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SEMI-STABLE AND EXTREMAL SOLUTIONS OF REACTION
EQUATIONS INVOLVING THE p-LAPLACIAN

XAVIER CABRÉ AND MANEL SANCHÓN

ABSTRACT: We consider nonnegative solutions of−∆pu = f(x, u), where
p > 1 and∆p is thep-Laplace operator, in a smooth bounded domain ofR

N with zero
Dirichlet boundary conditions. We introduce the notion of semi-stability for a solution
(perhaps unbounded). We prove that certain minimizers, or one-sided minimizers, of the
energy are semi-stable, and study the properties of this class of solutions.

Under some assumptions onf that make its growth comparable toum, we prove that
every semi-stable solution is bounded ifm < mcs. Here,mcs = mcs(N, p) is an explicit
exponent which is optimal for the boundedness of semi-stable solutions. In particular, it is
bigger than the critical Sobolev exponentp∗ − 1.

We also study a type of semi-stable solutions called extremal solutions, for which we
establish optimalL∞ estimates. Moreover, we characterize singular extremal solutions by
their semi-stability property when the domain is a ball and1 < p < 2.

1.Introduction
LetΩ be a smooth bounded domain ofR

N andp > 1. We consider the nonlinear
elliptic problem







−∆pu := −div(|∇u|p−2∇u) = f(x, u) in Ω,
u ≥ 0 in Ω,
u = 0 on∂Ω,

(1.1p)

where∆p is thep-Laplace operator,f(x, t) is nonnegative, measurable inx ∈ Ω,
andC1 in t ∈ [0,+∞) for a.e.x ∈ Ω. In most of our results we will assume that
there exist positive constantsm andc such that

0 ≤ f(x, t) ≤ c(1 + t)m and 0 ≤ ft(x, t) (1.2)

for all t ≥ 0 and a.e.x ∈ Ω. Hereft denotes the partial derivative off with respect
to its second variable. In some results we will make further growth assumptions
onf . They will be always satisfied by our model nonlinearityf(u) = λ(1 + u)m,
whereλ andm are positive constants (with, in some results,m > p− 1).
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Throughout the paper, we say thatu is a solutionof (1.1p) if u ∈ W 1,p
0 (Ω),

u ≥ 0 a.e.,f(x, u) ∈ L1(Ω), and
∫

Ω

|∇u|p−2∇u · ∇ϕ =

∫

Ω

f(x, u)ϕ for all ϕ ∈ C∞
c (Ω), (1.3)

that is, for allC∞ functionsϕ with compact support inΩ. These solutions, which
may be unbounded, are usually called weak energy solutions.We will refer to
them simply as solutions, for short. Note that for a solutionu, (1.3) holds for
everyϕ ∈ W 1,p

0 (Ω), by a standard density argument. In addition, sinceu is p-
superharmonic we have that ifu 6≡ 0 thenu > 0 a.e. inΩ, by the strong maximum
principle (see [Mo99, Tr67, Va84]).

On the other hand, we say thatu ∈ W 1,p
0 (Ω) is aregular solutionof (1.1p) if u is

a solution andf(x, u) ∈ L∞(Ω). By well known regularity results for degenerate
elliptic equations, one has that every regular solution belongs toC1,β(Ω) for some
positiveβ ∈ (0, 1] (see for instance [Lie88]).

Consider the critical exponent

mc(p) :=

{

+∞ if N ≤ p,
p∗ − 1 if N > p,

(1.4)

wherep∗ := Np/(N − p) corresponds to the critical Sobolev embedding. Re-
calling hypothesis (1.2) on the nonlinearityf , if m ≤ mc(p) then every solution
u of (1.1p) belongs toL∞(Ω), and thereforeu ∈ C1,β(Ω). In the subcritical case
(m < mc), this is a consequence of the results in [Se64, DiB83, To84,Lie88]. The
critical case (m = mc) is more delicate and a proof can be found in [Pe97]. More-
over, it is also known that in the supercritical case (m > mc), u is not necessarily
bounded (see Proposition 1.3 below for an example).

In this article we are concerned with a certain type of solutions: those which
are semi-stable. Formally, a solutionu is said to be semi-stable if the second
variation of energy atu (defined below) is nonnegative. In this paper we find
another critical exponentmcs = mcs(p) for which every semi-stable solutionu
of (1.1p) is bounded ifm < mcs, while there exist singular semi-stable solutions
for everym ≥ mcs. Of course, the exponentmcs will be greater thanmc —
whenevermc is finite. Our result, which requires a further growth assumption onf
besides (1.2), extends work forp = 2 by Crandall and Rabinowitz [CR75] and by
Mignot and Puel [MP80] concerning certain solutions calledextremal solutions.
For generalp > 1 optimal bounds for the extremal solution have been obtained
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whenf(u) = λeu by Garćıa-Azorero, Peral, and Puel [GP92, GPP94]. All these
results will be explained in more detail below.

Other of our results are inspired by the methods developed byBrezis and
Vázquez in [BV97] to study extremal solutions for the Laplaceoperator. We
extend to the casep 6= 2 some of their results on regularity and characterization
of such solutions, as well as a result on nonexistence of singular solutions from
[BCMR96].

An important aspect of our work relies on giving an appropriate general defini-
tion of semi-stability of a solution, specially when1 < p < 2. To our knowledge,
this task is undertaken here for the first time whenp 6= 2. Our definition of
semi-stability allows the solution to be unbounded, and this is important for some
applications. For instance, we establish that the class of semi-stable solutions in-
cludes certain minimizers (possibly unbounded) of the energy, as well as minimal
and extremal solutions (these are solutions of problem (1.1p) whenf is replaced
by λf andf satisfies certain assumptions described below). Several ofthe ideas
used here already appear in [GP92, GPP94], which treated thecasef(u) = λeu

andp > 1.
Formally, the semi-stability of a solutionu means the nonnegativeness of the

second variation of the energy functionalJ associated to (1.1p), defined by

J(u) :=
1

p

∫

Ω

|∇u|p −
∫

Ω

F (x, u), (1.5)

where

F (x, t) =

∫ t

0

f(x, s)ds. (1.6)

But a precise definition of this notion is needed since, in general, the energy func-
tional is not twice differentiable (or not even well defined)in all of W 1,p

0 (Ω). The
reason for this is that in (1.2) we allow supercritical growth for the reaction termf .

Definition 1.1. Assume that0 ≤ f(x, t) is nondecreasing andC1 in t for a.e.x ∈
Ω. Letu ∈ W 1,p

0 (Ω) be a solution of (1.1p). Define

Au := W 1,p
0 (Ω) if p ≥ 2,

and

Au := {ψ ∈ W 1,p
0 (Ω) : |ψ| ≤ Cu and|∇ψ| ≤ C|∇u|

in Ω, for some constantC} if 1 < p < 2.
(1.7)
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We say thatu is semi-stableif

∫

{∇u 6=0}
|∇u|p−2

{

(p− 2)(
∇u
|∇u| · ∇ψ)2 + |∇ψ|2

}

−
∫

Ω

fu(x, u)ψ
2 ≥ 0 (1.8)

for all ψ ∈ Au.

Note that the left hand side of (1.8) is formally the second variation of J at u.
The first integral in (1.8) is well defined and finite since its integrand belongs to
L1. This follows from Ḧolder inequality whenp ≥ 2 (and in this case the integral
can be computed in all ofΩ instead of{∇u 6= 0}), and from the pointwise bound
for |∇ψ| in (1.7) when1 < p < 2. On the other hand, the second integral in (1.8)
is well defined in[0,+∞] sincefu ≥ 0 by hypothesis. Therefore, the left hand
side of (1.8) is a well defined quantity in[−∞,+∞). In particular, ifu satisfies
inequality (1.8) then the second integral will be finite.

For 1 < p < 2 we have introduced a classAu of admissible functions in order
that the second variation of energy is well defined. We have found that the class
given by (1.7) is appropriate in all of our arguments, but there could be other
good classes. Since the set of test functionsAu is smaller than usual, the class of
semi-stable solutions could seem to be too large. However, by using adequate test
functions inAu, we will prove existence and uniqueness results for semi-stable
solutions (Theorem 1.4 and Theorem 1.5), and also obtain sharp regularity results
for these solutions (Theorem 1.2).

The first and second variation of energy is analyzed in detailin section 2. We
will see that in the presence of sub and supersolutions (perhaps unbounded),J
is well defined in a closed convex setM , even for general reaction termsf (not
necessarily with power growth). Moreover, we will prove that the infimum ofJ
in M is achieved at someu ∈ M . This minimizeru will be a solution of (1.1p)
and, in addition, it will be semi-stable in the sense of Definition 1.1.

Our first result establishes anL∞(Ω) bound for every semi-stable solution of
(1.1p), with p > 1 arbitrary, whenever the growth exponentm for the reaction
term is smaller than a certain exponentmcs(p) defined below. The estimate re-
quires an additional power growth assumption onf related to the exponentm.
It extends a result (that we describe below) obtained forp = 2 by Crandall and
Rabinowitz [CR75] and by Mignot and Puel [MP80].
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Theorem 1.2.For p > 1 define

mcs(p) :=



















+∞ if N ≤ p+
4p

p− 1
,

(p− 1)N − 2
√

(p− 1)(N − 1) + 2 − p

N − (p+ 2) − 2
√

N−1

p−1

if N > p+
4p

p− 1
.

(1.9)

Letu ∈ W 1,p
0 (Ω) be a semi-stable solution of(1.1p). Assume thatf satisfies(1.2)

and

lim inf
t→+∞

ft(x, t)t

f(x, t)
≥ m (1.10)

uniformly in a.e.x ∈ Ω, for somem > p− 1.
Then,

‖u‖W 1,p
0

≤ C (1.11)

for some constantC depending only onN ,m, p, |Ω|, andf .
If in additionm < mcs(p), thenu ∈ L∞(Ω) and

‖u‖∞ ≤ C, (1.12)

whereC is a constant depending only onN ,m, p, |Ω|, andf .

The way in which the constantsC in (1.12) and (1.11) depend on the nonlinear-
ity f is explained in detail in Remark 3.4 and will be important forother results
and proofs in the article.

Theorem 1.2 applies to the nonlinearityf = a(x)(1 + u)m, and alsof =
a(x)um, for every positive and bounded functiona.

It can be easily checked thatN > p+ 4p/(p− 1) is necessary and sufficient for
the denominator in the expression (1.9) to be positive and define a finite exponent
mcs(p). It is also easy to verify that, whenever the Sobolev critical exponentmc(p)
defined in (1.4) is finite, we then havemc(p) < mcs(p). One can verify also that,
if m > p− 1, thenm < mcs(p) is equivalent to

N < G(p,m) :=
p

p− 1

(

1 +
pm

m− (p− 1)
+ 2

√

m

m− (p− 1)

)

, (1.13)

an inequality that we will use in some proofs.
Our next result establishes the optimality of the exponentmcs(p) in Theorem 1.2

for the boundedness of semi-stable solutions.

Proposition 1.3.LetΩ = B1. AssumeN > p andm > (p− 1)N/(N − p). Let

U#(x) = |x|
−p

m−(p−1) − 1, (1.14)
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λ# =

(

p

m− (p− 1)

)p−1 [

N − mp

m− (p− 1)

]

, (1.15)

and
f(u) = λ#(1 + u)m.

We then have:
(i) U# ∈ W 1,p

0 (Ω) if and only ifm > mc(p). In such case,U# is a solution of
(1.1p).

(ii) Assumem > mc(p). Then,U# is a semi-stable solution of(1.1p) if and only
if m ≥ mcs(p).

Throughout the paper we consider solutions inW 1,p
0 (Ω). In Theorem 1.2 this

assumption is necessary. Indeed, for a certain range of exponentsm with (p −
1)N/(N − p) < m ≤ mc(p) ≤ mcs(p), the functionU# of Proposition 1.3 is
an entropy solution (but not inW 1,p

0 (Ω)), it satisfies the semi-stability condition
(1.8), and however it is unbounded. See Remark 5.2 for more details and Theorem
6.2 in [BV97] for the casep = 2.

Theorem 1.2 will be proved in two steps. Following a method of[CR75] for
p = 2, we first obtain ana priori Lq(Ω) estimate for semi-stable solutions of
(1.1p) using hypothesis (1.10) onf and the semi-stability condition (1.8). We then
improve this regularity using assumption (1.2) onf and a bootstrap argument. On
the other hand, the proof of Proposition 1.3 is simple and relies on a Hardy type
inequality.

The two previous results establish that semi-stable solutions of (1.1p) enjoy bet-
ter regularity properties than general solutions. This fact has been already studied
in relation with the so called extremal solutions —a class ofsolutions which turn
out to be semi-stable in most cases, for instance whenf is convex or whenp ≥ 2.
To introduce the concept of extremal solution, consider theproblem







−∆pu = λf(u) in Ω,
u ≥ 0 in Ω,
u = 0 on∂Ω,

(1.16λ,p)

whereλ > 0 andf is an increasingC1 function withf(0) > 0 and

lim
t→+∞

f(t)

tp−1
= +∞. (1.17)

Forp = 2 it is well known the existence of an extremal parameterλ∗ ∈ (0,+∞)
such that: ifλ ∈ (0, λ∗) then problem (1.16λ,2) admits a regular solutionuλ which
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is minimal among all other solutions, while ifλ > λ∗ then problem (1.16λ,2)
admits no regular solution. It is known that the minimal solutionsuλ are semi-
stable. Their increasing limitu∗ := limλ↑λ∗ uλ is a weak solution of (1.16λ∗,2);
u∗ is called the extremal solution. Brezis and Vázquez [BV97] proved, under an
additional hypothesis onf , thatu∗ belongs toW 1,2

0 (Ω) and that it is a semi-stable
solution.

Define

mcs(2) :=







+∞ if N ≤ 10,
N − 2

√
N − 1

N − 4 − 2
√
N − 1

if N > 10,

as in (1.9). Forp = 2, Crandall and Rabinowitz [CR75] and Mignot and Puel
[MP80] studied the casef(u) = (1 + u)m and proved thatu∗ is bounded if
m < mcs(2). Joseph and Lundgren [JL73] used phase plane techniques to make
a detailed analysis of all solutions when the domainΩ is a ball. In particular,
they showed that ifm ≥ mcs(2) thenu∗ is unbounded. More recently, Brezis
and V́azquez [BV97] have introduced a simpler approach to this question based
on PDE techniques (and not in phase plane analysis). They characterized singular
extremal solutions by their semi-stability property. In this paper we extend the
PDE techniques of [BV97] to certain cases wherep 6= 2.

First we state our result on existence and properties of minimal and extremal so-
lutions for everyp > 1. Point (i) of the following theorem uses ideas on existence
of solutions from [GP92, GPP94]. Part of point (ii) extends aW 1,2

0 regularity re-
sult of [BV97]. Point (iii) on nonexistence of energy (perhaps singular) solutions
extends a result forp = 2 from [BCMR96].

Theorem 1.4.Let p > 1 and assume thatf = f(u) is an increasingC1 function
satisfyingf(0) > 0 and (1.17). Then, there existsλ∗ ∈ (0,∞) such that:

(i) If λ ∈ (0, λ∗), then problem(1.16λ,p) admits a minimal regular solutionuλ.
Minimal means that it is smaller than any other supersolution of the problem. In
particular, the family{uλ} is increasing inλ. Moreover, everyuλ is semi-stable.

If λ > λ∗, then problem(1.16λ,p) admits no regular solution.
(ii) Assume that in additionf satisfies(1.2) and (1.10) for somem > p − 1.

Then:
(ii1) u∗ := limλ↑λ∗ uλ belongs toW 1,p

0 (Ω) and it is a solution of(1.16λ∗,p).
(ii2) If eitherp ≥ 2, or 1 < p < 2 andf is convex, thenu∗ is semi-stable.
(ii3) If m < mcs(p), thenu∗ ∈ L∞(Ω).
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(iii) If in additionf(t)
1

p−1 is a convex function satisfying
∫ ∞

0

dt

f(t)
1

p−1

< +∞, (1.18)

then(1.16λ,p) admits no solution forλ > λ∗.

The family of minimal solutions is a continuous branch whenp = 2 andf is,
in addition, convex. In the generality of the previous theorem, the family may be
discontinuous and have jumps at some parametersλ (see [CC05] for an example
whenp = 2 andf is not convex).

Minimal and extremal solutions of (1.16λ,p) for p > 1 have been studied, when
f(u) = eu, by Garćıa-Azorero, Peral, and Puel [GP92, GPP94]. They established
the boundedness of the extremal solution whenN < p+ 4p/(p− 1), and showed
that this condition is optimal. Recently we have learned about the work of Ferrero
[Fe04], carried out independently of ours, where problem (1.16λ,p) is studied for
the model casef(u) = (1 + u)m. [Fe04] establishes the sufficiency of condition
m < mcs(p) for the extremal solution of (1.16λ,p) to be bounded. In Remark 1.7
we describe further regularity results on semi-stable and extremal solutions.

While the nonexistence ofregular solutions forλ > λ∗ is an immediate fact,
part (iii) of Theorem 1.4 establishes the nonexistence ofW 1,p

0 solutions (possibly
unbounded). It uses the ideas of Brezis et al. [BCMR96] for the Laplacian case.

Our following result extends Theorem 3.1 of [BV97] (that dealt with p = 2,
convex nonlinearitiesf , and smooth bounded domainsΩ) to the case1 < p < 2
andΩ = B1. It is a characterization of singular extremal solutions of(1.16λ,p) by
their semi-stability property.

Theorem 1.5.Assume thatΩ = B1 ⊂ R
N , 1 < p < 2, and thatf is a C1,

increasing, and convex function satisfyingf(0) > 0. Then:
(i) For λ < λ∗, the minimal solutionuλ of (1.16λ,p) is the unique radially non-

increasing and semi-stable solution of(1.16λ,p).
(ii) Assume thatf satisfies in addition(1.2), (1.10), and (1.18), for somem >

p − 1. Assume thatv ∈ W 1,p
0 (Ω) is an unbounded, radially nonincreasing, and

semi-stable solution of(1.16λ,p) for someλ > 0. Then,λ = λ∗ andv = u∗.

The nonlinearityf(u) = (1 + u)m, with m ≥ 1, satisfies all the assumptions in
parts (i) and (ii) of Theorem 1.5.

For Ω = B1, Damascelli and Sciunzi [DS04] recently used the moving planes
method to show that every regular solution of (1.16λ,p) is radially decreasing if
f is nonnegative, continuous in[0,∞), and locally Lipschitz in(0,∞). As a
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consequence, the minimal solutionuλ of (1.16λ,p) is radially decreasing. Letting
λ ↑ λ∗, it follows that the extremal solution is radially nonincreasing.

As a consequence of Theorem 1.5 and Proposition 1.3, we can identify the ex-
tremal solution and parameter for the pure power nonlinearity when1 < p < 2
andm ≥ 1 through a pure PDE argument. In the general casep > 1, the same
result has been proved, independently of ours, in [Fe04] by using phase plane
techniques.

Corollary 1.6. Assume thatΩ = B1 ⊂ R
N , 1 < p < 2, f(u) = (1 + u)m, and

m ≥ max{1, mcs(p)}. Then, the extremal solution and parameter of(1.16λ,p) are
u∗ = U# andλ∗ = λ#, whereU# andλ# are given by(1.14)and (1.15).

Remark 1.7. In [San05] the second author studies the regularity of the extremal
solution to problem (1.16λ,p) in smooth bounded domains whenp ≥ 2 and(f(u)−
f(0))1/(p−1) is a positive, increasing, and convex function satisfying (1.17).
[San05] establishes the boundedness of the extremal solution wheneverN <
p+ p/(p− 1), extending an important work of Nedev [Ne00] forp = 2. Note that
these two works make no additional growth assumption onf besides the convexity
hypothesis above.

The first author and Capella [CC05] prove optimal results forthe regularity of
semi-stable solutions of (1.12) whenΩ = B1 andf = f(u) is a general locally
Lipschitz function. For instance, [CC05] establishes thatevery radial semi-stable
solution is bounded ifN ≤ 9. In general bounded domains ofR

N it is still
an open problem to prove (or disprove) the boundedness of every semi-stable
solution when4 ≤ N ≤ 9 and p = 2. On the other hand, the authors and
Capella [CCS05] extend the radial results of [CC05] forp = 2 to the casep > 1
obtaining, for instance, the boundedness of every radial semi-stable solution when
N < p+ 4p/(p− 1).

The paper is organized as follows. In section 2 we study the first and second
variation of energy in appropriate closed convex sets ofW 1,p

0 (Ω). Section 3 is
concerned with some regularity results for thep-Laplacian and with the proof
of theL∞ estimate of Theorem 1.2. In section 4 we establish Theorem 1.4 on
minimal and extremal solutions. Finally, in section 5 we prove Proposition 1.3,
Theorem 1.5, and Corollary 1.6.
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2.First and second variation of energy
We consider

{

−∆pu = f(x, u) in Ω,
u = 0 on∂Ω,

(2.1)

wheref(x, t) is a nonnegative and nondecreasing function oft for a.e.x ∈ Ω.
We say thatu ∈ W 1,p

0 (Ω) is a supersolution of (2.1) iff(x, u) ∈ L1(Ω) and
−∆pu ≥ f(x, u) in the weak sense. Reversing the inequality one defines the
notion of subsolution.

Assume that there exist twoW 1,p
0 (Ω) functionsu andu (perhaps unbounded)

which are a sub and a supersolution of (2.1), respectively, such thatu ≤ u, and
consider the closed convex set

Mu,u := {v ∈ W 1,p
0 (Ω) : u ≤ v ≤ u a.e.}. (2.2)

We consider the energy functionalJ associated to (2.1)

J(v) :=
1

p

∫

Ω

|∇v|p −
∫

Ω

F (x, v), (2.3)

where

F (x, t) :=

∫ t

u(x)

f(x, s)ds. (2.4)

We note that the functionalJ defined here may be different from the one defined
in (1.5) and (1.6). We use the same notation for both functionals since there is not
risk of confusion. We also note that both functionals coincide whenu ≡ 0.

In the following result, we show thatJ is well defined and bounded from below
in Mu,u and that it attains its infimum at someu ∈ Mu,u, which is a solution of
(2.1). This result is standard whenu andu are bounded. Instead, here we allow
these functions to be unbounded. The casep = 2 has been studied in [CM96],
a paper that, in addition, introduces a truncated energy functional which satisfies
the Palais-Smale condition inW 1,2

0 (Ω).

Proposition 2.1. Assume thatf(x, t) is nonnegative and nondecreasing int for
a.e.x ∈ Ω. Letu andu be a subsolution and a supersolution of(2.1), respectively,
such thatu ≤ u. LetMu,u be defined by(2.2)and considerJ : Mu,u → R defined
by (2.3)and (2.4). Then, the following assertions hold:

(i) J is well defined inMu,u, bounded from below, coercive, and weakly lower
semicontinuous inMu,u. Moreover,J attains its infimum at someu ∈Mu,u, which
is a solution of(2.1).
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(ii) There exists a solutionum of (2.1), with u ≤ um ≤ u, which is minimal
among all possible supersolutionsv satisfyingu ≤ v.

Proof: (i) First, we claim thatv 7−→ f(x, v) defines a (uniformly) bounded map
fromMu,u toW−1,p′(Ω). Indeed, letv ∈Mu,u andϕ ∈ C∞

c (Ω). Using thatf(x, t)
is nonnegative and nondecreasing int for a.e.x ∈ Ω, thatu is a supersolution of
(2.1), and Ḧolder inequality, we get

∣

∣

∣

∣

∫

Ω

f(x, v)ϕ

∣

∣

∣

∣

≤
∫

Ω

f(x, u)|ϕ| ≤
∫

Ω

|∇u|p−2∇u · ∇|ϕ|
≤ ‖∇u‖p−1

p ‖∇ϕ‖p.
(2.5)

Hence, the claim and

‖f(x, v)‖W−1,p′(Ω) ≤ ‖∇u‖p−1
p

follow by a standard density argument.
Using the definition ofF and (2.5) with0 ≤ ϕ = v − u, we getF (x, v) ≥ 0

and
∫

Ω

F (x, v) ≤
∫

Ω

f(x, v)(v− u) ≤ ‖∇u‖p−1
p ‖∇(v − u)‖p. (2.6)

From (2.6) it is easy to show thatJ is well defined inMu,u, bounded from below,
and coercive. To prove thatJ is weakly lower semicontinuous, it suffices to show
that

∫

Ω

F (x, vm) →
∫

Ω

F (x, v)

if vm ∈Mu,u, vm ⇀ v weakly inMu,u. Noting that

|F (x, vm)| =

∫ vm

u

f(x, s)ds ≤ f(x, u)(u− u),

and that the right hand side of the last inequality belongs toL1(Ω) by (2.6) applied
with v = u, we may appeal to the dominated convergence theorem to conclude.
As a consequence, we obtain thatJ attains its infimum at someu ∈Mu,u.

Finally, we prove that every minimizeru in Mu,u is a solution of (2.1) following
a method used forp = 2 in [Stru90]. For this, we need the following preliminary
observation.

Let v ∈ Mu,u, ψ ∈ W 1,p
0 (Ω) with ψ 6≡ 0, and assume thatv + tψ ∈ Mu,u for

all t ∈ [0, t0], with t0 > 0. In such case, it is easy to prove thatJ(v + tψ) is
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differentiable with respect tot for t ∈ [0, t0], and its derivative is given by

d

dt
J(v + tψ) =

∫

Ω

|∇(v + tψ)|p−2∇(v + tψ) · ∇ψ −
∫

Ω

f(x, v + tψ)ψ (2.7)

for all t ∈ [0, t0]. That is,J is differentiable atv in the directiontψ, t ≥ 0, and its
directional derivative is given by

J ′(v)ψ :=

∫

Ω

|∇v|p−2∇v · ∇ψ −
∫

Ω

f(x, v)ψ. (2.8)

The notationJ ′(v) that we have introduced is not meant to be understood as that
the functionalJ is differentiable (note thatJ is not even defined in an open set of
W 1,p

0 (Ω)). What we mean is first that the directional derivative exists and that it
is given by the right hand side of (2.8). Second, that the right hand side of (2.8)
defines a continuous linear form, which we denote byJ ′(v), onW 1,p

0 (Ω). Note
also thatJ ′(v) = 0 (in the sense of forms) means exactly thatv is a solution of
(2.1).

To show that every minimizeru inMu,u is a solution, letϕ ∈ C∞
c (Ω) andε > 0.

Consider

vε = min{u,max{u, u+ εϕ}} = u+ εϕ− ϕε + ϕε ∈Mu,u

with ϕε = (u+εϕ−u)+ andϕε = (u+εϕ−u)−. Noting thatu+t(vε−u) ∈Mu,u

for all t ∈ [0, 1] we obtain thatJ is differentiable atu in the directionvε−u. Since
u minimizesJ in Mu,u, we have

0 ≤ J ′(u)(vε − u),

and hence, sinceJ ′(u) is a linear form onW 1,p
0 (Ω),

0 ≤ εJ ′(u)ϕ− J ′(u)ϕε + J ′(u)ϕε.

As a consequence, we obtain

J ′(u)ϕ ≥ 1

ε
[J ′(u)ϕε − J ′(u)ϕε]. (2.9)

Next we show thatJ ′(u)ϕε ≥ o(ε), meaning thatlim infε→0 ε
−1J ′(u)ϕε ≥ 0.

Indeed, sinceu is a supersolution of (2.1) andϕε ≥ 0, we have

J ′(u)ϕε ≥ 0.
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Therefore

J ′(u)ϕε ≥ (J ′(u) − J ′(u))ϕε

=

∫

Ω

(|∇u|p−2∇u− |∇u|p−2∇u) · ∇ϕε −
∫

Ω

(f(x, u)− f(x, u))ϕε

≥
∫

Ω

(|∇u|p−2∇u− |∇u|p−2∇u) · ∇ϕε, (2.10)

where in the last inequality we have used thatf is nondecreasing. Usingϕε =
(u+ εϕ− u)+ in (2.10), and also

(|x|p−2x− |y|p−2y) · (x− y) ≥ 0 for all x, y ∈ R
N

(see for instance Appendix A in [Pe97] for a proof of this inequality) withx = ∇u
andy = ∇u, we obtain

J ′(u)ϕε ≥ ε

∫

Ωε

(|∇u|p−2∇u− |∇u|p−2∇u) · ∇ϕ,

whereΩε = {x ∈ Ω : u(x) < u(x) ≤ u(x) + εϕ(x)}.
Noting that the measure ofΩε tends to zero asε goes to zero, we obtain that

J ′(u)ϕε ≥ o(ε). Proceeding in an analogous way, we also obtain thatJ ′(u)ϕε ≤
o(ε). Therefore, from (2.9) we obtainJ ′(u)ϕ ≥ 0 for all ϕ ∈ C∞

c (Ω). The
previous inequality applied to−ϕ instead ofϕ givesJ ′(u)ϕ = 0 for all ϕ ∈
C∞

c (Ω). That is,u is a solution of (2.1).
(ii) Let u0 := u and remember thatf(x, u) ∈ W−1,p′(Ω). Letu1 be the solution

of
{

−∆pu
1 = f(x, u0) in Ω,

u1 = 0 on∂Ω.

Since−∆pu
0 ≤ f(x, u0) ≤ f(x, u) ≤ −∆pu, we have thatu = u0 ≤ u1 ≤ u

by the weak comparison principle (see for instance AppendixA in [Pe97] for a
proof). Moreover, sincef(x, t) is nondecreasing int, one has thatu1 is a subso-
lution of (2.1). In addition, we know thatf(x, u1) ∈ W−1,p′(Ω).

Now, givenun−1, we take the solutionun of
{

−∆pu
n = f(x, un−1) in Ω,

un = 0 on∂Ω.
(2.11)
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We obtain a nondecreasing sequence{un} such thatu ≤ un ≤ u andf(x, un)
belongs toW−1,p′(Ω) for all n ≥ 0. Moreover, since{un} is nondecreasing and
∫

Ω

|∇un|p =

∫

Ω

f(x, un−1)un ≤
∫

Ω

f(x, u)u ≤ ‖f(x, u)‖W−1,p′(Ω)‖u‖W 1,p
0 (Ω)

for all n, we have thatun ⇀ um weakly inW 1,p
0 (Ω), for some functionum ∈Mu,u.

In addition, we have monotone convergence a.e. ofun towardsum, and hence also
monotone convergence off(x, un) to f(x, um). This last convergence is also in
theL1(Ω) sense, since0 ≤ f(x, un) ≤ f(x, u) ∈ L1(Ω) for all n.

In this situation, the results of Boccardo and Murat [BM92] (Theorem 2.1 and
Remark 2.1 in [BM92]) establish that∇un converges strongly inLq for all q < p.
This allows to pass to the limit in the left hand side (2.11) and deduce that thatum

is a solution of (2.1). Note that since thep-Laplacian is a nonlinear operator, the
weak convergence of the gradients is not enough to pass to thelimit.

It is also clear thatum is minimal, since every supersolution of (2.1) could be
taken asu in the iterative scheme above (note that theum constructed does not
depend on the choice ofu).

Our following result concerns the second variation ofJ . Under some conditions
on f , it establishes that every absolute minimizer ofJ in M0,u is semi-stable in
the sense of Definition 1.1.

Proposition 2.2. Assume thatf(x, t) is nonnegative, nondecreasing andC1 in t
for a.e.x ∈ Ω, and thatf(·, 0) is not identically zero. Letu be a supersolution of
(1.1p), and assume that there existsh ∈ L1(Ω) such that

fu(x, w)u2 ≤ h in Ω for all w ∈M0,u, (2.12)

whereM0,u is defined by(2.2).
We then have that every absolute minimizeru of J in M0,u is semi-stable. In

addition, the minimal solution of(1.1p) in M0,u is semi-stable.

Proof: By Proposition 2.1 we know that every absolute minimizeru of J in M0,u

is a solution of (1.1p) (and also that at least one minimizer always exists). In
addition,u 6≡ 0 sincef(·, 0) 6≡ 0 by hypothesis. We consider two cases:

Case 1. Assumep ≥ 2 and letψ ∈ C∞
c (Ω) be nonnegative. Since the support

of ψ is a compact subset ofΩ, we have thatu ≥ u ≥ c a.e. in suppψ for some
positive constantc. This follows from the weak Harnack inequality of Trudinger
(see [Tr67], or [MZ97] whenp ≤ N ; note that ifp > N thenu is continuous and
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positive, thus the statement is trivial). It also follows from a quantitative version
of the strong maximum principle in [Mo99].

Therefore there existst0 > 0 such thatu + t(−ψ) ∈ M0,u ⊂ M0,u for all
t ∈ [0, t0]. As a consequence, we have (2.7),i.e.,

d

dt
J(u− tψ) = −

∫

Ω

|∇(u− tψ)|p−2∇(u− tψ) ·∇ψ+

∫

Ω

f(x, u− tψ)ψ, (2.13)

for all t ∈ [0, t0]. It is easy to show, using Ḧolder inequality, that the first integral
in (2.13) is a continuously differentiable function oft in [0, t0]. Moreover, since
ψ ∈ C∞

c (Ω) and

0 ≤ fu(x, u− tψ)ψ2 ≤
(

ψ

c

)2

fu(x, u− tψ)u2 ≤
(

ψ

c

)2

h(x) ∈ L1(Ω)

by hypothesis (2.12), we have that the second integral in (2.13) is also continu-
ously differentiable. Hence,J(u−tψ) is twice continuously differentiable respect
to t for all t ∈ [0, t0] and

d2

dt2
J(u− tψ)

=

∫

Ω

|∇(u− tψ)|p−2

{

(p− 2)(
∇(u− tψ)

|∇(u− tψ)| · ∇ψ)2 + |∇ψ|2
}

−
∫

Ω

fu(x, u− tψ)ψ2 for all t ∈ [0, t0].

Sinceu is an absolute minimizer ofJ inM0,u andJ ′(u) = 0, we obtain (1.8) (that
is, J ′′(u)(ψ, ψ) ≥ 0, whereJ ′′(u) is the quadratic form onW 1,p

0 (Ω) given by the
left hand side of (1.8)) for all nonnegativeψ ∈ C∞

c (Ω). By density,J ′′(u)(ψ, ψ) ≥
0 also holds for all nonnegativeψ ∈ W 1,p

0 (Ω). Now, writing anyψ ∈ W 1,p
0 (Ω) as

its positive part minus its negative part and using thatJ ′′(u) is a quadratic form,
we conclude that (1.8) also holds for allψ ∈ W 1,p

0 (Ω) = Au.
Case 2. Assume1 < p < 2 and letψ ∈ Au be nonnegative. By definition ofAu

there exists a positive constantC such that0 ≤ ψ ≤ Cu and|∇ψ| ≤ C|∇u|. In
particular,

(1 − Ct)u ≤ u− tψ ≤ u and (1 − Ct)|∇u| ≤ |∇(u− tψ)| ≤ (1 + Ct)|∇u|
for all t ≥ 0. Therefore, for allt ∈ [0, 1/C), u − tψ ∈ M0,u ⊂ M0,u, and
∇(u− tψ) = 0 if and only if∇u = 0. Thus, from (2.7) witht0 = 1/C, we obtain

d

dt
J(u− tψ) = −

∫

{∇u 6=0}
|∇(u− tψ)|p−2∇(u− tψ) · ∇ψ +

∫

Ω

f(x, u− tψ)ψ,
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for all t ∈ [0, 1/C). Now, using that

|∇(u− tψ)|p−2|∇ψ|2 ≤ C2

(1 − Ct)2−p
|∇u|p

and
fu(x, u− tψ)ψ2 ≤ C2fu(x, u− tψ)u2 ≤ C2h(x) ∈ L1(Ω)

by hypothesis, it is easy to show, using the dominated convergence theorem, that
J(u− tψ) is twice continuously differentiable int ∈ [0, 1/C) and

d2

dt2
J(u− tψ)

=

∫

{∇u 6=0}
|∇(u− tψ)|p−2

{

(p− 2)(
∇(u− tψ)

|∇(u− tψ)| · ∇ψ)2 + |∇ψ|2
}

−
∫

Ω

fu(x, u− tψ)ψ2 for all t ∈ [0, 1/C).

(2.14)

Sinceu is an absolute minimizer ofJ in M0,u andJ ′(u) = 0, we obtain that
(2.14) is nonnegative att = 0 for all 0 ≤ ψ ∈ Au. That is,J ′′(u)(ψ, ψ) ≥ 0
for all nonnegativeψ ∈ Au, whereJ ′′(u) is the quadratic form defined by the left
hand side of (1.8). Noting, as in case 1, thatJ ′′(u) is a quadratic form, and that the
positive and negative parts of a functionψ ∈ Au also belong toAu, we conclude
that (1.8) holds for allψ ∈ Au. Hence,u is a semi-stable solution of (2.1).

Finally, since the minimal solutionum of (1.1p) (obtained in Proposition 2.1(ii))
is the unique solution of this problem inM0,um

, and therefore the absolute mini-
mizer ofJ in M0,um

, we conclude from the previous result (applied withu = um)
thatum is semi-stable.

3.L∞ estimate: proof of Theorem 1.2
To prove our regularity result we will use the following lemma from [Gre02]

and [ABFOT03].

Lemma 3.1.Assume thatg ∈ Lq(Ω) for someq ≥ 1 and thatu is a solution of
{

−∆pu = g(x) in Ω,
u = 0 on∂Ω.

(3.1)

The following assertions hold:
(i) If q > N/p thenu ∈ L∞(Ω). Moreover,

‖u‖∞ ≤ C‖g‖
1

p−1
q ,
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whereC is a constant depending only onN , p, q, and|Ω|.
(ii) If q = N/p thenu ∈ Lr(Ω) for all 1 ≤ r < +∞. Moreover,

‖u‖r ≤ C‖g‖
1

p−1
q ,

whereC is a constant depending only onN , p, r, and|Ω|.
(iii) If 1 ≤ q < N/p then |u|r ∈ L1(Ω) for all 0 < r < r1, wherer1 :=

(p− 1)Nq/(N − qp). Moreover,

‖|u|r‖1/r
1 ≤ C‖g‖

1
p−1
q ,

whereC is a constant depending only onN , p, q, r, and|Ω|.

Note that in part (iii),r may be less than 1. This case,0 < r < 1, is not
considered in Corollary 1 of [Gre02], but it follows easily from Theorem 1 of
[Gre02]. This case is however considered in [ABFOT03]. Here, for the sake of
completeness, we include the proof of Lemma 3.1. We have slightly modified the
proofs in [Gre02] and [ABFOT03], in the spirit of Talenti [Ta79], using Jensen
inequality instead of Ḧolder inequality.

Proof of Lemma3.1: Let u ∈ W 1,p
0 (Ω) be a solution of (3.1). A consequence

of the Fleming-Rishel formula [FR60] and the isoperimetricinequality for func-
tions of bounded variation (and hence for functions inW 1,p

0 (Ω)) is the following
inequality:

CV (t)(N−1)/N ≤ P (t) =
d

dt

∫

{|u|≤t}
|∇u|dx for a.e.t > 0, (3.2)

whereC = N |B1|1/N , V (t) = |{x ∈ Ω : |u| > t}|, andP (t) stands for the
perimeter in the sense of De Giorgi,i.e., P (t) is the total variation of the charac-
teristic function of{|u| > t}. A proof of this inequality can be found in [Ta79],
page 172. We also note thatV (t) is differentiable almost everywhere since it is a
nonincreasing function.

Let

θh,t(s) :=







0 if 0 ≤ s ≤ t,
(s− t)/h if t < s < t+ h,
1 if s ≥ t+ h,
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andθh,t(−s) := −θh,t(s) for s ≥ 0. Multiplying (3.1) byθh,t(u) and using Jensen
inequality we obtain
(

h

|Eh,t|

)p−1
(

1

h

∫

Eh,t

|∇u|dx
)p

≤ 1

h

∫

Eh,t

|∇u|p dx =

∫

{|u|>t}
g(x)θh,t(u) dx,

whereEh,t := {t < u ≤ t + h}. Lettingh ↓ 0 and using Ḧolder inequality, we
have

1

(−V ′(t))p−1

(

d

dt

∫

{|u|≤t}
|∇u|dx

)p

≤
∫

{|u|>t}
|g(x)| dx ≤ ‖g‖qV (t)1/q′. (3.3)

Therefore, from (3.2) and (3.3), we obtain

CpV (t)p(N−1)/N

(−V ′(t))p−1
≤ P (t)p

(−V ′(t))p−1
≤ ‖g‖qV (t)1/q′,

or equivalently,

1 ≤
(‖g‖q

Cp

)
1

p−1

V (t)−1+ 1
p−1 ( p

N
− 1

q
)(−V ′(t)) (3.4)

for a.e.t > 0.
Case 1. Ifq > N/p, then (3.4) leads toV (t) = 0 for all

t ≥ t0 = −r1
(‖g‖q

Cp

)
1

p−1

|Ω|−
1
r1 ,

wherer1 < 0 is defined in statement (iii) of Lemma 3.1. This yields assertion (i).
Case 2. Ifq = N/p, then (3.4) leads to

V (t) ≤ |Ω| exp

(

−
(

Cp

‖g‖q

)
1

p−1

t

)

.

Case 3. If1 ≤ q < N/p, then (3.4) gives that

V (t) ≤ (C1t+ C2)
−r1,

where

C1 =
1

r1

(

Cp

‖g‖q

)
1

p−1

and C2 = |Ω|−
1
r1 .

We conclude the proof in cases 2 and 3 noting that
∫

Ω

|u|rdx = r

∫ ∞

0

tr−1V (t)dt,
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and using the estimates obtained forV (t).

To establish Theorem 1.2 we will first prove an extension of Lemma 1.17 in
[CR75] to the casep > 1.

Lemma 3.2. Assume thatf satisfies(1.2). Let u be a solution of(1.1p). If
f(x, u) ∈ Lq0(Ω) for someq0 ≥ 1 satisfying

(

1 − p− 1

m

)

N < q0p, (3.5)

then

‖u‖∞ ≤ C, (3.6)

whereC is a constant depending only onN , m, p, q0, |Ω|, c, and‖f(x, u)‖q0
.

Herec is the constant in(1.2).

Proof: If N < q0p then Lemma 3.1(i) leads automatically to (3.6). IfN ≥ q0p
then Lemma 3.1(ii)-(iii) gives that

|u|r ∈ L1(Ω) for all 0 < r < r1 = (p− 1)
Nq0

N − q0p
.

From (1.2) it follows that

f(x, u) ∈ Lq(Ω) for all 1 ≤ q < q1 :=
p− 1

m

Nq0
N − q0p

.

Note thatq1 > q0 ≥ 1 thanks to (3.5). IfN = q0p then we have thatf(x, u) ∈
Lq(Ω) for all 1 ≤ q < +∞. By Lemma 3.1(i) we obtain (3.6).

AssumeN > q0p. By (3.5) we have thatq1 > q0, and then the previous argu-
ment may be repeated successively to obtain an increasing sequence

qk+1 :=
p− 1

m

Nqk
N − qkp

, 0 ≤ k ≤ k0, (3.7)

for somek0 ≤ +∞, such thatf(x, u) ∈ Lq if q < qk for somek ≤ k0. Here
k0 +1 denotes the number of times that we can apply this algorithm.Note that we
can constructqk+1 wheneverN > qkp.

We claim thatk0 < +∞. More precisely, there existsk0 = k0(N,m, p, q0) such
thatN ≤ qk0

p. Indeed, otherwise{qk}k∈N is an increasing sequence with limit

q∞ := lim
k→+∞

qk =

(

1 − p− 1

m

)

N

p
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by (3.7). Since{qk} is increasing we have thatq0 ≤ q∞, a contradiction with
(3.5). Therefore we may assume the existence ofk0 < +∞ such thatN ≤ qk0

p
andf(x, u) ∈ Lq(Ω) for all 1 ≤ q < qk0

.
If N = qk0

p then we have thatf(x, u) ∈ Lq(Ω) for all 1 ≤ q < +∞. By
Lemma 3.1(i) we obtain (3.6). IfN < qk0

p one can choose1 ≤ q < qk0
such that

N < qp and apply again Lemma 3.1(i) to conclude the proof.

Remark 3.3. If u is a solution of (1.1p) then, by definition,f(x, u) ∈ L1(Ω). As
a consequence, ifm ≤ p − 1 then condition (3.5) holds withq0 = 1, and hence,
in this case, every solution of (1.1p) is bounded.

Using the semi-stability condition (1.8) and Lemma 3.2 we now prove Theorem
1.2. For future results and proofs in the article, it is important to state how the
constantC in (1.12) and (1.11) depends on the nonlinearityf .

Remark 3.4. In (1.12) and (1.11),C depends onf only through the exponentm
in (1.2), the constantc in (1.2), and the constantL defined as follows.L is the
smallest constant such that, for a.e.x ∈ Ω, we have

ft(x, t)t

f(x, t)
≥ m for all t ≥ L, (3.8)

wherem ∈ (p−1, m) is a constant depending only onN ,m, andp, which will be
obtained in the proof of Theorem 1.2. Of course, the existence ofL is guaranteed
by hypothesis (1.10), sincem < m.

Proof of Theorem1.2: We assume thatm > p − 1 and thatu is a semi-stable
solution of (1.1p). For a givenk > 0 we define the truncation function

Tk(s) :=

{

s if |s| ≤ k,
k sign(s) if |s| > k.

Forα > 1 (which will be chosen later depending only onN , m, andp), let ϕ =
uTk(u)

2α−2/(2α− 1) andψ = uTk(u)
α−1, α > 1. We note thatϕ, ψ ∈ W 1,p

0 (Ω),

0 ≤ ψ ≤ kα−1u and |∇ψ| ≤ αkα−1|∇u|.
In particularψ ∈ Au.

Multiplying (1.1p) by ϕ and integrating, we obtain
∫

{u≤k}
|∇u|pu2α−2 +

k2α−2

2α− 1

∫

{u>k}
|∇u|p =

1

2α− 1

∫

Ω

f(x, u)uTk(u)
2α−2.
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Using this equality and the semi-stability condition (1.8)applied with the previous
choice ofψ ∈ Au, we obtain

(p− 1)
α2

2α− 1

∫

Ω

f(x, u)uTk(u)
2α−2

= (p− 1)α2

(
∫

{u≤k}
|∇u|pu2α−2 +

k2α−2

2α− 1

∫

{u>k}
|∇u|p

)

≥ (p− 1)

(

α2

∫

{u≤k}
|∇u|pu2α−2 + k2α−2

∫

{u>k}
|∇u|p

)

≥
∫

Ω

fu(x, u)u
2Tk(u)

2α−2.

(3.9)

Form ∈ (p− 1, m) (that we will choose later depending only onN , m, andp)
letL be the smallest constant satisfying (3.8) for a.e.x ∈ Ω. By assumption (1.2)
and the definition ofL we have

ft(x, t)t ≥ mf(x, t)−mc(1 + L)mχ{t≤L} for all t ≥ 0 and a.e.x ∈ Ω.

Using this inequality in (3.9) we obtain

(m− (p− 1)
α2

2α− 1
)

∫

Ω

f(x, u)uTk(u)
2α−2 ≤ mc(1 + L)mL2α−1|Ω|,

for everyk > 0. Now, we note that(p − 1)α2/(2α − 1) < m for everyα ∈
(m/(p− 1), α(m)), where

α(m) :=
m+

√

m(m− (p− 1))

p− 1
. (3.10)

Therefore
∫

Ω

f(x, u)u2α−1 ≤ C for all α ∈ (m/(p− 1), α(m)), (3.11)

whereC, here and in the rest of the proof, is a constant depending only onN , m,
p, |Ω|, L, andc (remember thatα andm will be chosen later depending only on
N ,m, andp).

By hypothesis (1.2), (3.11) leads to
∫

Ω

|f(x, u)|q ≤ C for all 1 ≤ q <
2α(m) +m− 1

m
. (3.12)

Choose firstm to be any number in(p− 1, m), and chooseα to be any number
in (m/(p− 1), α(m)). Take anyq > 1 satisfying (3.12). Multiplying (1.1p) by u,
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and using (3.11) and (3.12), we have
∫

Ω

|∇u|p =

∫

Ω

f(x, u)u ≤
∫

{u≤1}
f(x, u) +

∫

{u≥1}
f(x, u)u2α−1

≤ ‖f(x, u)‖q|Ω|1/q′ +

∫

Ω

f(x, u)u2α−1 ≤ C,

that establishes (1.11).
To prove (1.12), assume in addition thatm < mcs(p). As we said in the in-

troduction this condition is equivalent to (1.13), and a simple computation shows
that it is also equivalent to

(

1 − p− 1

m

)

N < p
2α(m) +m− 1

m
, (3.13)

whereα(m) is defined by expression (3.10). Choosem = m(N,m, p) ∈ (p −
1, m) sufficiently close tom such that (3.13) holds when replacingm bym in its
right hand side. Using (3.12), we can chooseq0 = q0(N,m, p) such that

1 ≤ q0 <
2α(m) +m− 1

m
,

f(x, u) ∈ Lq0(Ω), and
(

1 − p− 1

m

)

N < pq0.

Using Lemma 3.2 and (3.12) we obtain that‖u‖∞ ≤ C.

The following remark will be useful in future sections.

Remark 3.5. Using (3.9) and (3.11) (recall that they hold for everym ∈ (p −
1, m)), we have that

∫

Ω

fu(x, u)u
2α ≤ (p− 1)

α2

2α− 1

∫

Ω

f(x, u)u2α−1 ≤ C

for all α ∈ (m/(p− 1), α(m)). Hence, choosing anyα ∈ (m/(p− 1), α(m)) and
noting thatm > p− 1, we obtain

∫

Ω

fu(x, u)u
2 ≤ C.

Moreover, as a consequence of (3.10) and (3.12) we obtain that
∫

Ω

|f(x, u)|(p∗)′ ≤ C, (3.14)
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since(p∗)′ < (2α(m) +m− 1)/m for everym > p− 1.
In the last two inequalitiesC is a constant depending only onN , m, p, |Ω|, L,

andc.

4.Minimal and extremal solutions: proof of Theorem 1.4
For p = 2 andf convex, the existence of the family of minimal solutions can

be obtained using the Implicit Function Theorem. Due to the degeneracy of the
p-Laplacian, it is not clear that this method can be used forp 6= 2. Instead, we
use a monotone iteration argument following the ideas of [GP92, GPP94], which
study (1.16λ,p) with f(u) = eu. To prove Theorem 1.4(i) we will also use the
results from section 2 on the first and second variation, as well as the fact that the
first eigenvalue of thep-Laplacian is isolated.

To establish Theorem 1.4(ii) we first prove thatu∗ = limλ↑λ∗ uλ is a solution of
the extremal problem. This will be consequence of theW 1,p estimates of Theo-
rem 1.2 foruλ, which will turn out to be independent ofλ. Then we will simply
apply Theorem 1.2 and Proposition 2.2 tou∗.

Proof of Theorem1.4: Assume thatf = f(u) is an increasingC1 function satis-
fying f(0) > 0 and (1.17). We will prove the result on several steps.

Step 1. Sincef(0) > 0, we have that0 is a subsolution of (1.16λ,p) and it is not
a solution. We consider the problem

{

−∆pu
0 = f(0) in Ω,

u0 = 0 on∂Ω.

Sincef(0) ∈ L∞(Ω) this problem has a unique positive regular solutionu0 ∈
C1,β(Ω). LetM = maxΩ u

0 and takeλ < f(0)/f(M). Then
{

−∆pu
0 = f(0) > λf(M) ≥ λf(u0) in Ω,

u0 = 0 on∂Ω,

i.e., u0 is a supersolution of (1.16λ,p) if λ is small enough. We use Propositions 2.1
and 2.2 withu = 0 andu = u0 ∈ L∞(Ω) to obtain the existence of the minimal
solutionuλ ∈ W 1,p

0 (Ω) and its semi-stability. Since0 ≤ uλ ≤ u0 ∈ L∞(Ω), we
have thatuλ is a regular solution of (1.16λ,p).

Moreover, we note that each regular solution of (1.16λ0,p) is a supersolution to
problem (1.16λ,p) for λ ∈ (0, λ0). Hence, by the previous argument the set of
λ ∈ (0,∞) such that problem (1.16λ,p) has a regular solution is an interval. In
additionuλ is increasing inλ, by minimality.
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Step 2. Now we will prove that

λ∗ := sup{λ : (1.16λ,p) admits a regular solution} < +∞. (4.1)

For this, we prove that problem (1.16λ,p) has no regular solution ifλ > λ̃ :=
max{λ1, λ1/α}, whereλ1 is the first eigenvalue of thep-Laplacian and

α := inf
t≥0

f(t)

tp−1
> 0.

We argue by contradiction, that is, we assume that (1.16λ,p) admits a regular so-
lution u for λ > λ̃. Let v1 ∈ C1,β(Ω) be a positive eigenfunction associated with
the first eigenvalueλ1 of thep-Laplacian,i.e.,

{

−∆pv1 = λ1|v1|p−2v1 in Ω,
v1 = 0 on∂Ω,

such that‖v1‖∞ ≤ f(0)1/(p−1). Note that

−∆pv1 = λ1v
p−1
1 ≤ λ1f(0) < λf(0) ≤ λf(u) = −∆pu.

By the weak comparison principle for thep-Laplacian (see for instance Appen-
dix A of [Pe97] for a proof) we have thatv1 ≤ u. Letv2 be the solution to problem

{

−∆pv2 = (λ1 + ε)vp−1
1 in Ω,

v2 = 0 on∂Ω.

For ε small enough we obtain

−∆pv2 = (λ1 + ε)vp−1
1 ≤ (λ1 + ε)up−1 ≤ λf(u) = −∆pu

and
−∆pv1 ≤ (λ1 + ε)vp−1

1 = −∆pv2.

Using the weak comparison principle again we obtainv1 ≤ v2 ≤ u. Now, let us
consider the solutions of

{

−∆pvn = (λ1 + ε)vp−1
n−1 in Ω,

vn = 0 on∂Ω,

obtaining an increasing sequence{vn} such thatv1 ≤ vn−1 ≤ vn ≤ u ∈ C1,β(Ω).
The increasing limitw ∈ W 1,p

0 (Ω) of the sequence{vn} is also the limit in theLq

sense for allq < +∞. As a consequence (see part (ii) below for a more general
argument), we deduce thatw solves the problem

{

−∆pw = (λ1 + ε)wp−1 in Ω,
w = 0 on∂Ω.
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This is impossible ifε is small enough since the first eigenvalue for thep-Laplacian
is isolated (see [A87] or [Ba88]). Thereforeλ∗ ≤ λ̃ < +∞.

(ii) Assume thatf satisfies (1.2) and (1.10) for somem > p − 1. We will
prove thatu∗ := limλ↑λ∗ uλ is a solution of (1.16λ∗

, p). Applying Remark 3.5 to
uλ for λ ∈ (0, λ∗) (and, of course, withf replaced byλf ) we obtain thatf(uλ)
converges tof(u∗) in L(p∗)′(Ω), since‖f(uλ)‖(p∗)′ ≤ C for some constantC
independent ofλ. Noting thatL(p∗)′(Ω) ⊂ W−1,p′(Ω) and that(−∆p)

−1 is a
continuous operator fromW−1,p′(Ω) ontoW 1,p

0 (Ω) (see for instance [Pe97]), we
obtain thatuλ converges strongly tou∗ in W 1,p

0 (Ω). Therefore we obtain that for
eachϕ ∈ C∞

c (Ω),
∫

Ω

|∇u∗|p−2∇u∗ · ∇ϕ = lim
λ↑λ∗

∫

Ω

|∇uλ|p−2∇uλ · ∇ϕ

= lim
λ↑λ∗

λ

∫

Ω

f(uλ)ϕ = λ∗
∫

Ω

f(u∗)ϕ.

That is,u∗ is a solution of (1.16λ∗

, p).
Finally, letuλ∗ be the minimal solution of (1.16λ∗

, p). Noting that

uλ ≤ uλ∗ ≤ u∗ = lim
λ↑λ∗

uλ for all λ < λ∗,

we obtain thatu∗ = uλ∗. This proves part (ii1).
To establish (ii2) note that minimal solutionsuλ are semi-stable for everyλ ∈

(0, λ∗) by Proposition 2.2, that is,
∫

{∇uλ 6=0}
|∇uλ|p−2

{

(p− 2)(
∇uλ

|∇uλ|
· ∇ψ)2 + |∇ψ|2

}

− λ

∫

Ω

f ′(uλ)ψ
2 ≥ 0

for everyψ ∈ Auλ
. If p ≥ 2 thenAuλ

= W 1,p
0 (Ω). Noting thatf ′ ≥ 0, using

Fatou’s lemma and the convergence inW 1,p
0 proved above, and taking the limit as

λ→ λ∗, we obtain thatu∗ is a semi-stable solution of the extremal problem.
Assume1 < p < 2 and thatf is convex. Note that

λ∗f ′(w)(u∗)2 ≤ λ∗f ′(u∗)(u∗)2 =: h for all w ∈M0,u∗,

whereM0,u∗ = {v ∈ W 1,p
0 (Ω) : 0 ≤ v ≤ u∗}. Sinceh = λ∗f ′(u∗)(u∗)2 belongs

toL1(Ω) by monotone convergence and Remark 3.5, Proposition 2.2 gives thatu∗

is semi-stable.
To show (ii3), we simply apply Theorem 1.2. Sincem < mcs(p), we have

u∗ ∈ L∞(Ω).
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(iii) Assume thatf(t)
1

p−1 is a convex function satisfying (1.18). By Proposition
4.1 (given below), ifv is a solution of (1.16λ,p) then there exists a regular solution
of (1.16(1−ε)λ,p) for eachε ∈ (0, 1). By the definition (4.1) ofλ∗ we deduce
statement (iii).

In order to prove Theorem 1.4(iii) we have used the followingresult. Its proof
follows the ideas of Theorem 3 in [BCMR96].

Proposition 4.1.Under the assumptions of Theorem1.4(iii), if there exists a so-
lution U of (1.16λ,p) then, for everyε ∈ (0, 1), problem(1.16(1−ε)λ,p) admits a
regular solution.

Proof: Let us defineg(u) := f(u)
1

p−1 ,

h(u) :=

∫ u

0

ds

g(s)
, h̃(u) :=

h(u)

(1 − ε)
1

p−1

, and Φ(u) := h̃−1(h(u)).

We note thatΦ(0) = 0, 0 ≤ Φ(u) ≤ u, Φ(+∞) < +∞,

Φ′(u) = (1 − ε)
1

p−1
g(Φ(u))

g(u)
≤ 1,

and

Φ′′(u) = (1 − ε)
1

p−1
g′(Φ(u))Φ′(u)g(u)− g(Φ(u))g′(u)

g(u)2

= (1 − ε)
1

p−1g(Φ(u))
(1− ε)

1
p−1g′(Φ(u))− g′(u)

g(u)2
.

Using the convexity ofg and0 ≤ Φ(u) ≤ u, we obtain thatΦ′′ ≤ 0, and therefore
Φ is a concave bounded function. LetV := Φ(U). By Lemma 3.2 in [AP03] we
have

−∆pV = −∆pΦ(U) ≥ Φ′(U)p−1(−∆pU) = (1 − ε)λf(V )

in the weak sense. ThenV is a bounded supersolution of (1.16(1−ε)λ,p). It follows
from a monotone iteration argument (see the proof of Proposition 2.1(ii)) that
there exists a regular solutionu of (1.16(1−ε)λ,p) satisfying0 ≤ u ≤ V = Φ(U).

5.Characterization of singular extremal solutions
The rest of the paper is devoted to prove Proposition 1.3, Theorem 1.5, and

Corollary 1.6. In order to prove Proposition 1.3 we will use aHardy type in-
equality which is an immediate consequence of the Caffarelli-Kohn-Nirenberg
inequalities (see for instance [ACP04]).
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Proposition 5.1.LetB1 be the unit ball ofRN and letD1
0,α(B1) be the completion

ofC∞
c (B1) with respect to the norm

‖φ‖α :=

(
∫

B1

|x|−2α(|φ|2 + |∇φ|2)dx
)1/2

.

If α ∈ (−∞, (N − 2)/2), then
(

N − 2(α+ 1)

2

)2 ∫

B1

|x|−2(α+1)ϕ2dx ≤
∫

B1

|x|−2αϕ2
rdx, (5.1)

for all ϕ ∈ D1
0,α(B1), whereϕr denotes the radial derivative, and the constant

appearing in(5.1) is optimal(even among radial functions) and it is not achieved.

Proof: Even that (5.1) is standard and well known, we give the idea of the proof.
Let r = |x| andx = rσ. Integrating by parts, usingα < (N − 2)/2, and the
Cauchy-Schwarz inequality, we have
∫ 1

0

r−2(α+1)ϕ(rσ)2rN−1dr = − 2

N − 2(α+ 1)

∫ 1

0

r−2(α+1)+Nϕ(rσ)ϕr(rσ)dr

≤ 2

N − 2(α+ 1)

(
∫ 1

0

r−2(α+1)ϕ(rσ)2rN−1dr

)

1
2
(
∫ 1

0

r−2αϕr(rσ)2rN−1dr

)

1
2

.

Hence,
(

N − 2(α+ 1)

2

)2 ∫ 1

0

r−2(α+1)ϕ(rσ)2rN−1dr ≤
∫ 1

0

r−2αϕr(rσ)2rN−1dr.

Finally integrate with respect toσ to obtain (5.1). The optimality of the constant
appearing in the last inequality can be found in [ACP04].

Proof of Proposition1.3: AssumeN > p andm > (p − 1)N/(N − p). Let
U = U# andλ = λ# be given by (1.14) and (1.15), respectively, and letf(u) =
λ(1 + u)m.

(i) An easy computation shows thatU ∈ W 1,p
0 (B1) if and only if m > mc =

p∗ − 1.
Assumem > mc and note thatU ∈ C2(B1 \ {0}) satisfies (in the classical

sense) (1.1p) in B1 \ {0}. Takeξ ∈ C∞(RN) such thatξ ≡ 0 in B1, 0 ≤ ξ ≤ 1
in B2 \ B1, andξ ≡ 1 in R

N \ B2. Let ξδ(·) = ξ(·/δ) for everyδ > 0 and let
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ϕ ∈ C∞
c (B1). Multiplying (1.1p) in B1 \ {0} by ξδϕ and integrating by parts, we

have
∫

B1

ξδ|∇U |p−2∇U · ∇ϕ+

∫

B2δ\Bδ

ϕ|∇U |p−2∇U · ∇ξδ = λ

∫

B1

f(U)ξδϕ. (5.2)

SinceU ∈ W 1,p
0 (B1), 0 ≤ ξδ ≤ 1 tends to 1 a.e. inB1 asδ goes to zero, and

f(U) ∈ L1(B1), we obtain that the first and third integrals clearly converge, asδ
goes to zero, to

∫

B1

|∇U |p−2∇U · ∇ϕ and
∫

B1

f(U)ϕ,

respectively. Since|ϕ∇ξδ| ≤ C/δ andN > p, the second integral in (5.2) con-
verges to zero asδ → 0. Therefore,U is a solution of (1.1p).

(ii) Assumem > mc(p), or equivalently,

N > Nc :=
p(m+ 1)

m− (p− 1)
. (5.3)

By Theorem 1.2 we have that every semi-stable solution of (1.1p) is bounded if
m < mcs(p). Hence, ifU is semi-stable thenm ≥ mcs(p).

Assumem ≥ mcs(p) and note that

|∇U |p−2 =

(

p

m− (p− 1)

)p−2

|x|−2α and (1 + U)m−1 = |x|−2(α+1),

where

α :=
(m+ 1)(p− 2)

2(m− (p− 1))
. (5.4)

We will prove thatU is semi-stable, that is,
∫

B1

|x|−2α[(p− 2)(
x

|x| · ∇ψ)2 + |∇ψ|2] ≥ C(N,m, p)

∫

B1

|x|−2α−2ψ2 (5.5)

for all ψ ∈ AU , whereAU is defined in Definition 1.1 and

C(N,m, p) :=
mp

m− (p− 1)

(

N − mp

m− (p− 1)

)

. (5.6)

First we note thatAU ⊂ D1
0,α(B1). Indeed, forp = 2 this is obvious, for

1 < p < 2 one can use the definition ofAU , and forp > 2 follows from Hölder
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inequality. Moreover, by (5.3) one obtains thatα < (N − 2)/2, and therefore
applying Proposition 5.1 we have

∫

B1

|x|−2α[(p− 2)(
x

|x| · ∇ψ)2 + |∇ψ|2]

≥ (p− 1)

∫

B1

|x|−2αψ2
r

≥ (p− 1)

(

N − 2(α+ 1)

2

)2 ∫

B1

|x|−2(α+1)ψ2

(5.7)

for all ψ ∈ D1
0,α(B1), and hence for allψ ∈ AU .

Finally, we note that

(p− 1)

(

N − 2(α+ 1)

2

)2

≥ C(N,m, p) (5.8)

sincem ≥ mcs(p) (or equivalently (1.13) with reverse inequality). Hence (5.5)
follows immediately from (5.7) and (5.8).

Remark 5.2. Assume(p−1)N/(N−p) < m ≤ mc(p). Let f(t) = (1+ t)m, and
λ# be defined in (1.15). In this case, the explicit functionU# defined in (1.14) is
not inW 1,p

0 . It is easy to check thatf(U#) ∈ L1(B1) since(p−1)N/(N−p) < m.
HenceU# is an entropy solution of (1.16λ#,p) (see [ABFOT03] for the definition
of entropy solution). However, forp > 1 small enough|∇U#| /∈ L1(B1) and
therefore it is not a solution in the weak sense.

Let α andC(N,m, p) be defined in (5.4) and (5.6). Since

m > (p− 1)
N

N − p
> p− 1,

we have thatα < (N − 2)/2, and therefore (5.7) holds for allψ ∈ D1
0,α(B1). We

also note that (5.8) (in this case) is equivalent to

m ≤ m̃(p) :=
(p− 1)N + 2

√

(p− 1)(N − 1) + 2 − p

N − (p+ 2) + 2
√

(N − 1)/(p− 1)
.

In particular, ifm ≤ m̃(p) then (5.5) holds for allψ ∈ D1
0,α(B1). On the other

hand, ifm̃(p) < m ≤ mc(p) then (5.5) does not hold for someψ ∈ D1
0,α(B1) by

the optimality of the constant appearing on Hardy inequality (5.1).

In order to prove Theorem 1.5 we will use the following result.
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Lemma 5.3.Assume thatΩ = B1, p > 1, and thatf is increasing. Letu andU
be two radial nonincreasing solutions of(1.16λ,p) such thatu ≤ U . ThenU − u
is radially nonincreasing. Therefore,|∇u| = −u′ ≤ −U ′ = |∇U | in B1 \ {0}.

Proof: Let ε > 0. We note thatu, U ∈ L∞(B1 \ Bε), since both are radially
nonincreasing solutions of (1.16λ,p), and satisfy







−∆pv = λf(v) in B1 \Bε,
v = 0 on∂B1,
v = v(ε) on∂Bε.

In particular,u, U ∈ C1(B1 \ {0}). Moreover, by hypothesis,
∫

B1

|∇u|p−2∇u · ∇ϕ = λ

∫

B1

f(u)ϕ (5.9)

and
∫

B1

|∇U |p−2∇U · ∇ϕ = λ

∫

B1

f(U)ϕ (5.10)

for all ϕ ∈ C∞
c (B1).

We argue by contradiction. Assume that there existr0, r1 ∈ (0, 1) such that
U ′(r)−u′(r) > 0 for all r ∈ (r0, r1). Letϕ ∈ C∞

0 (B1) be a radially nonincreasing
and nonnegative function such thatϕ ≡ c in [0, r0] (for a positive constantc) and
ϕ ≡ 0 in [r1, 1].

Subtracting (5.10) from (5.9), and using thatu ≤ U and∇ψ · ∇ϕ = |∇ψ||∇ϕ|
for ψ = U andψ = u, we obtain

0 ≤ λ

∫

B1

(f(U) − f(u))ϕ

=

∫

B1

(|∇U |p−2∇U − |∇u|p−2∇u) · ∇ϕ

=

∫

Br1
\Br0

(|∇U |p−1 − |∇u|p−1)|∇ϕ| < 0,

a contradiction.

Using Lemma 5.3 we can now prove Theorem 1.5.

Proof of Theorem1.5: Assume1 < p < 2 and thatf is aC1, increasing, and
convex function satisfyingf(0) > 0. From the convexity assumption and1 <
p < 2 we obtain that (1.17) holds.

(i) Let λ ∈ (0, λ∗) and letuλ be the minimal solution of (1.16λ,p) given by
Theorem 1.4(i). We note thatuλ is a radially decreasing function (see [DS04]).
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LetU be any radially nonincreasing semi-stable solution of (1.16λ,p). We need to
prove thatuλ = U . Indeed, the following proof also holds whenλ = λ∗, andu∗

andU are solutions of the extremal problem (1.16λ∗,p), establishing in this case
u∗ = U .

Sinceuλ is the minimal solution of (1.16λ,p) we haveη := U − uλ ≥ 0. Let
M0,U be defined by (2.2). We note thatU − tη ∈ M0,U for all t ∈ [0, 1]. By
Lemma 5.3 we have

|η| = U − uλ ≤ U and |∇η| = |∇U | − |∇uλ| ≤ |∇U |,

and thereforeη ∈ AU .
Moreover, using the convexity off and the semi-stability condition (1.8) for

U ∈ W 1,p
0 (Ω) with ψ = U ∈ AU , we obtainλf ′(w)U 2 ≤ λf ′(U)U 2 for all

w ∈M0,U and
∫

Ω

λf ′(U)U 2 ≤ (p− 1)

∫

Ω

|∇U |p < +∞.

Therefore, we are under the assumptions of Proposition 2.2 (takingu = U and
h = λf ′(U)U 2). Hence, ifg(t) := J(U − tη) then g is twice continuously
differentiable in[0, 1] (see the proof of Proposition 2.2 and note that the constant
C appearing in (2.14) is equal to 1). Moreover,g′(0) = g′(1) = 0 since bothuλ

andU are solutions of (1.16λ,p). By (2.14) and Lemma 5.3, we get

g′′(t) = (p− 1)

∫

B1

|∇(U − tη)|p−2|∇η|2 − λ

∫

B1

f ′(U − tη)η2, (5.11)

for all t ∈ [0, 1].
If U 6≡ uλ then |∇U | > |∇uλ| in a set of positive measure. We know that

|∇U | ≥ |∇uλ| everywhere. Note thatf ′(U − tη) is nonincreasing int a.e., and
that the first integral in (5.11) is an increasing function, since

|∇(U − tη)| = |∇U | − t(|∇U | − |∇uλ|)

is nonincreasing everywhere (and decreasing in a set of positive measure) and
1 < p < 2. Thereforeg′′(t) is an increasing function. It follows that

0 = g′(1) − g′(0) =

∫ 1

0

g′′(s)ds

> g′′(0) = (p− 1)

∫

B1

|∇U |p−2|∇η|2 − λ

∫

B1

f ′(U)η2,
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obtaining a contradiction, since the last expression is nonnegative (remember that
U is radially nonincreasing and semi-stable). Thereforeη = U − uλ ≡ 0, proving
(i).

(ii) Assume thatf satisfies in addition (1.2), (1.10), and (1.18). By Theo-
rem 1.4(ii) we have thatu∗ ∈ W 1,p

0 (Ω) is a semi-stable solution of (1.16λ∗,p).
In part (i) we have established thatu∗ is indeed the unique radially nonincreasing
and semi-stable solution of (1.16λ∗,p).

Let v ∈ W 1,p
0 (Ω) be an unbounded radially nonincreasing and semi-stable solu-

tion of (1.16λ,p) for someλ > 0. First, we note thatλ ≤ λ∗ by Theorem 1.4(iii).
Second, by part (i) we obtain thatλ = λ∗ since minimal solutions are bounded
for λ < λ∗. Finally, sinceu∗ is the unique radially nonincreasing and semi-stable
solution of (1.16λ∗,p) we obtain thatv = u∗.

Finally, we prove Corollary 1.6 as an immediate consequenceof Proposition 1.3
and Theorem 1.5(ii).

Proof of Corollary1.6: LetU# andλ# be given by (1.14) and (1.15). Letf(u) =
(1 + u)m with m ≥ max{1, mcs(p)}. We note thatf is convex and satisfies
(1.2), (1.10), and (1.18). By Proposition 1.3 we have thatU# ∈ W 1,p

0 (Ω) is an
unbounded semi-stable solution of (1.16λ#,p). Using Theorem 1.5(ii) we obtain
λ∗ = λ# andu∗ = U#.
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CENTRO DEMATEMÁTICA , UNIVERSIDADE DE COIMBRA , 3001-454 COIMBRA ,PORTUGAL

E-mail address: msanchon@mat.uc.pt


