets, which is not desirable 

because the number of examples associated with each partition is too small 

to enable us to make a reliable prediction. A possible solution is the one 

applied in the C4.5 algorithm that is based on a splitting criterion known as 

gain ratio or normalized information gain (difference in entropy) to 

determine the goodness of a split. 

The amount of information necessary to determine the value of an 

attribute is: 

 

        Equation 3.6 

 

And so, the information gain ratio is defined as following: 

 

  Equation 3.7 

 

With this corrected measure, if an attribute produces a large number of 

splits, its split information will also be large, which in turn reduces its gain 

ratio. 

 

3.3. Model overfitting and pruning 

 

A classification model can produce training errors and generalization 

errors. Training errors represent the number of misclassification errors on 

training examples, i.e. in those examples used to learn the model. On the 

other hand, generalization errors are those expected of the model on 
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previously unseen examples, i.e. new data. A model that fits the training 

data too well can have a poorer generalization error than a model with a 

higher training error, incurring in the so called overfitting phenomenon. 

Usually, increasing the model complexity reduces the training error of 

the model as, for example, the leaf nodes of the tree can be expanded until 

perfectly fitting the training data. However, in this case the generalization 

error can be large because the tree may contain nodes that accidentally 

cover some noise points in the training data, and so degrading the tree 

performance. Thereby, the overfitting phenomenon may be due either to 

the presence of noise, i.e. misclassified examples in the training data, or to 

lack of representative samples, i.e. classification models based on a small 

number of training examples (Tan, Steinbach, & Kumar, 2006). As the 

model does not have access to the test set before its construction, it does 

not know how well the tree will perform on unseen examples. 

Nevertheless, as said before, overfitting of data can be avoided using 

some pruning strategies, improving the tree’s classification ability on new 

data.  

Pre-pruning approaches stop the tree-growing algorithm before 

generating a fully grown tree that perfectly fits the entire data. This can be 

done by applying a threshold to the gain of the impurity measure, below 

which the node is not expanded and it remains a leaf node. Even though 

overly complex subtrees can be avoided, it is difficult to choose the right 

threshold. High thresholds can result in myopic models that do not describe 

well the data, while too low thresholds may not overcome the overfitting 

problem. As so, we choose not to apply any pre-pruning but only post-

pruning strategies. 

With a post-pruning approach the classification tree initially grows to its 

maximum size. Then, we apply a bottom-up trimming. If a leaf node or 

subtree leads to a negligible improvement in the classification performance 

it can be discarded, making the tree smaller. When a leaf is removed, either 

the parent node turn into a leaf node containing all the examples present in 

the removed leaf if there weren’t more leaves on that node, or the 

remaining leaves are also checked for pruning, according to previously 

defined pruning criteria. The new leaves are assigned the majority class of 

the examples affiliated with the subtree or lower level leaf. The tree-pruning 
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terminates when no further improvements are observed. So, in order to 

prune the tree we apply the following criteria: minimal error pruning 

strategy, minimum number of instances in leaves and maximum number of 

states for each gene. 

 

3.3.1. Minimal Error Pruning 

 

Minimal Error Pruning (MEP) is a bottom-up pruning strategy that 

estimates the error on new data directly from the growing-set (the data 

used for building the tree) and so it doesn’t need a pruning set like other 

strategies. MEP uses Bayesian method for probability estimation (either 

Laplace or m-estimate) and it prunes the tree so that estimated 

classification error is minimal (Niblett & Bratko, 1986). 

If  is the error of the tree T we have to decide whether to prune or 

not in each node v with subtrees T1, T2 and T3. 

First we define the static error at node   

 

         

 Equation 3.8 

 

where  is the most likely (preferred) class at . If T is pruned at  then 

 

           Equation 3.9 

 

 If T is not pruned at  than its (backed-up) error is 

 

     

 Equation 3.10 

 

So we prune T on node  if the static error on  is equal or less than 

the backed-up error on the subtree, which means the subtree does not 

improve the performance of T. If the tree is pruned in , the node turns into 
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a leaf with the class assigned being the majority class on the node itself. 

Accordingly, we define the error  as: 

 

      Equation 3.11 

 

We use m-estimate of probability to estimate static errors   on 

nodes. 

At node  we have N examples,  possible values for the class and 

 the number of examples associated to the non-majority class (these 

examples are misclassified). Then, using m-estimate we can compute the 

static error on node  as 

 

         Equation 3.12 

 

where  is the priory probability of the non-majority class value and m is 

a non-negative parameter. 

 It’s important to note that: m-estimate takes into account prior 

probabilities; this way pruning is not sensitive to number of classes.  In the 

presence of few noisy data we can set m to small values, leading to little 

pruning. On the contrary, if our data is highly noisy we must choose a high 

m, leading to much pruning, to avoid overfitting of the data. 

 

3.3.2. Minimum number of instances in leaves 

 

After the MEP step, it is possible that there are still some leaves with 

few examples that can lead to a poorer performance of the classification 

tree, due to the fragmentation problem. As the number of examples may be 

too small to make a statistically significant classification of the class 

representation of the leaves nodes, we remove leaves containing less than a 

threshold number of examples (usually a percentage of the total number of 

examples in the dataset). By doing this, we avoid that noisy examples 
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accidentally define a classification rule that would not be useful when 

predicting previously unseen examples of new data. 

 

3.3.3. Maximum number of leaves 

 

As an additional option to avoid the overfitting of data caused by too 

large and complex trees, we check the final number of leaves after the 

previous two pruning steps. If the number of leaves is higher than a certain 

threshold (once again this is a parameter chosen by expertise) we cut the 

subtree with the lowest number of instances and its parent node turns into 

a leaf, just like in the MEP step. 

 

3.4. Characteristics of Classification Trees 

 

 Many data mining methods are available; so, why one should use 

CTs? 

Classification trees are easy to interpret and, in fact, with a brief 

explanation people are usually able to understand them. Even though, 

classification tree accuracies are also comparable to other more complex 

and expensive classification techniques. 

The presence of redundant attributes does not adversely affect the 

accuracy of classification trees. An attribute is redundant if it is strongly 

correlated to another attribute in the data. One of the two redundant 

attributes will not be used for splitting once the other attribute has been 

chosen. However, if the dataset contains many irrelevant attributes, i.e., 

attributes that are not useful for classification, then some of them may be 

accidentally chosen during the tree-growing process, making the tree larger 

than necessary. Feature selection techniques during pre-processing phase 

can help to improve the accuracy of classification trees by eliminating the 

irrelevant attributes. 

Techniques developed for constructing decision trees are computationally 

inexpensive, making it possible to quickly construct models even when the 

dataset is very large. Large amounts of data can be analyzed using personal 

computers in a reasonable amount of time. CTs are quite robust to the 
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presence of noise, especially when applying methods for avoiding 

overfitting.  

Thereby, using CTs to generate meta-variables can be a suitable 

method, regarding the data structure and the analysis goal. 

 

3.5. Meta-variables states assignment 

 

Having a set of SNPs annotated to one gene, we run the classification 

tree and we obtain a set of classification rules for these data, one rule for 

each leave of the pruned tree. Then we consider the antecedent of each rule 

as a meta-state. So, the possible values that the gene variable can assume 

are the set of all rules obtained from the classification tree. 

Next, in order to use genes to learn Bayesian networks, we create a 

new column for the gene variable and we assign one of the possible gene 

meta-states to each example. This procedure is performed by analyzing all 

meta-states and testing which of the combination of SNPs values match the 

real SNPs values in the original dataset, i.e. we search for the meta-state 

that covers each example and assign it to the correspondent example line. 

So, at the end, we will have a new dataset, with the same number of 

examples but a much smaller dimension with respect to the number of 

attributes. 
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3.5.1. An example 

 

Considering gene 1, the classification tree is learned from the set of 

SNPs A, C and D. 

 

Original dataset:     SNPs 

Status 
Gene 1 Gene 1 Gene 1 

SNP A SNP C SNP D 

1 AA Cc Dd 

1 AA cc DD 

2 aa Cc DD 

1 Aa cc DD 

2 AA CC Dd 

 

 

 

Figure 3.8 Illustration of classification tree learning and derivation of the rules. 
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 So, we obtain the following meta-states from the set of classification 

rules derived: 

State 1: SNP C = CC 

State 2: SNP C = Cc AND SNP A = AA 

State 3: SNP C = Cc AND SNP A = aa 

State 4: SNP C = cc 

 Now we create the meta-variable corresponding to gene A in the new 

meta-dataset: 

Meta-dataset:     Genes 

Status Gene 1 

1  

1  

2  

1  

2  

 
Figure 3.9 Creation of the meta-variable corresponding to Gene 1. 

 

We must take into account that a certain attribute might not be used 

in the classification tree splitting process. For example, if all the examples in 

one node of the CT already classify for the same phenotype, even if there 

are still other attributes in the set it is useless to split data again, as it will 

make the tree bigger (one more node or leave is created) without improving 

the classification tree performance.  

So, a SNP that is not used to split data is also not used to create the 

rules for that gene, i.e. the SNP value was not tested in any of the CT 

nodes. Thus, when creating the rules, these SNPs are not referred and it 

means that they were not taken into account, so its value can be any when 

searching for the match between one meta-state and the real original 

combination of SNPs values. 

 Then, beginning with the first example, we look for the state that 

covers it and we assign it to Example 1 in the gene variable: 
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Example 1 

 SNP A SNP C SNP D 

AA Cc Dd 

Meta-states for Gene 1 Covered ? 

State 1 “any” CC “any” No 

State 2 AA Cc “any” YES 

State 3 aa Cc “any” No 

State 4 “any” cc “any” No 

 

Meta-dataset:     Genes 

Status Gene A 

1 2 

1  

2  

1  

2  

 

Figure 3.10 Example of meta-state assignment to an example of the dataset. 

 

 We apply this process to each example until we complete the new 

meta-dataset: 

Meta-dataset:     Genes 

Status Gene A 

1 2 

1 4 

2 3 

1 4 

2 1 

 

Figure 3.11 Meta-variable filled with the states derived with the classification tree. 

 

We perform this assignment individually for each gene in order to create 

the new meta-dataset that will be represented by the phenotype column 

and one column for each gene (Figure 3.12). 
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Original dataset:     SNPs 

 

Meta-dataset:     Genes 

Status 
Gene 1 Gene 2 Gene 1 Gene 1 Gene 2  

SNP A SNP B SNP C SNP D SNP E Status Gene 1 Gene 2 

1 a1 b3 c2 d2 e3 1 g2 f3 

1 a1 b1 c3 d1 e3 1 g4 f3 

2 a3 b2 c2 d1 e1 2 g3 f1 

1 a2 b2 c3 d1 e2 1 g4 f2 

2 a1 b2 c1 d2 e1 2 g1 f1 

 

Figure 3.12 Meta-dataset built with one attribute corresponding to each gene in the 

original SNPs dataset. 

 

3.6. Bayesian networks learning 

 

Bayesian networks (BNs), also called probabilistic networks, are powerful 

instruments to learn genetic models from GWAS. In fact, they can be used 

to derive the existing correlation between SNPs and phenotype as well as to 

find the nonlinear relations between SNPs themselves (Sebastiani & Abad-

Grau, Bayesian Networks for Genetic Analysis, 2007). In this section we 

recall some background on BNs definition and we present the method for 

learning BN structures, discussing the algorithms implemented in this 

thesis. 

 

3.6.1. Bayesian networks: genetic analysis graphical 

models  

 

Considering the complex nature of the genetic processes, due to 

stochastic origins and quantified with frequencies measurement, it is 

immediately clear that the analytical tools more suitable to perform such 

studies shall be probabilistic models (Beaumont & Rannala, 2004). Among 

others, BNs are a natural approach to graphically express the dependence 

between the variables. Bayesian networks model situations in uncertainty 

conditions (Charniak, 1991). Furthermore, BNs provide the possibility of 
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exploit efficient computational algorithms able to quantify the effects in 

study (Lauritzen & Sheehan, Graphical Models for Genetic Analysis, 2003). 

Bayesian networks are directed acyclic graphs (DAGs), where the 

nodes are random variables and the arcs specify the independence 

assumptions between them, usually reflecting the cause-effect relations 

within the domain. The quantitative representation of these relations is 

given by the probability distribution of the possible values of the nodes in 

the network, assigning to each node a conditional probability table 

(CPT). As an example, suppose to model a situation in which the value of a 

variable Wet Grass is a non deterministic result of the values by the 

variables Rain and Sprinkler, which are in turn dependent on the variable 

Cloudy. The causal graph corresponding to this situation and the CPT of 

each node are represented in Figure 3.13. 

 

 
Figure 3.13 The graph represents qualitatively the dependence between the variables. 
The CPT of each node is the quantification of the relations represented in the graph. The 

nodes with no parent are given the a priori probabilities. For each child node, the CPT is 
specified through the probability that the node has a certain value when its parents have 
different values. 

 



3 – The proposed method: gene-based networks 

44 

The joint probability distribution of a set of variables increases 

exponentially with the number of variables; in the case of having  Boolean 

variables the distribution is given by  joint probabilities. We can 

easily understand that this was the biggest obstacle to the use of the 

probability theory to model uncertainty situations, due to the fact that it 

would be needed to calculate, for example, tens of thousands of numbers 

for a network with tens of nodes. The first great advantage of BNs stands in 

their ability to quantify a joint probability distribution by computing a small 

number of conditional probabilities by resorting to the conditional 

independence assumptions underlying the graph structure. 

In probability theory, two events R and B are conditionally 

independent given a third event G if, given the value of G, the knowledge of 

the values of B does not provide further information about the value of A. 

The occurrence or non-occurrence of R and B is an independent event in 

their conditional probability distribution given G. 

 

 

 

Looking at the graph, if each possible course from R to B contains G, 

then R is conditionally independent from B given G (Lauritzen, Dawid, 

Larsen, & Leimer, 1990). 

 

 

Figure 3.14 Representation of the dependence between three variables: R, B and G. 

 

This assumption, exploiting the fact that the network is a DAG, allows 

showing that the probability of any node is expressed by the conditional 

probabilities table of that node given the parent nodes only (Charniak, 
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1991). Thus, the joint probability of all the  values of a possible 

instantiation of the network can be computed by the so-called chain rule, as 

follows: 

 

     Equation 3.13 

 

where  is the instantiation of the -th variable and  represents the 

instantiation of the parent nodes of . So, the joint probability of the 

network is no longer exponential but the product of  variables (Cooper & 

Herskovits, 1992). Accordingly, the Bayesian network can be defined as a 

structure containing a DAG with casual variables and a matrix with the 

conditional probabilities of the each node of the DAG, given its parent 

nodes. 

 As computational tool, BNs are used to update the joint probability 

distributions given the available evidence on certain nodes. Therefore, since 

BNs allow to update the model (and in consequence the comprehension of 

the phenomenon in study) when new observations are available, once a BN 

is learned, it is an efficient device of probabilistic inference, i.e. can 

calculate the posterior probabilities of unobserved variables on the basis of 

evidence on the values of other variables in the network (Lauritzen & 

Spiegelhalter, Local Computations with Probabilities on Graphical Structures 

and Their Application to Expert Systems, 1988). 

So, how to build a BN? First of all, the construction of the network 

contains two steps: structure learning, i.e. the identification of the network 

topology, and learning of the parameters, i.e. the quantification of the CPTs 

of the nodes. As the goal of this work is to identify the dependence relations 

between genotypes and phenotype, the crucial part of learning the BN can 

be approached as a model selection problem (it is the network topology that 

allows showing the presence of association between variables), in which 

different network models are compared on the basis of their posterior 

probability with respect to the available data. We search for the network 

that better describes the relations of probabilistic dependence in data. This 

is a difficult problem because of the high number of possible DAGs, even 
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with few nodes. In the following, we will discuss how to learn the best 

network structure. 

 

3.6.2. K2 algorithm 

 

If D is the cases group in the database of study and Z the set of 

variables in D, we can calculate the probability of the ratio between  and 

, two possible structures containing variables in Z, and establish a 

comparative ordering of these structures regarding their posterior 

probability. Knowing that the joint probability of any variables A and B is 

defined as 

 

      Equation 3.14 

 

we can write that probability of the ratio as follows: 

 

      Equation 3.15 

 

 Therefore, the conditional probability can be calculated through the 

joint probability, which in turn can be calculated under the Cooper 

assumptions: 

 

1. No missing values. 

2. Use of discrete variables. 

3. Given a network, cases occur independently 

4. Uniform density function . 

 

Given these assumptions, the following result is proven (Cooper & 

Herskovits, 1992): 
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Theorem 

Let Z be a set of  discrete variables, where a variable  can assume  

possible values: . Let D be a database with m cases, each one 

containing the variables in Z. Let  be the network structure that contains 

the variables in Z. Each variable xi in  has a set of parents, which we 

represent with a list of variables . Let  denote the -th instantiation of 

 relative to D. Suppose there are  such unique instantiations of . 

Define to be the number of cases in D in which variable  has the 

value  and  is instantiated as . Let . Given 

assumptions 1 through 4, it follows that 

 

  Equation 3.16 

 

The double product corresponding to  is known as marginal 

likelihood. 

Concerning the joint probability (which is called Bayesian measure) 

calculation, we can use some appropriate restrictions (like bounding u, the 

maximum number of parents of any node, and also bounding r, the number 

of possible values for one variable) and then the overall complexity 

becomes  (Cooper & Herskovits, 1992). 

Furthermore, if we assume that the database is generated by some 

network containing the variables in Z, then we can compute  by 

summing  over all possible  containing just the variables in Z. In 

the general case, if all the possible structures that can originate data 

contain the same variables Z and defining Q as the set of all those network 

structures that contain just the variables in Z, the marginal probability on D 

is obtained summing the joint probability values over all possible structures: 

 

    Equation 3.17 
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The computation of Equation 3.17 is heavily conditioned by the fact 

that it is possible to find Y a subset of Q that makes possible to perform the 

marginalization (sum in denominator) over . There may be more than 

one structure. In our case  is known because the dataset is fixed. So, 

we can search the most probable network considering that Equation 3.15 

results . 

To find the most probable network it would be necessary to 

exhaustively apply Equation 3.16 for every possible . We easily 

understand that, as a function of the number of nodes, the number of 

possible structures grows exponentially, making this search unfeasible. For 

this reason, it was derived the following efficient recursive function for 

determining the number of possible network structures that contain n nodes 

(Cooper & Herskovits, 1992): 

 

     Equation 3.18 

 

For example, to have an idea of the growth of the number of possible 

structures, , , , . 

Thus, some heuristic algorithms were developed to restrict the best 

DAG research space, maintaining the definition of Equation 3.16. The 

criterion that better reduces the computational complexity of the task is the 

ordering of the nodes. If we suppose that is possible to define that xi 

precede xj, then it is not possible to build an arc going from xj to xi. We can 

therefore express the maximization of Equation 3.16 as 

  

            
          Equation 3.19 

 

where   indicates that  is the set of possible parents of  in . 
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Despite the adoption of this criterion, still remains  

possible configurations of the network. We must therefore take into account 

the complexity due to the calculation of . 

The first algorithm suggested by (Cooper & Herskovits, 1992) to 

render computationally feasible the assessment of Equation 3.19 is based 

on the assumptions that: 

i. There is an ordering of the nodes. 

ii. There is a limit for the number of possible parents of each 

node. 

iii.  and  are marginally independent for 

, in order to efficiently compute the prior distributions. 

This algorithm, known as K2, consists in searching, for each node, for 

the set of parent nodes that maximizes the function: 

 

    Equation 3.20 

 

At the beginning, K2 assumes that a node has no parents, and then 

adds incrementally that parent which addition most increase the probability 

of the resulting structure. In every step K2 computes the calculation of 

Equation 3.20 making an instantiation of  with the considering nodes. The 

procedure stops when the addition of no single parent can increase the 

posterior probability (Cooper & Herskovits, 1992). 

A pseudo code representation of K2 algorithm is shown in Figure 

3.15. 
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Figure 3.15 Pseudo-code of the K2 algorithm (Cooper & Herskovits, 1992). 

 

The algorithm guarantees a topology not containing any cycles, as it 

prevents any arc from connecting the lower-ordered nodes to the higher-

ordered nodes. Nevertheless, the network topology may change if we apply 

a different ordering scheme to the variables (Tan, Steinbach, & Kumar, 

2006). 

This strategy searches for the most probable network given the available 

observations and permits to learn both the network structure and the 

conditional probabilities. 
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3.6.3. Probabilistic Inference: Junction Tree 

 

Having created the BN, we can now use it for inference. In general, 

probabilistic inference on a network is the process of computing the 

posterior probability distribution , or simply , 

where  is a value of a variable  and  is an assignment of values to a set 

of variables  in the network. 

There are several different algorithms to perform inference efficiently, 

where each one makes different tradeoffs between speed, complexity, 

generality, and accuracy. We have used the propagation algorithm junction 

tree, which is the mother of all exact inference algorithms, developed by 

Lauritzen and Spiegelhalter (Lauritzen & Spiegelhalter, Local Computations 

with Probabilities on Graphical Structures and Their Application to Expert 

Systems, 1988) and refined by Jensen (Huang & Darwiche, 1996). 

 

3.7. Application results  

 

As referred before, this approach was first applied and led to the 

published paper Phenotype forecasting with SNPs data through gene-based 

Bayesian networks (Malovini, Nuzzo, Ferrazzi, Puca, & Bellazzi, 2009). 

The paper used data came from a genome-wide scan on a case 

population of 288 individuals affected by arterial hypertension (AH) and a 

control population of 271 nonagenarians without history of AH. A standard 

statistical analysis was performed, obtaining a list of 93 highly significant 

SNPs. After SNPs annotation and selection of only those genes represented 

by at least two SNPs, the final analyzed dataset consisted of 559 examples 

(288 cases and 271 controls) and 24 SNPs, mapping to 9 genes. 

Then, using the whole dataset, a Bayesian network was learned using 

SNPs as variables. Since SNPs mapping to the same gene resulted highly 

correlated, this network seemed to be able to correctly infer a direct 

dependence between them. 
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Figure 3.16 SNP-based BN learned using the whole dataset (Malovini, Nuzzo, 
Ferrazzi, Puca, & Bellazzi, 2009). 

 

 

These results showed that it was possible to reduce the variables space 

without losing information by creating a meta-variable for each gene. 

Furthermore, the status (hypertension) appeared directly connected to 3 

genes and, among SNPs mapping to the same gene, it was always 

connected to the marker with the highest gain ratio. 

Next, a new network was built using the meta-variables, whose states 

were derived as outlined in section 3.5, and the results showed that the 

phenotype was connected to the same genes as in the network learned with 

all SNPs. 
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Figure 3.17 Meta-variable BN learned using the whole dataset (Malovini, Nuzzo, 
Ferrazzi, Puca, & Bellazzi, 2009). 

 

Thereby, these results confirmed that meta-variables are really able to 

summarize the relationships between genes and phenotype without losing 

information. 

As the goal of the analysis was to assess the ability of the learned BN 

models to predict the phenotype status given a certain configuration of 

SNPs or genes, the predictive accuracy on both BN was calculated on the 

whole dataset, obtaining 62.79% for the single-SNP network and 64.22% 

for the gene network. However, as training accuracy is affected by 

overfitting, it is much more interesting to evaluate the generalization 

accuracy. In order to do that, a random sampling hold-out was repeated 5 

times, using 75% of the dataset (419 examples) as training set and the 

remaining 25% as test set (140 examples) and regarding stratification, so 

that both sets had the same distribution of phenotypic classes as the entire 

dataset. So, the learning of the meta-variables and the BN was performed 

on the training set, while the accuracy of phenotype prediction was 

calculated on the test set. Note that the mapping of the SNPs on the test 

set into meta-variables was done using the rules derived on the training set.  

The mean accuracies resulting from the 5 tests were 58.99% and 

64.28% respectively for the SNP network and for the gene network. These 

results suggested that the proposed method is able to achieve a better 

classification performance than the single-SNPs one. 
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3.8. Limitations and problems 

 

Considering the description of the method done until now we can easily 

realize that the complexity of the analysis compromises its reproducibility, 

making it hard to perform replication or further generalization of the 

process. 

First of all, the use of different software tools for each step of the 

method makes it impossible to automatically do the analysis:  

 To achieve the original datasets with SNPs data we used PLINK 

(Web 5); 

 To annotate genes we used Genephony (Nuzzo & Riva, 2008) 

(Web 6). 

 Then, to learn the classification trees we used Orange (Web 7). 

 Finally, to learn the BNs from data and infer on new data we used 

Bayesware Discoverer (Web 8). 

Besides, some steps of the analysis are done manually: 

 If we want to use a smaller dataset, containing only some top-

scored significant SNPs and not all SNPs coming out from PLINK 

(Web 5) we have to manually select them with a text editor, after 

having calculated its scores (Gain Ratio score, for instance). 

 As we have seen before, to apply the classification tree to each 

gene data we must have only the SNPs mapping to that gene. The 

original dataset contains data from all SNPs from all genes. So, 

once again we have to manually separate the data corresponding 

to SNPs mapping to each gene in a new file, creating as much files 

as the number of genes. Only then we can learn the classification 

tree on each gene and create the meta-variable. After assigning 

the states to each meta-variable we have to put them all back 

together in one single file to learn the BN on genes data. 

All of this becomes more difficult because we must have into 

consideration the file formats used by the different software tools. 
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Furthermore, the definition of states for the new meta-attributes is 

based on graphical inspection of the pruned trees. Obviously, in addition to 

being more laborious, it is also more prone to errors during its execution. 

Finally, the validation of the analysis with methods like hold-out or k-fold 

cross validation requires the whole process to be done a very high number 

of times, which is manually unfeasible. 

 

3.9. Objectives 

 

So, aside from redo the whole analysis process, the main goal of this 

thesis was to overcome all the limitations and problems described in section 

3.8 by developing a tool able to perform an overall automation of the 

strategy. This way, using the developed tool we can easily achieve the 

following main objectives: 

 Automate the meta-attributes states definition and its assignment. 

 Integrate all the steps in a single framework. 

 Enable a more robust evaluation of the performance of the 

proposed approach. 

So, we developed SNP2Net, a MATLAB tool that aims at automatically 

performing the analysis process described in section 3, in which we can also 

be able to easily set the many parameters required over the implementation 

of the strategy by using a graphical user interface (GUI). 

Moreover, SNP2Net intend to enable a properly assessment of the 

method performance. 

Finally, this tool is designed to be a general instrument, i.e. to make 

possible further analysis on different datasets. 

In the next chapter we describe in detail the structure of the tool and the 

implemented algorithms and strategies. 
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4. Developed tool: SNP2Net 

 

SNP2Net was developed in MATLAB environment and is provided with a 

graphical user interface (GUI), making it user-friendly and intuitive. As 

reported in the previous section, SNP2Net aims at performing an overall 

automation of the strategy presented in section 3 and providing also an 

assessment of the analysis performance. Moreover, by using SNP2Net, the 

method can be tested on different datasets. 

In this chapter we will present the structure of the tool modules, the 

implemented algorithms, as previously outlined in section 3, and the 

specific parameters to be set by the user.  

This tools allows for an authomatization of the overall strategy described 

in (Malovini, Nuzzo, Ferrazzi, Puca, & Bellazzi, 2009): the only need is to 

coordinate SNP2Net with the software PLINK (Web 5) and the on line 

annotation resource Genephony (Web 6). 

The input of SNP2Net is an annotated SNPs dataset, i.e. the final SNPs 

dataset showed in Figure 3.4. Then, the approach consists of the following 

modules: 

 

 Data pre-processing 

 

 Features selection 

 

 Classification Tree 

 

 Bayesian Network 

 

 Validation 
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Figure 4.1 shows a schematic representation of the structure of 

SNP2Net: 

 

 

 

 
 
Figure 4.1 On top, schematic representation of the SNP2Net modules. Below, a 

screenshot of SNP2Net. 

 

 

In the next sections we describe in detail each module and the 

implemented devices. 
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4.1. Data pre-processing 

 

Figure 4.2 shows the graphical layout of the Pre-processing module of 

SNP2Net that allows the user to upload the dataset and choose how to 

handle missing values. 

 

 

 
Figure 4.2  Screenshot of the Pre-processing module. 

 

 

The user can upload two different data formats: complete files or 

annotated MAP/PED files. 

If the Input complete file option is selected, the user can input data in 

a format represented in Figure 3.4, i.e. a file containing SNPs genotypes 

and two header lines, the 1st having the genes annotation and the 2nd 

having the SNPs identification. Let us remember that, in this kind of files, 

the genes annotation was performed manually, writing in the 1st row the 

official gene symbol for each SNP. 

Selecting Input annotated MAP file and Input PED file, the user can 

upload in SNP2Net the annotated MAP and PED files as generated by PLINK, 
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as described in section 3.1 (except for the MAP file that must be manually 

annotated). 

The user is first requested to specify the symbol used to represent 

missing values in the dataset (Symbol for missing values in dataset)  

As outlined in section 3.6.2, K2 learning algorithm cannot analyze 

dataset with missing data (a frequent issue in GWAS); so the user can 

choose to remove rows in the dataset that contain missing values for one or 

more SNPs (Remove examples with missing values option). However, 

by removing incomplete examples, the dimension of the resulting dataset 

becomes function of the genotyping rate of the analyzed dataset (see 

section 1.2.4) and may result in a loss of statistical power. 

Once the dataset has been uploaded (Load data), a routine eliminates 

unnecessary information (1st to 5th columns) and loads data into a suitable 

structure to the remaining processes. 

After loading data, SNP2Net calculates i) the number of examples, ii) the 

number of examples with missing values (and the corresponding percentage 

in respect to the total number of examples) and iii) the number of attributes 

(SNPs) in the dataset.  

Figure 4.3 shows the graphical interface of this module after loading 

data. 

 

 

Figure 4.3  Screenshot of the Data pre-processing module after loading data. 
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After loading the data it is possible to perform a graphical inspection of 

the data (see Figure 4.4) and to export the new dataset into a text format 

file. 

 

 

 

Figure 4.4  Dataset visualization window representing the loaded data. 

 

4.2. Features selection 

 

As referred before, datasets can have a large number of features. The 

learning algorithms can be very expensive when performing on such large 

datasets. So, a reduction of dimensionality of data can be very helpful once 

the amount of time and memory required by the data mining algorithms is 

reduced, in particular if the number of attributes in the data is lower. Also 

the data can be more easily visualized when reduced. Furthermore, 

reduction of dimensionality can itself eliminate irrelevant features and 

reduce noise (Tan, Steinbach, & Kumar, 2006). Selecting new attributes 

that are a subset of the old is known as feature subset selection or simply 

features selection.  
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SNP2Net eliminates irrelevant attributes like Sex or Family ID, as we 

know that those attributes do not contain information of interest for our 

study purposes. But since redundant attributes can be still present, the 

Features Selection module implements a strategy to perform features 

selection known as Filter approach, that allows to discard irrelevant 

features. 

There are three options to perform features selection: Select all SNPs, 

Custom and Best ranked. 

Choosing Select all SNPs, all the available SNPs are analyzed (Figure 

4.5). 

 

 

 

Figure 4.5 Screenshot of the Features Selection module selecting all available SNPs. 

 

 

The Custom features selection option enables the user to select only 

the SNPs of interest: a graphical interface (Figure 4.6) shows a list of the 

available SNPs in the original dataset and the corresponding official gene 

symbols, enabling the user to select only the SNPs of interest. 
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Figure 4.6 Screenshot of the Custom features selection window. 

 

Finally, by choosing the Best ranked option, it is possible to select 

the most informative SNPs, sorted by descending order of Gain Ratio score.  

 

  

Figure 4.7 Screenshot of the Features Selection module selecting Best ranked SNPs. 

 

SNP2Net implements the Gain Ratio as a scoring measure since it 

calculates a robust normalized value that takes into account for the number 

of feature values in the dataset. Hereafter, in the future the tool will also 

implement different score measure to be used for the features ranking.  
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After the features selection process, the tool generates a dataset for 

each gene (represented by the SNPs mapping to it and the phenotype) to 

be analyzed by the Classification Tree algorithm. 

 

4.3. Classification Trees 

 

The Classification Trees generation (the Classification Tree module is 

shown in Figure 4.8) represents a crucial step in the proposed method, 

since it enables the definition of the values that each meta-variable 

representing a gene may assume.  

 

 

Figure 4.8 Screenshot of the Classification Tree module. 

 

 

This module implements the algorithm C4.5 (Quinlan, 1993) (described 

in section 3.2.1) to learn the CTs, since it represents an exhaustive 

strategy. Accordingly, the criterion used to split data on tree nodes is 

represented by the Gain Ratio score.  

The user can set the following parameters: 
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 m, for the error estimation in each node of the CT, using m-

estimate; note that the pruning strategy implemented is the 

Minimal Error Pruning, although other strategies can be 

implemented in future. 

 Minimum number of instances in leaves, as a percentage of the 

total number of examples in the dataset. 

 Maximum number of states for each gene, i.e. the maximum 

number of values a gene meta-variable can assume; however be 

aware that the tree should be exhaustive and, therefore, cover all 

examples in the dataset. Thus, if a leaf contains less examples 

than the threshold number set in Minimum number of instances in 

leaves (which means this leaf would be discarded and its 

examples would not be included in the model) the maximum 

number of states (corresponding to the final leaves) allowed is 

increased by one, and the leaf is not eliminated. 

 Joining leaves with the same class; if there are two leaves 

descending from the same node that classify for the same class 

value, then a new leaf is created, containing the examples of the 

two previous leaves. In this case, a logical conjunction OR will be 

used to indicate the possible values of the SNP corresponding to 

that leaf. 

 

Note that the Pca parameter, corresponding to the prior probability of 

the majority class, is fixed to 0.5, assuming that is equally likely, a priori, 

that a given example is a case or a control example. 

Once the pruned CT is obtained, the classification rules are derived 

and the meta-states are assigned to genes, as described in section 3.5. 

In order to overcome the problem of missing data (what often 

happens in biological data of the type we want to study) we implemented a 

strategy named multiplication of examples, using the following procedure: 

 

1. Given an example , create missing(E) with all SNPs containing 

missing values for that example. 

2. For , build examples with all possible values of the missing SNPs. 
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3. If  is the probability of attribute  having the jth value, the 

weight of each example is . 

So, the computation of Information Gain, Gain Ratio and all other 

counts are performed using weighted examples, a combinatorial strategy 

that involves an increase in the number of examples that is proportional to 

the number of attributes with missing data. The multiplication of examples 

allows to manage missing data by assigning the most likely combination of 

the set of SNPs mapping to each gene to each example. Hence, this 

strategy represents an alternative either to: i) imputation of data, often 

generating artifacts and ii) the removal of data, resulting in true but smaller 

datasets. 

So, SNP2Net learns a CT and assigns the states to each gene 

independently and generates automatically the new dataset, represented by 

genes instead of SNPs as variables. The configurations of the states each 

gene can assume are available to the user. Finally, the user can also 

visualize the new gene-based dataset and export it into a text format file.  

 

4.4. Bayesian Network 

 

Once the genes-based dataset has been generated, it is possible to 

use it to learn a BN as a phenotype predictive model. 

The Bayesian network generation module implements the K2 

algorithm (see section 3.6.2) using functions from the Matlab Bayes Net 

Toolbox (BNT) by Kevin Murphy (Murphy, 2007). 

K2 algorithm requests the setting of a searching order among the 

variables. A modification of the function that learns the best topology of the 

BN (learn_struct_K2), has been applied in order to allow the user to set the 

value of the Bayes Factor (BF). This parameter is given by the ratio 

between the score of the new and the actual network structure during the 

greedy search referred above. As the K2 algorithm does not admit missing 

values in data, the user is also requested to choose between two options, 

regarding the missing data management: 
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 Remove examples with missing values; this option does not 

manipulate data but originates smaller datasets. 

 Replace missing values with the most frequent value for each 

SNP; this option maintains the dataset dimensions by imputing 

missing data. 

Once the BNs are learned from both SNPs and genes datasets, the 

user can visualize and export them into an image file format. 

Figure 4.9 shows the graphical layout of the Bayesian Network 

module and an example of a genes-based Bayesian network. 

 

  

 

Figure 4.9 On top, screenshot of the Bayesian Network module; below, screenshot of 
the representation of a genes network topology. 



4 – Developed tool: SNP2Net 

68 

 

4.5. Validation 

 

The Validation module, shown in Figure 4.10, was implemented in 

order to allow the user to perform an evaluation of the performances 

obtained by the tool. SNP2Net allows not only for an Internal Validation, by 

applying the whole scheme to subsets of the original dataset, but also an 

External Validation, by repeating the analysis a very high number of times, 

in order to estimate its robustness. 

 

 

Figure 4.10 Screenshot of the Validation module. 
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4.5.1. Internal Validation 

 

 As the final goal of the analysis is to build a disease predictive model 

given a set of features, the predictive performances of the learned networks 

are tested on subsets of data that are independent from those used for 

learning (training set). 

 To perform this assessment, we implemented a K-fold Cross-

Validation (CV) strategy. As described in Figure 4.11, the original dataset 

is randomly divided in K folds, properly regarding the stratification issue, 

i.e. each fold has the same class values distribution as the original dataset. 

Then, the strategy consists in considering for K times (K is equal to the 

number of folds set by the user) one fold as the test set and all the 

remaining K-1 folds as training set. 

 

Figure 4.11 Representation of a 3-fold Cross Validation strategy. 

 

 Then, SNP2Net performs the following steps for each Train & Test 

pair: 

 The CT is learned on training set. 

 The corresponding derived rules are used to assign the genes 

states on both training and test sets. 

 The BN is learned on both SNPs and genes training sets. 

 The phenotype is inferred on test set. 
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To do inference of phenotype, we use the junction tree algorithm, also 

implemented in BNT (Murphy, 2007). Inferring means computing the 

probability distribution of one node (phenotype) given the values of the 

other nodes (SNPs or genes). The network is tested on the test set and the 

classification accuracy is computed as follows: 

 

 

 

where: TP is the number of True Positives, i.e. the number of examples 

correctly classified as having the reference class (in our case class 1, 

unaffected); TN is the number of True Negatives, i.e. the number of 

examples correctly classified as having the non reference class (class 2, 

affected); FP is the number of False Positives, i.e. the number of examples 

classified as 1 when the real class is in fact 2; FN is the number of False 

Negatives, i.e. the number of examples classified as 2 when the real class is 

in fact 1. 

 So, the assessment of the ability of the learned BN models is 

performed by predicting the phenotype status given a certain configuration 

of SNPs or genes. 

 

4.5.2. External Validation 

 

 The External Validation consists in performing the K-fold CV a high 

number of times (set by the user), which gives an approximation of the 

performance strength with respect to the fold sampling. Note that, each 

time a new K-fold CV is performed, the original dataset is randomly sorted. 

 When performing a K-fold CV, the user obtains the median value of 

the predictive accuracy on both SNPs and genes data, over the K Train & 

Test pairs. 

 If the user chooses to perform the K-fold CV more than one time, 

SNP2Net shows the median accuracy values over the total N times and also 

allows the user to visualize a box plot of the median accuracy values of each 

K-fold CV.  
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 Thus, performing the K-fold Cross-Validation a high number of times 

gives a measure of the stability of the performance with respect to the fold 

sampling. 

 An example of a box plot obtained from a 1000-times analysis 

repetition is shown in Figure 4.12: 

 

 

 

Figure 4.12 Box plot of the classification accuracy distribution obtained from a 1000-times 
replication of 10-fold CV, on both SNPs and genes (meta-attributes) 

networks. 
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4.6. Global workflow description 

 

In order to allow for a clear understanding of the whole analysis, we now 

present a list of the several steps, from the beginning until the end of the 

process: 

 Using PLINK (Web 5) 

 Perform GWAS to select top-significant SNPs selection. 

 Using Genephony (Web 6) 

 Annotate genes. 

 Using SNP2Net 

 Create meta-variables corresponding to genes. 

 Learn BNs on both SNPs and genes training sets. 

 Perform inference on both SNPs and genes test sets. 

 Validate the analysis through a K-fold CV strategy. 
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Figure 4.13 Schematic representation of the whole analysis process. 
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5. Results and discussion 

 

The main goal of the work done on this thesis was the development of 

an application able to perform an overall automation of the analysis process 

(see section 3) and allowing the user to easily redo the process not only a 

high number of times but also apply it to different datasets, through an 

integrated framework. Furthermore, once this tool was available, an 

additional objective of this work was to test it on different datasets, in order 

to evaluate the performance of the strategy and confirm the conclusions 

obtained in (Malovini, Nuzzo, Ferrazzi, Puca, & Bellazzi, 2009). 

In fact, the SNP2Net application it will be soon make available at 

http://bioinfo.unipv.it to general use. Then we tested SNP2Net on different 

datasets (different dimensions and containing different SNPs and genes), 

among which a dataset containing data coming from a genome-wide scan 

involving 570 35-55 years old patients affected by arterial hypertension 

(AH) and a control population of 664 individuals without an AH historical. 

This dataset contains data corresponding to the 40 top-associated SNPs, 

which map to 22 genes. Since these data still have to be biologically 

validated, we will denote genes by letters and SNPs by numbers. 

In Figure 5.1 we present a representation of the topology of the 

Bayesian network learned using single-SNPs as variables and employing the 

whole dataset. In this network the SNPs within each gene appear 

connected, probably because SNPs mapping to the same gene present 

correlated configurations and thus the BN learning algorithm correctly infers 

a direct dependence between them. This result supports the hypothesis that 

considering the SNPs mapping to the same gene as a unique meta-variable 

is an appropriate way to make an abstraction of the network structure 

without losing information. 
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Figure 5.1 Bayesian network learned on the whole dataset using single-SNPs as 
variables. 

 

 

Figure 5.2 shows a representation of the topology of the Bayesian 

network learned using single meta-variables corresponding to genes and 

employing the whole dataset. We can see that the phenotype is directly 

connected to the same genes as in the network learned with all SNPs. 
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Figure 5.2 Bayesian network learned on the whole dataset using meta-variables 

associated to each gene. 

 

 

In order to evaluate the predictive ability of the networks, after 

performing a 10-fold CV we obtained a classification accuracy of 58,18% for 

the SNP-based network and  62,80% for the gene-based net. Finally, 

performing a 150-times replication of the 10-fold CV, we obtained two 

different accuracy values distribution summarized in the box plot shown in 

Figure 5.3Figure 5.3. 
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Figure 5.3 Box plot of the classification accuracy distribution obtained from a 150-times 
replication of 10-fold CV, on both SNPs and genes networks. SNP-based 

model has a distribution around the median accuracy of 60,03%, while the 
gene-based model has a distribution around a higher median value, 62,54%. 

 

As SNP2Net easily allows applying the analysis strategy, we now present 

a table with the median values of the classification accuracy for several 

tests on different datasets. 

 

Classification performances on test sets 

# 10-fold CV 
Model SNP-based Gene-based 

# examples # SNPs # Genes Classification accuracies (%) 

1 1234 17 10 60,03 61,23 

1 1234 60 25 56,76 62,17 

1 559 24 9 61,26 63,05 

10 559 24 9 61,13 62,58 

150 1234 40 22 60,03 62,54 

1000 559 24 9 61,56 63,24 

 

Figure 5.4 The table summarizes the results obtained by performing a 10-fold CV with 
random sampling in several sets of data. 
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Conclusions 

 

Biological and biomedical research are increasingly becoming data-

intensive disciplines, as a result of the widespread adoption of high-

throughput experimental techniques able to generate very large amounts of 

data, at a low cost and in a short time. These new technologies allow 

studying biological systems on a large scale, which greatly expands our 

understanding of the interplay between genetic and environmental factors, 

all the way up to the relationship between the genotype and medically 

relevant phenotypes. This change affects not only the way in which 

biomedical data is generated but also, more fundamentally, the way in 

which it needs to be handled, interpreted and mined for new knowledge. To 

follow the rapid evolution of high-throughput techniques and to ensure that 

the results they produce are being exploited to their full potential, 

researchers increasingly need powerful, effective and easy-to-use software 

tools to automatically manage large volumes of data and to extract new 

knowledge from them. 

So, the work presented and discussed in this thesis regards the 

development of an analysis tool for association studies data. The data used 

during this work correspond to a non Mendelian disease, the arterial 

hypertension. Then, the research context is the investigation of the genetic 

origins of this type of diseases, complex traits, which cannot be analyzed 

using the standard techniques for the analysis of Mendelian diseases. The 

association studies of case-control type use data collected not only from the 

patients but also from their relatives and a control population. Thus, in 

addition to the collection and data management, it is important to optimize 

and automate the data analysis processes. 

Therefore, the work carried on consisted in the development of SNP2Net, 

a software tool that uses data mining techniques to look for evidence of 

association between the genotype and the phenotype of the individuals. 

Using the theory of Bayesian networks we implemented an algorithm with 

great inference potential over the variables of the domain of interest 

(predicting the value of the phenotype variable, given the values of the 

other variables). Specifically, we developed a tool that aims at deriving a 
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gene-based predictive model based on SNPs data, through the use of 

classification trees to create the variables corresponding to genes. 

Such model is more parsimonious than the one based on single-SNPs, 

while preserving the capability of highlighting predictive SNPs configurations 

and prediction performances. Its limited number of nodes provides an 

abstract view of the relationship between genes and the phenotype of 

interest, and therefore represents an alternative way to analyze the 

available data. Moreover, since our proposed method has fewer variables 

than the SNP-based one, it is also less prone to over fitting. Thanks to the 

availability of SNP2Net, it was possible to test the prediction performance of 

this approach in several sets, noting that it was consistently superior to the 

SNP-based model. Another interesting remark is the fact that our proposed 

method seemed to have less variance than the SNP-based one. 

The proposed model is a suitable alternative to haplotypes, which are on 

the contrary frequently used also as prediction factors. 

It is needless to say that the implemented tool easily allows further 

generalization. For example, it is possible for the user to define lists which 

contains SNPs that may be related, even if they do not belong to specific 

gene. In this case, it is possible to implement a customized two step 

prediction strategies that may allow using different kinds of knowledge and 

user-provided information. 

Regarding further developments of the tool, there are some issues that 

can still be addressed. 

The management of missing data is a major issue in the field of data 

mining and machine learning. A suitable way of handling missing values can 

be implemented, in order to allowing the user to work on more reliable 

datasets. The choice of removing examples with missing data is a simple 

way of using a true dataset. However, it could be useful to use for example 

the expectation-maximization (EM) algorithm, which finds maximum 

likelihood estimates of parameters in probabilistic models, where the model 

depends on unobserved latent variables. 

Also the available score measures used to perform features selection or 

ordering the variables input on the BNs can be extended, allowing the user 

to introduce different model design details and thus expand the range of the 

experiments, in order to find the more appropriate way to analyze data. 
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Finally, we think SNP2Net makes available to users a new framework to 

support data management in genome-wide studies. 

We showed that the system can effectively be used to look for answers 

to complex questions about genotype-phenotype correlations. 
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