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SEMI-STABLE AND EXTREMAL SOLUTIONS OF REACTION
EQUATIONS INVOLVING THE p-LAPLACIAN

XAVIER CABRE AND MANEL SANCHON

ABSTRACT. We consider nonnegative solutions ofA,u = f(z,u), where
p > 1andA, is thep-Laplace operator, in a smooth bounded domaifRdf with zero
Dirichlet boundary conditions. We introduce the notion efms-stability for a solution
(perhaps unbounded). We prove that certain minimizersnersided minimizers, of the
energy are semi-stable, and study the properties of this dbsolutions.

Under some assumptions ghthat make its growth comparable 4", we prove that
every semi-stable solution is boundedvif < m.s. Here,m.; = m.s(V, p) is an explicit
exponent which is optimal for the boundedness of semi-statllutions. In particular, it is
bigger than the critical Sobolev exponerit— 1.

We also study a type of semi-stable solutions called extrewlations, for which we
establish optimal > estimates. Moreover, we characterize singular extrematisns by
their semi-stability property when the domain is a ball and p < 2.

1.Introduction

Let 2 be a smooth bounded domain®¥ andp > 1. We consider the nonlinear
elliptic problem

—Ayu = —div(|VulP72Vu) = f(z,u) inQ,
u>0 ing, (1.1)
u=0 onol,

whereA, is thep-Laplace operatorf(z, t) is nonnegative, measurableine €2,
andClint € [0, +o00) for a.e.z € Q. In most of our results we will assume that
there exist positive constants andc such that

0< f(z,t) <c(l+t)™ and 0< fi(z,t) (1.2)

forallt > 0and a.ex € (). Heref; denotes the partial derivative gfwith respect
to its second variable. In some results we will make furthemgh assumptions
on f. They will be always satisfied by our model nonlineaufiy:) = A(1 4 u)™,
where\ andm are positive constants (with, in some results;> p — 1).
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Throughout the paper, we say thats a solutionof (1.1,) if v € Wol’p(Q),
u>0a.e.,f(z,u) € L'(Q),and

/ VulP~2Vu - Vo = / f(z,u)p forally e CX(Q), (1.3)
0 Q

that is, for allC'* functionsyp with compact support if2. These solutions, which
may be unbounded, are usually called weak energy solutidves will refer to
them simply as solutions, for short. Note that for a solutior(1.3) holds for
everyy € Wol’p(Q), by a standard density argument. In addition, sinds p-
superharmonic we have thatif 0 thenu > 0 a.e. inf2, by the strong maximum
principle (see [M099, Tr67, Vad4)).

On the other hand, we say that Wol’p(Q) is aregular solutionof (1.1,) if w is
a solution andf (z, u) € L>(£2). By well known regularity results for degenerate
elliptic equations, one has that every regular solutioohgs toC''*(Q)) for some
positive € (0, 1] (see for instance [Lie88]).

Consider the critical exponent

| 400 i N <p,

wherep* := Np/(N — p) corresponds to the critical Sobolev embedding. Re-
calling hypothesis (1.2) on the nonlinearifyif m < m.(p) then every solution

u of (1.1,) belongs toL> (), and therefore: € C19(Q). In the subcritical case
(m < m,), this is a consequence of the results in [Se64, DiB83, Thi&88]. The
critical case . = m.) is more delicate and a proof can be found in [Pe97]. More-
over, it is also known that in the supercritical case$ m.), v is not necessarily
bounded (see Proposition 1.3 below for an example).

In this article we are concerned with a certain type of sohgi those which
are semi-stable. Formally, a solutianis said to be semi-stable if the second
variation of energy at. (defined below) is nonnegative. In this paper we find
another critical exponent..; = m.s(p) for which every semi-stable solutian
of (1.1,) is bounded ifm < m.s, while there exist singular semi-stable solutions
for everym > m.,. Of course, the exponent., will be greater thann, —
whenevern,. is finite. Our result, which requires a further growth asstiompon f
besides (1.2), extends work fpr= 2 by Crandall and Rabinowitz [CR75] and by
Mignot and Puel [MP80] concerning certain solutions cabettemal solutions.
For generap > 1 optimal bounds for the extremal solution have been obtained
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when f(u) = Ae" by Garda-Azorero, Peral, and Puel [GP92, GPP94]. All these
results will be explained in more detail below.

Other of our results are inspired by the methods develope@reyis and
Vazquez in [BV97] to study extremal solutions for the Laplageerator. We
extend to the case # 2 some of their results on regularity and characterization
of such solutions, as well as a result on nonexistence otiangolutions from
[BCMR96].

An important aspect of our work relies on giving an appragrigeneral defini-
tion of semi-stability of a solution, specially whén< p < 2. To our knowledge,
this task is undertaken here for the first time whes4 2. Our definition of
semi-stability allows the solution to be unbounded, anslihimportant for some
applications. For instance, we establish that the claserof-stable solutions in-
cludes certain minimizers (possibly unbounded) of theg@nes well as minimal
and extremal solutions (these are solutions of problem,YWien f is replaced
by \f and f satisfies certain assumptions described below). Sevethkadtieas
used here already appear in [GP92, GPP94], which treateches (u) = \e"
andp > 1.

Formally, the semi-stability of a solutiom means the nonnegativeness of the
second variation of the energy functionaéassociated to (1,), defined by

! P — x,u
J(u) —5/Q|Vu| /QF( ,U), (1.5)
where
F(x,t):/o f(x,s)ds. (1.6)

But a precise definition of this notion is needed since, iregaihthe energy func-
tional is not twice differentiable (or not even well definedpll of Wol’p(Q). The
reason for this is that in (1.2) we allow supercritical grovar the reaction ternf.

Definition 1.1. Assume tha6 < f(x,t) is nondecreasing ar@d' in ¢ for a.e.x €
Q. Letu € W,”(Q) be a solution of (1,). Define

A, = W,P(Q) if p> 2,

and
A, = { e WP(Q) : [¢]| < Cuand|Vy| < C|Vaul

in 2, for some constant'} if1<p<2. (1.7)
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We say that: is semi-stablef

/ |Vu|p—2{<p DLy +|vw2} [ e =0 @8)
(Vus£0} V|

forall ¢y € A,.

Note that the left hand side of (1.8) is formally the secondat®n of J at u.
The first integral in (1.8) is well defined and finite since nigegrand belongs to
L'. This follows from Hblder inequality whem > 2 (and in this case the integral
can be computed in all &2 instead off Vu # 0}), and from the pointwise bound
for |V| in (1.7) whenl < p < 2. On the other hand, the second integral in (1.8)
is well defined in[0, +o0] since f, > 0 by hypothesis. Therefore, the left hand
side of (1.8) is a well defined quantity jr-co, +00). In particular, ifu satisfies
inequality (1.8) then the second integral will be finite.

For1l < p < 2 we have introduced a clas$, of admissible functions in order
that the second variation of energy is well defined. We hauadahat the class
given by (1.7) is appropriate in all of our arguments, butr¢heould be other
good classes. Since the set of test functidngs smaller than usual, the class of
semi-stable solutions could seem to be too large. Howeyarsimg adequate test
functions inA,,, we will prove existence and uniqueness results for seaflst
solutions (Theorem 1.4 and Theorem 1.5), and also obtanp sagularity results
for these solutions (Theorem 1.2).

The first and second variation of energy is analyzed in detakction 2. We

will see that in the presence of sub and supersolutions &psribnbounded)/
Is well defined in a closed convex skf, even for general reaction ternfs(not
necessarily with power growth). Moreover, we will provetttize infimum of.J
in M is achieved at some € M. This minimizeru will be a solution of (1.])
and, in addition, it will be semi-stable in the sense of Détni 1.1.

Our first result establishes & (€2) bound for every semi-stable solution of
(1.1,), with p > 1 arbitrary, whenever the growth exponentfor the reaction
term is smaller than a certain exponent,(p) defined below. The estimate re-
quires an additional power growth assumption forelated to the exponent.

It extends a result (that we describe below) obtainechfer 2 by Crandall and
Rabinowitz [CR75] and by Mignot and Puel [MP80].
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Theorem 1.2.For p > 1 define

oo if N <p+ %,
N = (p+2) —2,/2L p—1
Letu € Wol’p(Q) be a semi-stable solution ¢f.1,). Assume that satisfieg1.2)
and
lim inf fulz, 1)t >m (1.10)
t—+oo f(l', t)
uniformly in a.e.x € €, for somen > p — 1.
Then,
lullya < € (1.11)

for some constant’ depending only oWV, m, p, |€2|, and f.
If in additionm < m(p), thenu € L>*(2) and

Julloo < C, (1.12)
whereC' is a constant depending only on, m, p, |2|, and f.

The way in which the constan€sin (1.12) and (1.11) depend on the nonlinear-
ity f is explained in detail in Remark 3.4 and will be important ébher results
and proofs in the article.

Theorem 1.2 applies to the nonlinearify = a(z)(1 + w)™, and alsof =
a(x)u™, for every positive and bounded functian

It can be easily checked that > p+ 4p/(p — 1) is necessary and sufficient for
the denominator in the expression (1.9) to be positive afidala finite exponent
mes(p). Itis also easy to verify that, whenever the Sobolev crigeponentn..(p)
defined in (1.4) is finite, we then have.(p) < m.s(p). One can verify also that,
if m > p— 1, thenm < m.s(p) is equivalent to

_p pm m
N<G(p’m)'_]:<1+m—(p—1)+2\/m—(p—1)>’ (1.13)

an inequality that we will use in some proofs.
Our next result establishes the optimality of the exponentp) in Theorem 1.2
for the boundedness of semi-stable solutions.

Proposition 1.3.Let{2 = By. AssumeV > pandm > (p — 1)N/(N — p). Let
U#(z) = |z|7=oD — 1, (1.14)
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flu) =X (1 +u)™

and

We then have:

(i) U# € W,P(Q) if and only ifm > m.(p). In such casel/# is a solution of
(1.1,).

(i) Assumen > m.(p). ThenU# is a semi-stable solution ¢1.1,) if and only
if m > mes(p).

Throughout the paper we consider squtionng\’p(Q). In Theorem 1.2 this
assumption is necessary. Indeed, for a certain range ohexpen with (p —
1)N/(N —p) < m < me(p) < mes(p), the functionU# of Proposition 1.3 is
an entropy solution (but not iW()l’p(Q)), it satisfies the semi-stability condition
(1.8), and however it is unbounded. See Remark 5.2 for mdedlsland Theorem
6.2 in [BV97] for the case = 2.

Theorem 1.2 will be proved in two steps. Following a methodGR75] for
p = 2, we first obtain ara priori L?(€)) estimate for semi-stable solutions of
(1.1,) using hypothesis (1.10) ohand the semi-stability condition (1.8). We then
improve this regularity using assumption (1.2) pand a bootstrap argument. On
the other hand, the proof of Proposition 1.3 is simple anésein a Hardy type
inequality.

The two previous results establish that semi-stable swistof (1.1) enjoy bet-
ter regularity properties than general solutions. This ffias been already studied
in relation with the so called extremal solutions —a classad@itions which turn
out to be semi-stable in most cases, for instance whisrconvex or whemp > 2.

To introduce the concept of extremal solution, consideiptiodlem

—Apu = Af(u) InQ,

w>0 ing, (1.165,)
u=0 onoXl,
where) > 0 andf is an increasing’! function with f(0) > 0 and
- f)
tlg—noo tp—_l = +00. (117)

Forp = 2 itis well known the existence of an extremal parametee (0, +o0)
such that: ifA € (0, \*) then problem (1.16,) admits a regular solutiom, which
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is minimal among all other solutions, while ¥ > \* then problem (1.16,)
admits no regular solution. It is known that the minimal $ions ), are semi-
stable. Their increasing limit* := limyy- uy IS a weak solution of (1.165);
u* is called the extremal solution. Brezis andauez [BV97] proved, under an
additional hypothesis ofi, thatu* belongs toWOM(Q) and that it is a semi-stable
solution.

Define
+00 if N <10,
Mes(2) = N —2y/N -1 N > 10,
N —-—4—-2/N —1

as in (1.9). Fop = 2, Crandall and Rabinowitz [CR75] and Mignot and Puel
[MP80] studied the cas¢(u) = (1 + u)™ and proved that.* is bounded if
m < mes(2). Joseph and Lundgren [JL73] used phase plane techniqueski® m
a detailed analysis of all solutions when the dom@ims a ball. In particular,
they showed that itn > m.,(2) thenwu* is unbounded. More recently, Brezis
and Vazquez [BV97] have introduced a simpler approach to thistipme based
on PDE techniques (and not in phase plane analysis). Thegakazed singular
extremal solutions by their semi-stability property. Imnstpaper we extend the
PDE techniques of [BV97] to certain cases wheeé 2.

First we state our result on existence and properties ofmahand extremal so-
lutions for everyp > 1. Point (i) of the following theorem uses ideas on existence
of solutions from [GP92, GPP94]. Part of point (i) extendd’a” regularity re-
sult of [BV97]. Point (iii) on nonexistence of energy (peplsasingular) solutions
extends a result fgr = 2 from [BCMR96].

Theorem 1.4.Letp > 1 and assume that = f(u) is an increasing”! function
satisfyingf(0) > 0 and(1.17) Then, there exists* € (0, co) such that:

(i) If A € (0, %), then problen(1.16, ,) admits a minimal regular solution,.
Minimal means that it is smaller than any other supersolutd the problem. In
particular, the family{u, } is increasing in\. Moreover, every: is semi-stable.

If A > \*, then problen{1.16, ,) admits no regular solution.

(i) Assume that in additiorf satisfies(1.2) and (1.10)for somem > p — 1.
Then:

(i) u* := limy; - uy belongs toV,*(Q) and it is a solution of1.16,. ).
(ii2) If eitherp > 2, 0r 1 < p < 2 and f is convex, them™* is semi-stable.
(ii3) If m < ms(p), thenu* € L>(Q).
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(iii) If in addition f(t)ﬁ is a convex function satisfying

/OO dtl < 400, (1.18)
o FH7

then(1.16, ,) admits no solution foA > \*.

The family of minimal solutions is a continuous branch whes 2 and f is,
in addition, convex. In the generality of the previous tleoy the family may be
discontinuous and have jumps at some paramet¢see [CCO5] for an example
whenp = 2 and f is not convex).

Minimal and extremal solutions of (1.16) for p > 1 have been studied, when
f(u) = e, by Garéa-Azorero, Peral, and Puel [GP92, GPP94]. They estallishe
the boundedness of the extremal solution wher: p 4+ 4p/(p — 1), and showed
that this condition is optimal. Recently we have learnedugite work of Ferrero
[Fe04], carried out independently of ours, where problerti§yl,) is studied for
the model cas¢(u) = (1 4+ u)™. [Fe04] establishes the sufficiency of condition
m < mes(p) for the extremal solution of (1.16) to be bounded. In Remark 1.7
we describe further regularity results on semi-stable atr@nal solutions.

While the nonexistence atgular solutions forA > \* is an immediate fact,
part (iii) of Theorem 1.4 establishes the nonexistencWé)f solutions (possibly
unbounded). It uses the ideas of Brezis et al. [BCMR96] ferlthplacian case.

Our following result extends Theorem 3.1 of [BV97] (that We®ith p = 2,
convex nonlinearitieg, and smooth bounded domaifi to the casd < p < 2
and() = B,. Itis a characterization of singular extremal solution¢loi 6, ,) by
their semi-stability property.

Theorem 1.5.Assume thaf) = B; c RY, 1 < p < 2, and thatf is a C*,
increasing, and convex function satisfyifi@) > 0. Then:

(i) For A < A*, the minimal solution: of (1.16, ,,) is the unique radially non-
increasing and semi-stable solution(af16, ).

(i) Assume thaf satisfies in additior{1.2), (1.10) and(1.18) for somemn >
p — 1. Assume that < Wol’p(Q) is an unbounded, radially nonincreasing, and
semi-stable solution ¢fL..16, ,) for some\ > 0. Then\ = A* andv = u”.

The nonlinearityf (u) = (1 + w)™, with m > 1, satisfies all the assumptions in
parts (i) and (ii) of Theorem 1.5.

For Q) = By, Damascelli and Sciunzi [DS04] recently used the movinggda
method to show that every regular solution of (1, ))6is radially decreasing if
f is nonnegative, continuous i, o), and locally Lipschitz in(0,cc). As a
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consequence, the minimal solutieR of (1.16, ,) is radially decreasing. Letting
A T A%, it follows that the extremal solution is radially noninaseng.

As a consequence of Theorem 1.5 and Proposition 1.3, we eatifidthe ex-
tremal solution and parameter for the pure power nonlibhearhenl < p < 2
andm > 1 through a pure PDE argument. In the general gase1, the same
result has been proved, independently of ours, in [FeO4]dwguphase plane
techniques.

Corollary 1.6. Assume thaf = B, c RY, 1 < p < 2, f(u) = (1 +u)™, and
m > max{1, m.(p)}. Then, the extremal solution and paramete(bi6, ,) are
uw* = U7 and\* = \*, whereU? and \* are given by(1.14)and (1.15)

Remark 1.7.In [San05] the second author studies the regularity of theemal
solution to problem (1.16,) in smooth bounded domains whe> 2 and( f (u)—
f(0)/»=1) is a positive, increasing, and convex function satisfyidgl{).
[San05] establishes the boundedness of the extremal @olutheneverN <
p+p/(p—1), extending an important work of Nedev [Ne0O] foe= 2. Note that
these two works make no additional growth assumptiofi basides the convexity
hypothesis above.

The first author and Capella [CCO05] prove optimal resultsltierregularity of
semi-stable solutions of (Llwhen() = B; andf = f(u) is a general locally
Lipschitz function. For instance, [CCO05] establishes thagry radial semi-stable
solution is bounded ifN < 9. In general bounded domains Bf¥ it is still
an open problem to prove (or disprove) the boundedness of ®ami-stable
solution whend < N < 9 andp = 2. On the other hand, the authors and
Capella [CCS05] extend the radial results of [CCO5]#4o£ 2 to the case > 1
obtaining, for instance, the boundedness of every radmail-séable solution when
N <p+4p/(p—1).

The paper is organized as follows. In section 2 we study tlsédind second
variation of energy in appropriate closed convex setﬁ@fp(ﬂ). Section 3 is
concerned with some regularity results for théaplacian and with the proof
of the L>° estimate of Theorem 1.2. In section 4 we establish Theordnorn.
minimal and extremal solutions. Finally, in section 5 wevyar#’roposition 1.3,
Theorem 1.5, and Corollary 1.6.
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2.First and second variation of energy

We consider

—Apu = f(z,u) in§,
{ u=0 o0nos, (2.1)

wheref(z,t) is a nonnegative and nondecreasing functionfof a.e.x € .

We say that, € W,"(Q) is a supersolution of (2.1) if (z,u) € L'(Q) and
—Ayu > f(z,u) in the weak sense. Reversing the inequality one defines the
notion of subsolution.

Assume that there exist tV\WOLp(Q) functionsu andwu (perhaps unbounded)
which are a sub and a supersolution of (2.1), respectivath shatu < w, and
consider the closed convex set

Myz:={veW,?(Q):u<v<Tuae}. (2.2)

We consider the energy functionalassociated to (2.1)
Iy = [ 19op = [ B, 2.9

P Ja 0
where
t
F(z,t) ::/ f(x, s)ds. (2.4)
u(x)

We note that the functional defined here may be different from the one defined
in (1.5) and (1.6). We use the same notation for both funat®since there is not
risk of confusion. We also note that both functionals calecivhenu = 0.

In the following result, we show that is well defined and bounded from below
in M,z and that it attains its infimum at somec M, 7, which is a solution of
(2.1). This result is standard whenandz are bounded. Instead, here we allow
these functions to be unbounded. The case 2 has been studied in [CM96],
a paper that, in addition, introduces a truncated energgstifumal which satisfies
the Palais-Smale condition I, *(Q).

Proposition 2.1. Assume thaf (x, ¢) is nonnegative and nondecreasingtifor
a.e.x € (). Letu andw be a subsolution and a supersolution(@f1), respectively,
such thatw < u. LetM, 3 be defined by2.2)and consider/ : M,z — R defined
by (2.3)and (2.4). Then, the following assertions hold:

(i) J is well defined in/, z, bounded from below, coercive, and weakly lower
semicontinuous i/, z. Moreover,J attains its infimum at somee A, z, which
Is a solution of(2.1).
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(i) There exists a solution,, of (2.1), with v < wu,, < w, which is minimal
among all possible supersolutionsatisfyingu < v.

Proof: (i) First, we claim thaty — f(x, v) defines a (uniformly) bounded map
from M,z to W~=17(Q). Indeed, leb € M,z andp € C=(9). Using thatf (z, t)

IS nonnegative and nondecreasing fior a.e.z € (2, thatw is a supersolution of
(2.1), and Hblder inequality, we get

T, ) x, U < ValP~iva - vV
[ st < [ Wl < [V
< IVl Vel

Hence, the claim and
1S (@, 0) [y < V][5~

follow by a standard density argument.
Using the definition off’ and (2.5) with0 < ¢ = v — u, we getF(z,v) > 0
and

[FPew < [ feoe-u <V Ve -l @)
Q Q

From (2.6) it is easy to show thdtis well defined in)/, z, bounded from below,
and coercive. To prove thatis weakly lower semicontinuous, it suffices to show

that
LE@%J%LEW@

if v, € Myz, v, — vweakly inM, 5. Noting that
\ﬂawm:/mﬂaﬁwSﬂamw—w,

and that the right hand side of the last inequality belonds t) by (2.6) applied
with v = @, we may appeal to the dominated convergence theorem toumtcl
As a consequence, we obtain thiaattains its infimum at some € M, 5.

Finally, we prove that every minimizerin M, 7 is a solution of (2.1) following
a method used fgr = 2 in [Stru90]. For this, we need the following preliminary
observation.

Letv € Myq, ¥ € W,P(Q) with ¢ # 0, and assume that+ ty) € M, for
all t € [0,%], with ¢, > 0. In such case, it is easy to prove thBw + t)) is
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differentiable with respect tofor ¢ € [0, ty], and its derivative is given by

G t0) = [ [P )P Vo) Vo - [ feorwe @)

forall t € [0,to]. Thatis,J is differentiable av in the directionty, t > 0, and its
directional derivative is given by

J (v)y ::/Q|Vv|p_2Vv-V¢— /Qf(x,v)zb. (2.8)

The notation/’(v) that we have introduced is not meant to be understood as that
the functional/ is differentiable (note thaf is not even defined in an open set of
W, 7(€)). What we mean is first that the directional derivative exatd that it
Is given by the right hand side of (2.8). Second, that thetiingimd side of (2.8)
defines a continuous linear form, which we denote/by), on Wol’p(Q). Note
also that/'(v) = 0 (in the sense of forms) means exactly thas a solution of
(2.1).

To show that every minimizerin M, z is a solution, letp € C°(2) ande > 0.
Consider

ve = min{u, max{u,u+cp}} =u+cp — "+ . € Myz

with ¢° = (u+ep—1u)" andp. = (u+ep—u)~. Noting thatu+t(v.—u) € M,z
forallt € [0, 1] we obtain that/ is differentiable at: in the directiorv. —u. Since
u minimizesJ in M, 3, we have

0 < J(u)(v: — u),
and hence, sincé (u) is a linear form ori?,”(Q),
0 <eJ'(u)p — J(u)g” + J'(u)p..

As a consequence, we obtain

J(u)p = =[J'(u)e” = J'(u)ee]. (2.9)

o | =

Next we show that/’(u)¢® > o(g), meaning thatim inf. e~ 1J"(u)p® > 0.
Indeed, since: is a supersolution of (2.1) angt > 0, we have

J'([@)g* > 0.
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Therefore
J(w)e™ > (J'(u) = J'(1))p°
= [(Vap2vu = Va2V - Ve - [ () - fam)e
Q Q

> /(\Vu\p_QVu — |ValP2va) - V£, (2.10)
Q

where in the last inequality we have used tlias nondecreasing. Using® =
(u+ep —u)™ in (2.10), and also

(\:f::\p_Qa: — |y|p_2y) (r—y)>0 forallx,ye RN

(see for instance Appendix A in [Pe97] for a proof of this inality) with z = Vu
andy = Vu, we obtain

T () > ¢ / (V] 2V — [VaP2va) - Ve,

€

whereQ). = {x € Q : u(z) < u(z) < u(x) +ep(z)}.

Noting that the measure ¢1. tends to zero as goes to zero, we obtain that
J'(u)p® > o(e). Proceeding in an analogous way, we also obtain fhat)p. <
o(¢). Therefore, from (2.9) we obtair’(u)p > 0 for all ¢ € C°(Q2). The
previous inequality applied te-¢ instead ofp gives J'(u)p = 0 for all p €
C(Q2). That is,u is a solution of (2.1).

(i) Let «° := » and remember that(x, u) € W17 (Q). Letu! be the solution
of

{ —Apu1 = f(z,u") inQ,
ul =0 onon.

Since—A,u’ < f(z,u’) < f(z,u) < —A,u, we have thatt = v" < u!' <@
by the weak comparison principle (see for instance AppeAdix [Pe97] for a
proof). Moreover, sincé(z,t) is nondecreasing ity one has that! is a subso-
lution of (2.1). In addition, we know that(z, ') € W17 (Q).

Now, givenu" !, we take the solution” of

{ —Apu™ = f(z,u" 1) inQ,

u" =0 onofl. (2.11)
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We obtain a nondecreasing sequefigé} such thatu < «" < w and f(z,u")
belongs tdV ~ 17 (Q) for all n > 0. Moreover, sincdu™} is nondecreasing and

Ly = [ faw e < [ e wa < 1Dl g

for all n, we have that" — w,, weakly inWOl’p(Q), for some function,,, € M, 7.

In addition, we have monotone convergence a.e."@dbwardsu,,, and hence also
monotone convergence ¢fx, u") to f(z,u,,). This last convergence is also in
the L1(Q) sense, sincé < f(x,u") < f(x,u) € L(Q) for all n.

In this situation, the results of Boccardo and Murat [BM9Ph¢orem 2.1 and
Remark 2.1 in [BM92]) establish th&tu" converges strongly in? for all ¢ < p.
This allows to pass to the limit in the left hand side (2.11d deduce that that,,

Is a solution of (2.1). Note that since thd_aplacian is a nonlinear operator, the
weak convergence of the gradients is not enough to pass tionihe

It is also clear that.,, is minimal, since every supersolution of (2.1) could be
taken asu in the iterative scheme above (note that theconstructed does not
depend on the choice aj). |

Our following result concerns the second variation/ofJnder some conditions
on f, it establishes that every absolute minimizerjoih M,z is semi-stable in
the sense of Definition 1.1.

Proposition 2.2. Assume thaf (z, t) is nonnegative, nondecreasing a@d in ¢
for a.e.z € ), and thatf(-,0) is not identically zero. Let be a supersolution of
(1.1,), and assume that there exigtE L'(2) such that

fulz,w)uw* < h inQforallwe Mg, (2.12)

wherel, z is defined by2.2).
We then have that every absolute minimizesf J in M, is semi-stable. In
addition, the minimal solution dfl.1)) in M,z is semi-stable.

Proof: By Proposition 2.1 we know that every absolute minimizef J in M 5
is a solution of (1.]) (and also that at least one minimizer always exists).
addition,u # 0 sincef(-,0) # 0 by hypothesis. We consider two cases:

Case 1. Assumg > 2 and lety € C°(Q2) be nonnegative. Since the support
of ¢) is a compact subset 6f, we have thati > u > c a.e. in supp) for some
positive constant. This follows from the weak Harnack inequality of Trudinger
(see [Tr67], or [MZ97] when < N; note that ifp > N thenwu is continuous and
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positive, thus the statement is trivial). It also followsrir a quantitative version
of the strong maximum principle in [M099].

Therefore there existg > 0 such thatu + t(—vy) € My, C M,z for all
t € [0,to]. As a consequence, we have (2i8,

d

) = /|v )PV (u— 1) V¢+/f:vu—t¢)¢, (2.13)

for all t € [0, ty]. It is easy to show, usingdlder inequality, that the first integral
in (2.13) is a continuously differentiable functionoin [0, ¢y]. Moreover, since
Y e CX(Q) and

2
0 < fulz,u—t)y? < (%) fulz,u — t)a* < (

by hypothesis (2.12), we have that the second integral it3§ds also continu-
ously differentiable. Hence/,(u —t) is twice continuously differentiable respect
tot forall ¢t € [0, t5] and

d:2 (u T t¢)
_ _ p—2 V(u—ty)
= [v- w2 {e-2gE
/fu z,u—tp)Y? forallt € [0, ).

Sinceu is an absolute minimizer of in M,z and.J'(u) = 0, we obtain (1.8) (that
is, J"(u) (1, ) > 0, where.J"(u) is the quadratic form ofil’; ”(2) given by the
left hand side of (1.8)) for all nonnegativec C>°(Q2). By density,J” (u) (1, ) >
0 also holds for all nonnegative € W, ”(€). Now, writing anyy € W, () as
its positive part minus its negative part and using ti&t.) is a quadratic form,
we conclude that (1.8) also holds for alle T, ”(Q) = A,.

Case 2. Assume < p < 2 and lety) € A, be nonnegative. By definition of,
there exists a positive constafitsuch that) < ¢ < Cu and|Vy| < C|Vul. In
particular,

(I-Cthu<u—typ <u and (1-CtH|Vu| <|V(u—t)| < (1+ Ct)|Vul

for all t > 0. Therefore, for altt € [0,1/C), u — tp € My, C Mz and
V(u—ty) = 0ifand only if Vu = 0. Thus, from (2.7) withty = 1/C, we obtain
d

-2
) == [ etV Vo [ -,

f) h(z) € L'(Q)

C

V) + \WF}
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forallt € [0,1/C). Now, using that
2

—2 2
IV (u — t) [P |V Sm

[Vaul?

and
fulz,u — t)p* < C*fy(x,u — t)T* < C*h(x) € LY(Q)

by hypothesis, it is easy to show, using the dominated cgevere theorem, that
J(u — t1) is twice continuously differentiable ihe [0,1/C) and

= U — p—2 — M 2 P
_/{WO}W( )| {(p 2)(\V(u—t¢)| V) +\v¢|} (2.14)

—/ fulz,u—tp)p? forallt €[0,1/0).
Q
Sincew is an absolute minimizer of in M,z and J'(u) = 0, we obtain that
(2.14) is nonnegative @t= 0 forall 0 < ¢ € A,. Thatis,J"(u)(y,) > 0
for all nonnegative) € A, whereJ”(u) is the quadratic form defined by the left
hand side of (1.8). Noting, as in case 1, thiatu) is a quadratic form, and that the
positive and negative parts of a functigne A, also belong te4,,, we conclude
that (1.8) holds for all) € A,. Henceu is a semi-stable solution of (2.1).
Finally, since the minimal solution,, of (1.1,) (obtained in Proposition 2.1(ii))
is the unique solution of this problem ¥, ,,, , and therefore the absolute mini-
mizer of J in M,,,,, we conclude from the previous result (applied viith- w,,)
thatu,, is semi-stable. u

3.L*>° estimate: proof of Theorem 1.2

To prove our regularity result we will use the following lerarfrom [Gre02]
and [ABFOTO3].

Lemma 3.1. Assume thay € L%(2) for somey > 1 and thatu is a solution of

—Ayu =g(z) ng,
{ u=0 onof. (3.1)

The following assertions hold:
() If ¢ > N/pthenu € L>(Q2). Moreover,

_1
lulloe < Cllglla™,
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whereC' is a constant depending only ow, p, ¢, and|(2|.
(i) If g = N/pthenu € L"(Q2) forall 1 <r < +o00. Moreover,

1
[ull- < Cliglla™

whereC' is a constant depending only ow, p, r, and|(2|.
(i) If 1 < ¢ < N/pthen|u|" € L}YQ) forall 0 < r < ry, wherer; =
(p—1)Ng/(N — gp). Moreover,

1/r

1
Iful"lh"™ < Cllglls™,

where(' is a constant depending only @, p, ¢, r, and|€2|.

Note that in part (iii),» may be less than 1. This cage,< r < 1, is not
considered in Corollary 1 of [Gre02], but it follows easiloin Theorem 1 of
[Gre02]. This case is however considered in [ABFOTO03]. Héoethe sake of
completeness, we include the proof of Lemma 3.1. We havbtslighodified the
proofs in [Gre02] and [ABFOTO03], in the spirit of Talenti [48], using Jensen
inequality instead of Hlder inequality.

Proof of Lemm&.1: Letu € Wol’p(Q) be a solution of (3.1). A consequence
of the Fleming-Rishel formula [FR60] and the isoperimetniequality for func-
tions of bounded variation (and hence for functionW@’p(Q)) is the following
inequality:

d

P(t) = =

/ \Vu|dx fora.e.t > 0, (3.2)
{lul<t}

whereC = N|B|YN, V(t) = [{z € Q : |u| > t}|, and P(t) stands for the
perimeter in the sense of De Giorgg., P(t) is the total variation of the charac-
teristic function of{|u| > ¢}. A proof of this inequality can be found in [Ta79],
page 172. We also note thE{¢) is differentiable almost everywhere since it is a
nonincreasing function.

Let

0 if0<s<t,
Oni(s) =4 (s—1t)/h ft<s<t+h,
1 if s >1t+h,
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andfy, (—s) := —0,(s) for s > 0. Multiplying (3.1) by#;,;(u) and using Jensen
inequality we obtain

L\ (1 "
— Vuldz §—/ Vupdx:/ g(z)0h+(u) dz,
<\Eh,t|> h/Eh,t‘ | h Eh,t‘ | {lul>t} RS

whereE),, ;= {t < u < t+ h}. Lettingh | 0 and using Hlder inequality, we
have

1 (4 u|dz ' x)| dz L4
e G 9] < [l < Loy 639

Therefore, from (3.2) and (3.3), we obtain
CPV ()P -D/N P(t)
! -1 S !
(=V'(2))» (=V'(®))
or equivalently,

5 < lgll V)",

a <Hg|]\9q> oDV ) (3-4)

fora.e.t > 0.
Case 1. Ify > N/p, then (3.4) leads t&'(¢) = 0 for all

1
p—1
el (@) 217,

wherer; < 0 is defined in statement (iii) of Lemma 3.1. This yields asserti).
Case 2. Ify = N/p, then (3.4) leads to

V(t) < Q] exp ( (ji)t) .

Case 3. Ifl < g < N/p, then (3.4) gives that
V(t) < (Cit +Cy)™,
where

1

1/ CP \rT 1

Cy=— (—) and C, = |Q| ™.
r1 \lgllg

We conclude the proof in cases 2 and 3 noting that

/|u|rdx:r/ "V (t)dt,
0 0
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and using the estimates obtained ¥o(t). |

To establish Theorem 1.2 we will first prove an extension oibe 1.17 in
[CR75] to the case > 1.

Lemma 3.2. Assume thatf satisfies(1.2). Letwu be a solution of(1.1)). If
f(z,u) € L*(Q) for somey, > 1 satisfying

1
(1 - p—) N < qop, (3.5)
m
then

ulle < C, (3.6)

where(C' is a constant depending only a¥, m, p, qo, |$2|, ¢, and || f(z, u)||4-
Herec is the constant irf1.2).

Proof: If N < ¢yp then Lemma 3.1(i) leads automatically to (3.6).Nf> qop
then Lemma 3.1(ii)-(iii) gives that

Nqo
u" e LYQ) forall0<r<r=(p—1 .
ul” € L!(Q) =y
From (1.2) it follows that
p—1 Nqp
x,u) € LI(Q) foralll <g<q := .
flw,u) € LYQ) R

Note thatg; > g9 > 1 thanks to (3.5). IfN = ¢yp then we have thaf(z,u) €
L1(Q2) forall 1 < ¢ < +o00. By Lemma 3.1(i) we obtain (3.6).
AssumeN > qop. By (3.5) we have thai; > ¢y, and then the previous argu-
ment may be repeated successively to obtain an increagjugisee
p—1 Ngy
m N — qp

dk+1 = ) 0 S k S k07 (37)

for somek, < +o0, such thatf(z,u) € L?if g < g for somek < k,. Here
ko + 1 denotes the number of times that we can apply this algorittote that we
can construciy,; wheneverN > g;p.

We claim thatk, < +o00. More precisely, there exists = ky(IN, m, p, qp) such
that vV < gx,p. Indeed, otherwiséqg; } .cn IS an increasing sequence with limit

—1\ N
oo ::klim qr = <l—p—>—

—+00 m D
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by (3.7). Since{q;} is increasing we have that < ¢.., a contradiction with
(3.5). Therefore we may assume the existenck,of +oco such thatV < g p
andf(z,u) € LY(Q) forall 1 < ¢ < gy,

If N = qp then we have thaf(xz,u) € LI(Q2) forall 1 < ¢ < +o00. By
Lemma 3.1(i) we obtain (3.6). IN < g;,p one can choosé < ¢ < g, such that
N < ¢p and apply again Lemma 3.1(i) to conclude the proof. |

Remark 3.3. If  is a solution of (1.]) then, by definitionf(z,u) € L'(Q2). As
a consequence, i < p — 1 then condition (3.5) holds with, = 1, and hence,
in this case, every solution of (1,)lis bounded.

Using the semi-stability condition (1.8) and Lemma 3.2 werpoove Theorem
1.2. For future results and proofs in the article, it is intpat to state how the
constantC'in (1.12) and (1.11) depends on the nonlineafity

Remark 3.4.1n (1.12) and (1.11)¢' depends orf only through the exponent
in (1.2), the constant in (1.2), and the constart defined as follows.L is the
smallest constant such that, for avec €2, we have

Lﬁ(%,t)t
fz,1)
wherem € (p—1,m) is a constant depending only &h, m, andp, which will be

obtained in the proof of Theorem 1.2. Of course, the exigeid is guaranteed
by hypothesis (1.10), since < m.

>m forallt > L, (3.8)

Proof of Theoreni.2: We assume that: > p — 1 and thatu is a semi-stable
solution of (1.1). For a givernk > 0 we define the truncation function

| if |s| <k,
Tils) := { k sign(s) if |s| > k.

Fora > 1 (which will be chosen later depending only &f m, andp), let o =
uTh(u)272/(2a — 1) andip = uT(u)*!, a > 1. We note thatp, ¢ € W, (Q),

0<v¢ <k and |Vy| < ak® HVul.

In particulary € A,,.
Multiplying (1.1,) by ¢ and integrating, we obtain

k2a—2 1
Vul|Pu?*? + / Vull = /f:z:,u uTy(u)? 2.
/{M}| | o1 9 = g St
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Using this equality and the semi-stability condition (Japlied with the previous
choice ofy € A,, we obtain
2
(@

(=D [ F T

k2a—2
= (p—1)a? (/ |VulPu**—2 + / |Vu|p>
{u<k} 200 — 1 {u>k} (3.9)
>(p—-1) (&2/ |VulPu?? + k:20‘_2/ |Vu|p>
(u<k} (u>k}

> [ LTy
Q

Form € (p — 1, m) (that we will choose later depending only 8h m, andp)
let L be the smallest constant satisfying (3.8) for a.& 2. By assumption (1.2)
and the definition of. we have

filz, )t > mf(x,t) —mc(l+ L)"xu<py forallt > 0anda.ex € Q.
Using this inequality in (3.9) we obtain
042
20 — 1

for everyk > 0. Now, we note thatp — 1)a?/(2a — 1) < m for everya €
(m/(p—1),a(m)), where

- (p— )= /Q (o wuTi () < me(l + Ly" 129,

_mtmm—(p-1)

e (3.10)

a(m) :
Therefore
/f@@&Hngmwaemmﬁuﬂmm, (3.11)
Q

whereC, here and in the rest of the proof, is a constant dependingamV, m,
p, ||, L, andc (remember thatr andm will be chosen later depending only on
N, m, andp).

By hypothesis (1.2), (3.11) leads to

/U@mW§C7fmmH§q<%Wm%m_y (3.12)
Q

Choose first to be any number ifp — 1, m), and choose: to be any number
in (m/(p—1),a(m)). Take anyy > 1 satisfying (3.12). Multiplying (1.}) by v,
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and using (3.11) and (3.12), we have

/Q\Vu\p :/Qf(xau)uﬁ/{ugl}f(:v,u)+/{u21}f(x7u)u2a—1

< Hf(x,U)Hq\Q\l/qI*/f(w,U)u2a_1 <C,
Q

that establishes (1.11).

To prove (1.12), assume in addition that < m.s(p). As we said in the in-
troduction this condition is equivalent to (1.13), and aencomputation shows
that it is also equivalent to

1 ; 1
(1 - p—) N < prelm)tm =1 (3.13)
m m

wherea(m) is defined by expression (3.10). Choagse= m(N,m,p) € (p —
1, m) sufficiently close tan such that (3.13) holds when replacingby 7 in its
right hand side. Using (3.12), we can chogge-= ¢y(/N, m, p) such that

| <qo < 204(m)im— 1’
m
f(z,u) € L*(Q), and
1
(1 — 7> N < pqo.
m
Using Lemma 3.2 and (3.12) we obtain thjat| ., < C. m

The following remark will be useful in future sections.

Remark 3.5. Using (3.9) and (3.11) (recall that they hold for everyc (p —
1, m)), we have that

/fuy::uzo‘ (—12 1/fy::u20‘1<C
a_

foralla € (m/(p—1),a(m)). Hence, choosing any € (m/(p—1),a(m)) and
noting thatm > p — 1, we obtain

/ fulz,w)u? < C.
0

Moreover, as a consequence of (3.10) and (3.12) we obtdin tha

/ )| <, (3.14)
Q
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since(p*) < (2a(m) +m — 1)/m for everym > p — 1.
In the last two inequalitie§’ is a constant depending only éh, m, p, 2|, L,
andc.

4.Minimal and extremal solutions: proof of Theorem 1.4

Forp = 2 and f convex, the existence of the family of minimal solutions can
be obtained using the Implicit Function Theorem. Due to tegetheracy of the
p-Laplacian, it is not clear that this method can be usecfer 2. Instead, we
use a monotone iteration argument following the ideas oZ5/”5PP94], which
study (1.1,) with f(u) = e*. To prove Theorem 1.4(i) we will also use the
results from section 2 on the first and second variation, dsase¢he fact that the
first eigenvalue of the-Laplacian is isolated.

To establish Theorem 1.4(ii) we first prove thét= limy; - u, is a solution of
the extremal problem. This will be consequence of thi&? estimates of Theo-
rem 1.2 foruy, which will turn out to be independent af Then we will simply
apply Theorem 1.2 and Proposition 2.2:t0

Proof of Theoreni.4: Assume thaf = f(u) is an increasing’! function satis-
fying f(0) > 0 and (1.17). We will prove the result on several steps.

Step 1. Sincgf (0) > 0, we have that is a subsolution of (1.1g,) and it is not
a solution. We consider the problem

—Au’ = f(0) inQ,
=0 onon.

Since f(0) € L>(Q2) this problem has a unique positive regular solutidne
CHP(Q). Let M = maxgu” and takex < f(0)/f(M). Then

{ —Ayu’ = f(0) > Af(M) > Mf(u’) inQ,
w’ =0 onods,

i.e., u’ is a supersolution of (1.36) if A is small enough. We use Propositions 2.1
and 2.2 withu = 0 andw = u° € L>(Q) to obtain the existence of the minimal
solutionu, € W,”(Q) and its semi-stability. Since < uy < u® € L®(Q), we
have that, is a regular solution of (1.16).

Moreover, we note that each regular solution of (],1Pis a supersolution to
problem (1.16,) for A € (0, \¢). Hence, by the previous argument the set of
A € (0,00) such that problem (1.16) has a regular solution is an interval. In
additionu, is increasing im\, by minimality.
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Step 2. Now we will prove that
A" :=sup{A : (1.16,,) admits a regular solutign< +oo. (4.1)

For this, we prove that problem (1.19 has no regular solution ik > A=
max{A1, \1/a}, where)\; is the first eigenvalue of theLaplacian and

t
o :=inf —% > 0.

We argue by contradiction, that is, we assume that (1,Jl&dmits a regular so-
lution u for A > \. Letwv; € C1(Q) be a positive eigenfunction associated with
the first eigenvalue; of thep-Laplacian,.e.,

—Apvl = )\1|U1‘p_2?}1 in Q,

vy =0 onoe,

such that|v ||« < f(0)®~1. Note that
— Ay = M SN F0) < AF(0) < Af(u) = —Au.
By the weak comparison principle for theLaplacian (see for instance Appen-
dix A of [Pe97] for a proof) we have that < u. Letv, be the solution to problem
—Ays = (N + )t inQ,
vy =0 on of.
For e small enough we obtain
—Apy = (M + )V < (M Fe)uP T < Af(u) = —Ayu
and
—Au1 < (M F )t = —Ayu.

Using the weak comparison principle again we obtair< v, < u. Now, let us
consider the solutions of

—Ayu, = (M )P inQ,
v, =0 onoel,

obtaining an increasing sequenfag } such that, < v, < v, <u € C*9(Q).
The increasing limitw € W, ”(Q) of the sequencév, } is also the limit in thel.?
sense for aly < +00. As a consequence (see part (i) below for a more general
argument), we deduce thatsolves the problem
{ —Ayw = (A +e)w ! inQ,
w=0 onosl.
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This is impossible it is small enough since the first eigenvalue forgHeaplacian
is isolated (see [A87] or [Ba88]). Therefoké < \ < +oc.

(i) Assume thatf satisfies (1.2) and (1.10) for some > p — 1. We will
prove thatu™ := limy;y- uy is a solution of (1.16,). Applying Remark 3.5 to
uy for A € (0, \*) (and, of course, witty replaced by\ f) we obtain thatf (u,)
converges tof (u*) in L#)'(Q2), since||f(uy)| -y < C for some constant
independent of\. Noting thatZL®")(Q) ¢ W~'7(Q) and that(—A,)~! is a
continuous operator froffi’ ~#'(Q) onto Wol’p(Q) (see for instance [Pe97]), we
obtain thatu, converges strongly ta* in Wol’p (Q). Therefore we obtain that for
eachy € C(Q),

/ IVu*[P2Vu* - Vo = lim / IVuy[P2Vuy - Vi
Q AT Ja

~ Jim A /Q Flun)p = X /Q f(u)e.

ATA*

That is,u” is a solution of (1.16,).
Finally, letu,- be the minimal solution of (1.16,). Noting that
uy <uy <u'=limuy, forall X < \*,
ATA*
we obtain that,* = wu,-. This proves part (iil).
To establish (ii2) note that minimal solutiong are semi-stable for every €
(0, A*) by Proposition 2.2, that is,

p—2 . Vuy ) 2 2} Y / 9
/{vu#()}lvml {(p 2)(\VuA\ V)" + VY| /Qf(UAW >0

for everyy € A,,. If p > 2thenA4,, = Wol’p(Q). Noting thatf’ > 0, using

Fatou’s lemma and the convergencé/uﬁ’p proved above, and taking the limit as

A — ¥, we obtain that* is a semi-stable solution of the extremal problem.
Assumel < p < 2 and thatf is convex. Note that

N () () < X F () () = b forallw € Mo,

whereMy,,- = {v € W,"(Q) : 0 < v < u*}. Sinceh = X f'(u*)(u*)? belongs
to L1(©2) by monotone convergence and Remark 3.5, Proposition 22 tjiat.*
Is semi-stable.

To show (ii3), we simply apply Theorem 1.2. Singe < m.(p), we have
u* e L>®(Q).
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(iif) Assume thatf(t)ﬁ is a convex function satisfying (1.18). By Proposition
4.1 (given below), ifv is a solution of (1.16,) then there exists a regular solution
of (1.16(1_.»,) for eache € (0,1). By the definition (4.1) of\* we deduce
statement (iii). |

In order to prove Theorem 1.4(iii) we have used the followiagult. Its proof
follows the ideas of Theorem 3 in [BCMR96].

Proposition 4.1. Under the assumptions of Theordm(iii), if there exists a so-
lution U of (1.16,,) then, for every: € (0,1), problem(1.16,_.),,) admits a
regular solution.

Proof: Let us defingj(u) := f(u)p%l,

_ ["d u) = _hlw) w) = h~ Y (h(u
h(u).—/o o0s)’ h(u) : : —5)1%’ and ®(u) :=h" " (h(u)).

1
0,0 < ®(u) < u, ®(+00) < +o00,
)

We note thatb(0)

R — 00
o) = (1 -y <

and (@) (w)g() — 9(®(w))g' (1)

0 — 1 LAt

(1 (L8 (R(w) — g'(u)
) P

Using the convexity of and0 < &(u) < u, we obtain that” < 0, and therefore

® is a concave bounded function. Lét:= ®(U). By Lemma 3.2 in [AP03] we

have

AV = =0, 0(U) > (U (=A,U) = (1= )Af(V)

in the weak sense. Thénis a bounded supersolution of (1(16,) ). It follows

from a monotone iteration argument (see the proof of PreiposR.1(ii)) that

there exists a regular solutianof (1.16(,_.), ;) satisfyingd < u <V = ®(U).
|

5.Characterization of singular extremal solutions

The rest of the paper is devoted to prove Proposition 1.3pifEme 1.5, and
Corollary 1.6. In order to prove Proposition 1.3 we will us¢dardy type in-
equality which is an immediate consequence of the Caffafelhn-Nirenberg
inequalities (see for instance [ACPO04)).
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Proposition 5.1.Let B, be the unit ball oR" and letD; ,(B;) be the completion
of C'>°(By) with respect to the norm

1/2
6] = ( [l + |v¢|2>dx) |

If & € (—o0, (N — 2)/2), then

N —2(a+1)\”
( (OK+ )) / ‘33‘_2(a+1)g02d33 < / Il’|_2agpzdﬂj, (51)
By

2 B,

for all ¢ € Dy ,(B1), wherey, denotes the radial derivative, and the constant
appearing in(5.1)is optimal(even among radial functiophand it is not achieved.

Proof: Even that (5.1) is standard and well known, we give the ideheproof.
Letr = || andx = ro. Integrating by parts, using < (N — 2)/2, and the
Cauchy-Schwarz inequality, we have

1 2 1
/0 T_2(a+1)g0(7“0')27”N_1d7“ _ _N — 2(a " 1) /0 T_2(a+1)+N¢(TJ)¢T(TJ)dT

9 1 3 1 3
< N—2(a+1) </0 T_Q(O‘H)gp(ra)zrjv_ldr) (/0 T_2ag0T(TO')27“N_1dT> .

Hence,

N =2(a+1)\? [! L
( ;oz + )) / 7“_2(0‘“)4,0(7“0)27“N_1d7“ < / r_QO‘gor(ra)QrN_ldr.
0 0

Finally integrate with respect to to obtain (5.1). The optimality of the constant
appearing in the last inequality can be found in [ACPO04]. |

Proof of Propositiori..3: AssumeN > p andm > (p — 1)N/(N — p). Let
U = U# and\ = \* be given by (1.14) and (1.15), respectively, andflet) =
AL+ w)™.

(i) An easy computation shows thét Wol’p(Bl) if and only if m > m, =
p*— 1.

Assumem > m, and note thall € C*(B; \ {0}) satisfies (in the classical
sense) (1)) in By \ {0}. Take¢ € C*(RY) suchthatt = 0in B;,0 < ¢ <1
in By \ By, andé = 1in RY \ By, Let&s(-) = £(-/9) for everys > 0 and let
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¢ € C*(B1). Multiplying (1.1,) in B; \ {0} by &;¢ and integrating by parts, we
have

@W@V”VU-V¢+/Q

P|VUP?VU -V& =X [ f(U)&e. (5.2)
Bss\Bs B,

B,

SinceU € W,”(B,),0 < & < 1tendsto 1 a.e. iB; asé goes to zero, and
f(U) € L'(By), we obtain that the first and third integrals clearly coneewss
goes to zero, to

B\VUW”VU-V@ and Bf@D%

respectively. SincepVés| < C/6 andN > p, the second integral in (5.2) con-
verges to zero a5 — 0. Therefore[/ is a solution of (1.]).
(i) Assumem > m.(p), or equivalently,

p(m +1)
m—(p—1)
By Theorem 1.2 we have that every semi-stable solution &f)is bounded if

m < mes(p). Hence, ifU is semi-stable them > m.(p).
Assumem > m.s(p) and note that

N > N, := (5.3)

p—2
|VU‘p_2 _ < p )) |x|—2a and (1 + U)m—l _ ‘x‘—2(a+1)’

m—(p—1
where
_ (m+1)(p—2)
" 2m—(p—1)) &4
We will prove thatU is semi-stable, that is,
i
=2 VO IVOF] 2 CNmap) | 2R (5.9)

for all v € Ay, whereAy is defined in Definition 1.1 and

L mp _ mp
C(N,m,p) Il — (N m—(p—1)>' (5.6)

First we note thatd; C Dy, (B1). Indeed, forp = 2 this is obvious, for
1 < p < 2 one can use the definition of;;, and forp > 2 follows from Holder
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inequality. Moreover, by (5.3) one obtains that< (N — 2)/2, and therefore
applying Proposition 5.1 we have

“oa x
2] [(p = 2) (5 - V) + [Vl
B ‘SIZ‘
> (=) [ ol 5.7)
\ 2
> (p . 1) (N _ 2(& + 1)) ‘x‘—2(a+1)¢2
2 B,
forall ) € Dj ,(B1), and hence for alp € Ay .
Finally, we note that
N —2(a+1)\?
(WJW é >>2ﬂMmm (5.8)
sincem > mes(p) (or equivalently (1.13) with reverse inequality). Hences§5
follows immediately from (5.7) and (5.8). |

Remark 5.2. Assume(p — 1) N/(N —p) < m < m.(p). Let f(¢t) = (1+¢)™, and
A" be defined in (1.15). In this case, the explicit functién defined in (1.14) is
notinW, ”. Itis easy to check that(U#) € L!(B,) since(p—1)N/(N —p) < m.
HenceU* is an entropy solution of (1.36,) (see [ABFOTO03] for the definition
of entropy solution). However, fog > 1 small enoughvVU#| ¢ L'(B;) and
therefore it is not a solution in the weak sense.

Let « andC (N, m, p) be defined in (5.4) and (5.6). Since

m>(p—1) >p—1,

N—p

we have thatr < (N — 2)/2, and therefore (5.7) holds for all € D; ,(B:). We

also note that (5.8) (in this case) is equivalent to

p—1N+2y/(p—1)(N-1)+2—p
N—(p+2)+2y/(N-1)/(p—1)

In particular, ifm < m(p) then (5.5) holds for all) € Dj ,(B;). On the other

hand, ifm(p) < m < m.(p) then (5.5) does not hold for somee Dy ,(Bi) by
the optimality of the constant appearing on Hardy inequ#fit1).

m < m(p) =

In order to prove Theorem 1.5 we will use the following result
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Lemma 5.3. Assume thaf = By, p > 1, and thatf is increasing. Let: andU
be two radial nonincreasing solutions (.16, ,) such that < U. ThenU — u
is radially nonincreasing. Thereforéyu| = —u' < —U’' = |VU|in B; \ {0}.

Proof: Lete > 0. We note that, U € L>(B; \ B.), since both are radially
nonincreasing solutions of (1.1§€), and satisfy

—App=Af(v) inB;\ B,
v=0 ondbBy,
v=uv(e) ONOIB..

In particular,u, U € C1(B; \ {0}). Moreover, by hypothesis,

i IVulP2Vu - Vi = A i flu)p (5.9)

and
IVUP2VU -Vo=X[ f(U)y (5.10)
Bl Bl
forall p € C°(By).

We argue by contradiction. Assume that there exjst; € (0,1) such that
U'(r)—u/(r) > 0forallr € (rg,r1). Letp € C§°(B;) be aradially nonincreasing
and nonnegative function such that= cin [0, r] (for a positive constant) and
=0 in [7“1, 1]

Subtracting (5.10) from (5.9), and using tha U andVv - Vi = |VY||Vp|
for ¢ = U andy = u, we obtain

0 <A /B (F(U) — flu))e

= / (|VUP~2VU — |[VulP~?Vu) - Vi
By

= (IVUP! = [Vul) V| <0,
Brl\BTO
a contradiction. |
Using Lemma 5.3 we can now prove Theorem 1.5.

Proof of Theorenl.5: Assumel < p < 2 and thatf is a C', increasing, and
convex function satisfying(0) > 0. From the convexity assumption and<
p < 2 we obtain that (1.17) holds.

(i) Let A € (0,X*) and letu, be the minimal solution of (1.16,) given by
Theorem 1.4(i). We note that, is a radially decreasing function (see [DS04]).
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Let U be any radially nonincreasing semi-stable solution ofg,1. We need to
prove thatuy, = U. Indeed, the following proof also holds whan= \*, andu*
andU are solutions of the extremal problem (1,16, establishing in this case
u*=U.

Sinceu, is the minimal solution of (1.16,) we haven := U — uy > 0. Let
M,y be defined by (2.2). We note thét— tn € M,y for all ¢ € [0,1]. By
Lemma 5.3 we have

n|=U—uy<U and |Vn|=|VU|—-|Vu,| <|VU]|,

and therefore € Ay.

Moreover, using the convexity of and the semi-stability condition (1.8) for
U € Wol’p(Q) with v = U € Ay, we obtain\f'(w)U? < \f(U)U? for all
w € My and

/)\f’(U)U2 <(p-— 1)/ VUP < +o.
Q Q)

Therefore, we are under the assumptions of Propositiontakhgu = U and

h = Mf'(U)U?). Hence, ifg(t) := J(U — tn) theng is twice continuously
differentiable in[0, 1] (see the proof of Proposition 2.2 and note that the constant
C' appearing in (2.14) is equal to 1). Moreovei0) = ¢'(1) = 0 since bothu,
andU are solutions of (1.16,). By (2.14) and Lemma 5.3, we get

g"(t)=(p—1) i V(U —tn) P2V — A i f(U—tn)n*,  (5.11)

forallt € [0, 1].

If U # uy then|VU| > |Vu,| in a set of positive measure. We know that
|IVU| > |Vu,| everywhere. Note that' (U — ¢n) is nonincreasing in a.e., and
that the first integral in (5.11) is an increasing functidnge

V(U —tn)| = [VU] = t([VU]| = [Vuy|)

IS nonincreasing everywhere (and decreasing in a set ofiymsneasure) and
1 < p < 2. Thereforey”(t) is an increasing function. It follows that

0 =g(1)—g(0) = / §'(s)ds
> g"(0) = (p— 1) /B VU2 - A / U,
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obtaining a contradiction, since the last expression is\agative (remember that
U is radially nonincreasing and semi-stable). Therefpre U — u), = 0, proving
(i).

(i) Assume thatf satisfies in addition (1.2), (1.10), and (1.18). By Theo-
rem 1.4(ii) we have that* < Wol’p(Q) is a semi-stable solution of (1.1.6).
In part (i) we have established thatis indeed the unique radially nonincreasing
and semi-stable solution of (1.16).

Letv e W,"(Q2) be an unbounded radially nonincreasing and semi-stahie sol
tion of (1.16, ,) for someX > 0. First, we note thah < A\* by Theorem 1.4(iii).
Second, by part (i) we obtain that= \* since minimal solutions are bounded
for A < A*. Finally, sinceu* is the unique radially nonincreasing and semi-stable
solution of (1.1- ,) we obtain that = v*. m

Finally, we prove Corollary 1.6 as an immediate consequehPeoposition 1.3
and Theorem 1.5(ii).

Proof of Corollary1.6: LetU# and\* be given by (1.14) and (1.15). L¢tu) =
(1 + )™ with m > max{1l,m.(p)}. We note thatf is convex and satisfies
(1.2), (1.10), and (1.18). By Proposition 1.3 we have fhat ¢ Wol’p(Q) is an
unbounded semi-stable solution of (1,16). Using Theorem 1.5(ii) we obtain
N =\ andu* = U7, m
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