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Editors’ Foreword

In 1914, one year after graduating in Mathematics, Diogo Pacheco d’ Amorim submitted his doctoral
thesis Elements of Probability Calculus to the University of Coimbra. In the author’s Preface it is said that
“the title — An Essay Towards Rationalizing Probability Calculus — would perhaps be more appropriate”.

In fact, Pacheco d’ Amorim’s endeavour seems to be an attempt to build axiomatic Probability Theory,
as requested by Hilbert in his seminal address to the Paris 1900 International Congress of Mathematicians,
avoiding embarrassing paradoxes, as exposed in Bertrand’s Calcul des Probabilités.

To fulfill this task, he first defines the standard model: someone performs the selection of an element
from a sample space which is qualitatively and quantitatively known (for instance, extraction of one ball
from one urn where n

1
balls of colour C

1
,. . . , n

r
balls of colour C

r
have been thoroughly mixed). This

individual knows whether his extraction has been random or not (i.e., in the above example, whether
any ball in the urn has or hasn’t the same chance of being selected). Thus, in this standard model,
contrarily to Poincaré’s opinion, the concept of randomly selecting an element from the sample space has
a clear meaning for the one performing the extraction, which can be used as a “primitive” concept in
the construction of probability. This leads to the concept of equipossibility.

The consideration of chains of hierarchically dependent extractions is then used to build up a wise
and elegant solution to the main problem of constructing stochastic models in which elementary events
are no longer equiprobable. For Pacheco d’Amorim probability is always conditional probability, and in
some aspects is construction anticipates Rényi’s work on the foundations of Probability.

In 1909, Borel had published a remarkable paper on continuous probability, that surely influenced
Pacheco d’Amorim’s construction of “randomly throwing geometric objects” in continuous sample spaces.
In chapter III of his thesis, he gives a solution to one of the celebrated Bertrand’s paradoxes (a solution
that in our view has a serious flaw, cf. the editorial note (13)), and in chapter IV the discussion of
“image points” — an ingenious construction of the probability measures of functions of random variables,
lacking the concepts of random variables and of distribution functions — effectively solves another class
of Bertrand’s paradoxes, namely questions arising from using equiprobability models both for choosing a
number in [0, 100] and in

[

02, 1002
]

.

Pacheco d’Amorim’s believed that he had solved Bertrand’s paradoxes in the standard model, in
which the subject performing the extraction knows whether this was or wasn’t done at random. His next
step is an anticipation of pseudo-randomness: he deduces Bernoulli’s and de Moivre’s limit results, and
from them he judges whether or not a (long enough) sequence of trials performed by someone else, or
even by a mechanical device, imitates closely randomness. In the wealth of ideas discussed in the closing
chapter, the main ideas of significance and hypothesis testing are clearly shaped.

Pacheco d’Amorim thesis is not a mature work, and there are some blunders in the text, that we
discuss or at least unveil at the appropriate places. The long and cumbersome discussion of “random
figures” is the weak point of this thesis, and we have been unable to understand clearly what the author
meant in the last section of Chapter III (if you think that our translation is difficult to understand, you
are right: we couldn’t agree on the original’s meaning). But, on the other hand, it has many strong points,
it anticipates some influential ideas in Probability and Statistics, and surely deserves a fair opportunity
to have international recognition.

In this translation, we corrected obvious typos (and we hope we didn’t introduce other typos); figures
have been redrawn, and we adopted symbols that, in our view, improve the readability of the text.

We are thankful to Prof. José Pacheco d’Amorim, who authorized this edited translation of his father’s
thesis.

Sandra Mendonça, Dinis Pestana, Rui Santos

Lisbon, 2007 August 08
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PREFACE

This volume, for which the title — An Essay Towards Rationalizing
Probability Calculus — would perhaps be more appropriate, gives an out-
standing rôle to a concept that, until now, never got the relevance it deserves
— the concept of extracting, at random, an element from a set or of throw-
ing, at random, a point in a region.

Henri Poincaré (1) goes as far as saying that such a statement has, by
itself, no meaning. But the truth is that this proposition has a very clear
and precise meaning for the agent of the random extraction or of the random
throw, and this allows us to construct the theory of probability with clarity
and rigor. Starting from this primitive concept, the theory of probability
can be reduced to a systematic sequence of propositions and definitions, as
any other branch of pure mathematics. In this approach, discontinuous and
continuous probability are identical in all aspects, and paradoxes have no
place in the ensuing theory.

(1) H. POINCARÉ, La Science et l’Hypothèse, p. 226.





x

Once the theory of probability of random extractions and of random
throws done by ourselves has been built, its extension to phenomena whose
outcomes are similar to extractions or throws performed by agents simi-
lar to us is rather easy, in case the extractions are done under some rigid
circumstances.

The theory thus constructed can be applied to the study of natural
phenomena, insofar as we reject, a priori, the determinist hypothesis, that,
in fact, is incompatible with probability theory; under this proviso, the
application is easily done.

*

The perspective we have adopted led us to change the form and the
essence of Probability. We had to generalize the definition of probability, a
generalization needed to prove Bayes formula, and absolutely unavoidable
in the study of continuous probability, as we can see in problem 3, page 48.

We had to distinguish the probability of one point from the probability
of another point which is the image of the first one, and from this emerged
the concept of probability law, etc.

The order of presentation couldn’t, therefore, conform to the classical
one.





xi

Continuous probability in this book is presented in parallel with dis-
continuous probability, and with the development it deserves. Bernoulli’s
theorems are a natural follow up, since they can be applied to both dis-
continuous and continuous probability. After Bernoulli’s 3rd theorem, we
present some variants and extensions, necessary to establish the error law
with the rigorous demonstration its usual presentation lacks. We next de-
velop the theory of Mathematical Expectation, since the importance of this
concept is more evident with the application of Bernoulli’s 3rd theorem than
with the definition of mathematical expectation itself. Finally, we broaden
the scope of applications of Probability, dealing with phenomena of which
we are not the agents. We also postpone until the end a classification of
the phenomena that are the object of this science, since we believe that the
classification is clear and rational after a deep understanding of how Prob-
ability deals with the standard phenomenon, discussed in the Introduction,
and developed in the core of this thesis. I had in mind to finish with a jus-
tification of our concept of probability, and to add an Appendix developing
the study of probability in denumerable sets; but the unusual extension of
the present dissertation persuaded me to postpone the publication of these
matters.
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INTRODUCTION

The aim of Probability Calculus, as of any other science, is to find asso-
ciations relating known facts to other facts that, although being unknown,
can be related to the former ones.

We begin by an example, illustrative of what we consider our [degree of]
knowledge of the facts.

Suppose that one urn contains balls, identical in all aspects save, even-
tually, in their color.

There are three possible situations:

1. we do not know the colors of the balls in the urn, and therefore we do
not know the percentage of each color, as well;

2. we know the colors of the balls [for instance, there are white balls and
there are black balls], but we ignore the percentage of the balls of each
color;

3. we know the colors, and the percentage of balls of each color in the
urn.

A ball will be randomly extracted from the urn, and we have to bet on
the color of the ball.

What bet should we choose?

In the first case, the question doesn’t make sense. As we do not know
anything about the colors present in the urn, there is no
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reason whatsoever to prefer any color to bet in.

In the second case, our ignorance has been moderated, since we know
that the ball that will be extracted can be either white or black.

But as we still ignore the percentage of balls of each color, there are no
grounds to decide which bet to take.

On the other hand, in the third case, assuming for instance that we
know that 90% of the balls are white, we would surely decide to bet that a
random extraction would produce white ball.

Obviously, we do not know for sure the color of the ball that will be
extracted, it can be black or white, but we do not hesitate in choosing
white as the sensible bet.

This distinguishes the third case from the former ones. It can serve as
an example on how to take rational decisions with incomplete information.

For this reason we shall say that the third case describes a known urn.

*

The third case deals with random extractions from one urn whose com-
position is qualitatively and quantitatively known.

We shall assume that any phenomenon whose outcomes can be iden-
tified with random extractions of balls from one urn of qualitatively and
quantitatively known composition is explained once that identification has
been made. More generally, we consider explained any phenomenon
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which can be identified with a random selection of elements in a finite set,
qualitatively and quantitatively known.

*

* *

As we have seen, we have distinguished the third case as known, because
it can serve as a standard model on how to take decisions under uncertainty,
i.e., under circumstances that we synthesized in the form of taking a bet.

Let us analyze in more detail the reasons that led us, in that example,
to bet in white color.

The first reason was, indeed, the fact that we knew that more white
balls than black balls existed in the urn, or, as stated in the example, the
percentage of white balls was larger than the percentage of black balls.

The second one was the knowledge that the extraction was performed
at random.

If one of these assumptions is withdrawn, there is no rationale for choos-
ing to bet “white ball”.

The reason why the first condition is an argument in favor of betting in
white ball comes from Arithmetic; the explanation why the second condition
is needed can be found only in the emerging science of Probability.

In that science we will therefore take the statement

“to extract an element, at random, from a finite set”

as a primitive concept in this branch of Mathematics.

We shall build Probability Calculus starting from this primitive concept.
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*

* *

It is worth observing that we didn’t choose the concept “randomness”
or “uncertainty” as the primitive concept upon which the theory of Prob-
ability would be constructed, since these concepts are vague, and as such
inadequate to serve as the foundation for any science; our choice has been
quite different, the concept of “extracting an element, at random, from a
finite set”.

Some could accuse us of using a foundation as vague as the concept of
“randomness”, since this concept is used in our primitive statement.

However, in the statement we choose as primitive, it is immaterial
whether the formulation “at random” is or isn’t vague, insofar as the propo-
sition using it can be understood and expresses an idea that can guide our
choices and decisions under precise circumstances.

Whatever we say about this proposition is irrelevant either from the
mathematical viewpoint or in the perspective of applications.

The same could be said about the concepts of space in Geometry, or of
time in Mechanics.

The discussion of these concepts is irrelevant in Mathematics, they are
from the scope of Philosophy. Mathematics would be the same theoretical
construct if these concepts didn’t exist. The knowledge of what we consider
Geometry and Mechanics would be latent in the symbolism of Mathematical
Analysis, and no more, but this knowledge would still be valid, although
less visible.

The usefulness of the concepts “space” and “time” can be compared to
the usefulness of coloring reagents
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in Chemistry: they enhance the visibility of the phenomena, but these exist
independently of being or not being enhanced by the coloring reagent.

*

* *

An important question must be raised at once: how can we distinguish
between random and non-random extractions?

It is obvious that there are extractions that are non-random, and there-
fore we need a criterion to distinguish random from non-random extractions.

To construct such criterion, we shall assume that any individual knows
whether an extraction has been made at random if the extraction has been
made by him.

*

Under this assumption, we shall build up a theory of probability, which
is a subjective science, as all pure science is. This theory will allow us
to construct a criterion to distinguish between random and non-random
extractions, when we are not, ourselves, the agent performing the extraction.

This area of Probability Calculus is at the onset of applications.

*

* *

The usefulness of science is its general ability to forecast events with an
approximation considered good enough in practical applications.
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This pragmatism seems unfeasible in Probability Calculus.

In effect, how could we predict the color of the ball that will be extracted
from one urn containing two white balls and one black ball?

It is obvious that Probability Calculus is unable to make an useful pre-
diction, in this situation.

If instead of two white balls and one black ball, the urn composition was
one thousand white balls and one black ball, prediction of the outcome of a
random extraction would still be impossible, but to our intuition it would
seem more plausible to forecast that a white ball would be extracted.

The practical usefulness of Probability Calculus lies in this evaluation
of the degree of probability of a future event, and in the ensuing confidence
that our intuition attaches to the plausibility of events whose probability
approximates certitude.

Confidence based in probability will, in its essence, be different from
certitude, no matter how nearly the percentage of white balls in the urn
approximates 1. But this doesn’t deface the real practical usefulness of
Probability in decision making under incomplete or unreliable information.

*

What we have said about random extractions of elements from a finite
set can also be said about randomly throwing points in a bounded region of
space, in any number of dimensions.
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CHAPTER I

FINITE SETS

We shall denote A, B, . . . sets with a finite number of elements.

The symbol A × B will denote the set of ordered pairs (a, b), obtained
from the sets A and B, by associating each a ∈ A with each b ∈ B.

The symbol #A denotes the cardinal of the set A.

*

With these notations, it is obvious that

#A×B = #A× #B.

*

Each ordered pair (a, b) ∈ A×B is said to be compound of a and b.

The set A× B is compound from the sets A and B. Any set composed
of compound elements (a, b) is not, necessarily, a compound set.
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Primitive concept

a)

We consider the statement to extract, at random [or to select], an element
from the set A as having a self evident meaning, and henceforth needing no
further explanation; in other words, to select, at random, an element from
a finite set is considered a primitive concept.

b)

The statement a is a randomly chosen element from the set A has the
same meaning; b) is better suited to the formal symbolism of mathematical
logic, while a) is more appropriate for the natural language.

*

From the above assertions, the propositions “randomly extracting a card
from a card deck”, “random throw of a die” (random selection of one die
face), “randomly extracting a ball from an urn”, etc., do not need further
explanation.

DEFINITION 1

Randomly extracting an element from A, or B, or C, . . . , is the same as
randomly taking an element from A ∪ B ∪ C ∪ · · · , the set having all the
elements from the sets A, B, C, . . .
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DEFINITION 2

a)

Randomly extracting an element from A and, [independently,] another
from B is, by definition, the same as randomly extracting an element from
A×B.

b)

Randomly extracting an element from A, another from B and another
from C, [the extractions being mutually independent] is, by definition, the
same as randomly extracting an element from A × B and another from C,
etc.

*

According to this definition, randomly choosing a suit and then randomly
choosing a number(2), [independently,] is the same as randomly choosing a
card from the card deck.

DEFINITION 3

a)

Let us associate to each a ∈ A a set B
a
, and denote {a} ×B

a
the set of

ordered pairs {(a, b) : b ∈ B
a
}.

Randomly extracting an element from A and another element from the
corresponding set B

a
is, by definition, the same as randomly extracting an

element (a, b) from A×B
a
.

(2) In this context the numbers are 1 or ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, knave, queen,
king, i.e. the card value, whichever the suit.
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b)

If to each b ∈ B
a

we associate a set C
b
, randomly extracting an element

from A, another element from the corresponding set B
a

and another ele-
ment from the corresponding set C

b
is, by definition, the same as randomly

extracting an element (a, b, c) from A×B
a
× C

b
.

Possibility

1 — Possible elements

According to the above definitions, random extractions have a meaning
either in a single set (primitive concept, definitions 1 and 2) or in a complex
of sets [definition 3, a) and b)].

All depends on the extracting system, and on the sets from where the
extractions are performed.

When the extractions are performed from a single set, or performed
in such a way that they are equivalent to extractions from a single set
(primitive concept, definitions 1 and 2), we say that all the elements from
that set are possible.

When the extractions are sequentially performed from a complex of sets,
as explained in definition 3 a), we say that the possible elements are those

in A ;

⊙

B =
⋃

a∈A

{a} ×B
a
.

On the other hand, in what concerns definition 3 b), the possible el-
ements are those that can be sequentially extracted randomly choosing
a ∈ A, and then randomly choosing one element b ∈ B

a
, and next ran-

domly choosing an element c ∈ C
b
, i.e., the elements from the complex of

sets A ;

⊙

B ;

⊙

C =

{

(a, b, c) ∈ ⋃

(a,b)∈A ;

⊙

B

{(a, b)} × C
b

}

, etc.
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2 — Possible sets

The total possible set A [resp. B, A × B, A ;

⊙

B, etc.] is the set with
all possible elements.

Any A′ ⊂ A is a possible set, i.e. is a set whose elements are possible.

DEFINITION 4

The possibility of a randomly chosen element a ∈ A (or in any of its
possible subsets), or unit possibility, is

π
a

=
1

#A
.

*

Thus, all elements randomly chosen in the same set (or randomly chosen
using an extracting system which is equivalent to random extraction from
the same set) are equally possible.

Proposition I

The possibility of a compound element (a, b) ∈ A×B is the product of
the possibilities of its components.
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This is an obvious consequence of #A×B = #A× #B:

1

#A×B
=

1

#A
× 1

#B
,

and thus
π

(a,b)
= π

a
× π

b
.

DEFINITION 5

The possibility ̟
A′ of a possible set A′ is the sum of the possibility of

its elements,

̟
A′ =

∑

a∈A′

π
a
.

Proposition II

If A′ is a possible set which may be partitioned into pairwise disjoint
sets

A′ = A′

1
∪ A′

2
∪ · · · ∪ A′

n

then
̟

A′ = ̟
A′

1

+̟
A′

2

+ · · · +̟
A′

n

.

This is an immediate consequence of Definition 5.
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Proposition III

The possibility of the total possible set is 1.

a)

If all the possible elements result from random extractions performed in the
same set A, the proposition is obvious, since

̟
A

=
∑

a∈A

1

#A
=

#A

#A
= 1.

b)

Let us consider now sequential extractions from a complex of sets. Without
loss of generality, consider the extraction system in definition 3 a).

Let A = {a1 , a2 , . . . , an
}, and denote B

a
k
, k = 1, 2, . . . , n the set associ-

ated with each element a
k
∈ A. From Proposition I, the possibility of any

element resulting from pairing a
k

with b
j
∈ B

a
k

is

π
(a

k
,b

j
)
=

1

#A× #B
a

k

,

and therefore the possibility of the set a
k
×B

a
k

is

∑

b
j
∈Ba

k

π
(a

k
,b

j
)
=

1

#A

∑

b
j
∈Ba

k

1

#B
a

k

=
1

#A
.
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Thus, in view of Proposition II, the possibility of the total possible set
is

∑

a∈A

1

#A
= 1.

The above proof is easily extended for any complex extracting system.

Proposition IV

If the set A×B is compound from the sets A and B, then

̟
A×B

= ̟
A
×̟

B
,

since the possibility of each element (a, b) is the product of the possibility
of an element of A by the possibility of an element of B.

Probability

DEFINITION 6

Let A′ be a possible set and A′′⊂ A′ another possible set(3). We shall
call probability of A′′ relative to A′ the number

P
A′ (A

′′) =
̟

A′′

̟
A′

,

̟
A′′ and ̟

A′ denoting, as above, the possibilities of A′′ and of A′, respec-
tively.

(3) We shall use, as a rule, A′′ ⊂ A′ ⊂ A.
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In the above context, the set A′′ is said to be the favorable set, and
A′ − A′′ is said to be the unfavorable or contrary set.

Sometimes we shall use the word case meaning element.

*

If the elements in A′ are equally possible, it follows that

̟
A′ = #A′ × π

a
, ̟

A′′ = #A′′ × π
a

and therefore

P
A′ (A

′′) =
#A′′

#A′
.

In other words: When the elements in the possible set are equally possi-
ble, the probability is the number of favorable cases divided by the number
of possible cases.

*

When the possible set A′ is the total possible set A, from

̟
A

= 1

it follows that
P

A
(A′′) = ̟

A′′

(4).

(4) The most general definition of probability that can be found in Laplace is coincident
with this particular case, of the reference set being the total possibility set A, with
̟

A
= 1.
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If the favorable set A′′ is the possible class A′,

P
A′ (A

′) = 1

and in this case probability is certitude.

If the favorable set is empty, A′′ = ∅,

̟
∅

= 0

and therefore
P

A′ (∅) = 0.

In this case, probability is renamed impossibility.

Therefore, probability takes values between 0 and 1.

Postulate

Let S and S ′ be two extracting systems, originating qualitatively equal
elements. We say that those two systems are equivalent if qualitatively
equal sets have the same probability under S and S ′.

*

The term equivalent in the above postulate means that similar extrac-
tions performed under S and under S ′ imply similar decisions.

This postulate reduces all extracting systems to extractions from a single
set.
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Proposition V

Total probability

If the possible set A′′ is partitioned pairwise disjoint partial sets
A′′

1
, A′′

2
, . . . , A′′

n
,

A′′ = A′′

1
∪ A′′

2
∪ · · · ∪ A′′

n
,

we have (Prop. II)

̟
A′′ = ̟

A′′
1

+̟
A′′

2

+ · · · +̟
A′′

n

and henceforth

P
A′ (A

′′) = P
A′

(

A′′

1

)

+ P
A′

(

A′′

2

)

+ · · · + P
A′

(

A′′

n

)

i.e., the probability of the union of pairwise disjoint sets is the sum of the
probabilities of the partial sets.

Proposition VI

Compound probability

a)

If A′ × B′ is a possible set compound from A′ and B′, and A′′ × B′′ is a
possible subset of A′ ×B′, we have (Prop. IV)
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̟
A′×B′ = ̟

A′ ×̟
B′

and
̟

A′′×B′′ = ̟
A′′ ×̟

B′′

and therefore
P

A′×B′ (A
′′ ×B′′) = P

A′ (A
′′) × P

B′ (B
′′).

In case the sets A′ and B′ are independent, this proposition may be
stated as: the probability of a compound set is the product of the probabilities
of its components.

b)

Proposition VI has been proved under the hypothesis that both the fa-
vorable and the possible sets are compound. It can, however, be generalized
in the following ways:

1st

If A′ ×B′ = A×B is the total possible class, and thus

̟
A′×B′ = 1

we have
̟

A′ = ̟
B′ = ̟

A′×B′ = 1

and from this it follows that

P
A′×B′ (A

′′ ×B′′) = P
A′ (A

′′) × P
B′ (B

′′).

2nd

If
̟

A′×B′ = ̟
A′ ,

i.e., if the possible set is obtained from the total possible set
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by excluding some elements a ∈ A together with all the elements from the
corresponding sets B

a
, from the fact that

̟
B′ = 1

it follows that

P
A′×B′ (A

′′ ×B′′) = P
A′ (A

′′) × P
B′ (B

′′).

Proposition VII

Let A′′ ⊂ A′ ⊂ A be possible sets. As

̟
A′′

̟
A

=
̟

A′

̟
A

× ̟
A′′

ω
A′

it follows that

P
A
(A′′) = P

A
(A′) × P

A′ (A
′′). (1.1)

Corollary

From (1.1) it follows that

P
A′ (A

′′) =
P

A
(A′′)

P
A
(A′)

Proposition VIII

On the probability of causes

When the random extractions are performed as described in Definition

3, the set A is the set of causes, and the sets B =
⋃

a∈A

B
a

is the set of effects.
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The problem of the probability of possible causes may be typified as
follows:

Let us consider a set of N urns, n1 of which have a fraction p1 of white
balls, n2 of which have a fraction p2 of white balls, etc.

Randomly choose one among the N urns, and from that urn randomly
extract a ball; let’s investigate the consequences of assuming that the ex-
tracted ball is white.

What is the probability that this ball has been extracted from an urn
with percentage p

i
of white balls?

The solution may be constructed as follows:

Under the hypothesis that the extracted ball is white, the elements of
the possible set A are all the compound elements of the form

(any urn, white ball).

Denoting ̟
A

the possibility of this set, from Prop. II and IV we get that

̟
A

=
n1

N
p1 +

n2

N
p2 + · · ·

or, denoting

n
k

N
= ω

k
,

̟
A

=
∑

ω
k
p

k
.

The elements of the favorable set A′ are all the compound elements of
the form

(urn with p
i
× 100% white balls, white ball);
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and therefore (Prop. IV)
̟

A′ = ω
i
p

i
.

Thus (Def. 6)

P
A
(A′) =

ω
i
p

i

∑

ω
k
p

k

, (1.2)

an expression known as Bayes formula.

In the above expression, ω
i

is the probability of extracting, among the
N urns, one with percentage p

i
of white balls, and it is known as a priori

probability of the urns with p
i
× 100% white balls.

The probability (1.2), P
i

= P
A
(A′) =

ω
i
p

i
∑

ω
k

p
k

, is the probability of ex-

tracting, among the N urns, one with percentage p
i

of white balls, after
performing the first extraction, resulting in white ball; for that reason, it is
known as a posteriori probability of the urns with p

i
× 100% white balls.

*

* *

It is obvious that the causes we are investigating may arise in any random
extraction system, and that we cannot limit ourselves with extractions in a
single set.

We now generalize formula (1.2) for sequential extractions from a com-
plex of sets:

Denote
ω1 , ω2 , . . . , ωn
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the a priori probabilities of the n causes which may originate the extraction
of white ball, and denote

p1 , p2 , . . . , pn

the probabilities that each of these causes confers to the event extraction of
white ball.

Let us denote A the set that we obtain by associating each of the causes
with each of the balls whose extraction it can originate. On the other hand,
let us denote A′ the set that we obtain by associating each of the causes
with each of the white balls whose extraction it can originate. And let us
denote A′′

k
, k = 1, 2, . . . , n the set that we obtain by associating each k-th

cause with each of the white balls whose extraction each of these causes can
originate.

From Prop. VI, b), 1st, we know that

P
A
(A′′

i
) = ω

i
p

i
; (1.3)

on the other hand (Prop. VII)

P
A
(A′′

i
) = P

A
(A′)×P

A′ (A
′′

i
) (1.4)

and (Prop. V)

P
A
(A′) =

n
∑

k=1

ω
k
p

k

since

A′ =
n
⋃

k=1

A′′

k
.

Thus
P

A′ (A
′′

i
) =

ω
i
p

i

n
∑

k=1

ω
k
p

k

.
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*

* *

The above proof clearly shows that the usual argumentation that appears
in other probability books is erroneous. In fact, when the urns do not have
the same number of balls, the usual demonstration uses the formulas (1.3)
and (1.4), justifying their use with the compound probability principle. But
Proposition VI cannot be reduced to Proposition VII, since Prop. VII cannot
be applied to compound elements.

This error was not evident due to lack of clarification of the meaning of
compound event [and of complex event].

In fact, without this error it would have been impossible to establish
Bayes formula with the definition of probability adopted is those books,
since Bayes formula refers to a situation unforeseen in their definition: un-
equal probability of elementary events in a possible set which is a proper
subset of the total probability set.

Proposition IX

Inverse formulas to Bayes’ formula

Denoting the a posteriori probability of the i-th cause P
i
, we have es-

tablished that

P
i
=

ω
i
p

i

∑

ω
k
p

k

. (1.5)
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This formula is symmetrical in what concerns the use of the ω
k

and of
p

k
, which are given(5).

Let us now assume that the p
k

and of P
k

are given, and that our aim is
to compute the a priori probabilities ω

i
. We now prove that

ω
i
=

P
i

p
i

∑ P
k

p
k

.

In fact, from (1.5) we get that

P
i

p
i

=
ω

i

∑

ω
k
p

k

;

therefore,

∑ P
i

p
i

=

∑

ω
i

∑

ω
k
p

k

=
1

∑

ω
k
p

k

and thus ω
i
=

P
i

p
i

∑ P
k

p
k

.

Due to the symmetry of (1.5), we also have the inversion formula

p
i
=

P
i

ω
i

∑ P
k

ω
k

. (6)

(5) Editors’ note: this is not true:
∑

ω
i

= 1, but
∑

p
i

can be different from 1. For

instance, in the classical Laplace’s urn problem
∑

p
i
=

N
∑

k=0

k
N

= N+1
2 .

(6) Editors’ note: this is not true, unless
∑

p
i

= 1. The usefulness of the correct

expression
p

i
∑

p
k

=

P
i

ω
i

∑ P
k

ω
k

seems rather limited. On the other hand, ω
i
=

P
i

p
i

∑ P
k

p
k

is true.





CHAPTER I — Finite sets 29

Proposition X

Let us now solve the problem that follows, where we assume the condi-
tions stated for the problem of the probability of causes.

“From a randomly chosen urn, extract one ball; this ball is white, and
after observation it is returned to the urn. What is the probability that a
second extraction from this urn will result in white ball?”

1st solution

We shall solve this problem directly using the definition of probability.

The possible set is the set of all compound events of the form

(any urn, white ball, any ball)

and therefore

ω
A

=
∑

ω
k
p

k
· 1 =

∑

ω
k
p

k
.

The favorable set is the set of all compound events of the form

(any urn, white ball, white ball)

and thus

ω
A′ =

∑

ω
k
p

k
p

k
=
∑

ω
k
p

2

k
.

From the above, we get

P
A
(A′) =

∑

ω
k
p

2

k

∑

ω
k
p

k

.
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2nd solution

We may alternatively solve the problem in the following way: the effect
of the observation of white ball in the first extraction is to change the a priori
probabilities ω

k
by the a posteriori probabilities P

k
formerly computed. This

problem is therefore equivalent to the following one:

If n causes with probabilities

P1 , P2 , . . . , Pn

may result in a given effect with probabilities

p1 , p2 , . . . , pn
,

respectively, what is the probability of that effect?

The desired probability is (Prop. V)

P =
∑

P
k
p

k
=

∑

ω
k
p

2

k

∑

ω
k
p

k

.

*

More generally:

If we perform m+n extractions from a randomly chosen urn (returning
each extracted ball to the urn after observation, before proceeding to the
next extraction), resulting in m white balls and
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n black balls, the probability of getting white ball in the (m + n + 1)-th
extraction is

P =

∑

ω
k
p

m+1

k
q

n

k

∑

ω
k
p

m

k
q

n

k

. [q = 1 − p]

This result may be established by any of the two methods used in solving
the former problem, which was the particular case of two extractions.

Corollary

If the urns have the same a priori probability, i.e., if

ω
k

= constant

then

P =

∑

p
m+1

k
q

n

k

∑

p
m

k
q

n

k

.

Problem

One urn contains N balls, either white or black, in unknown propor-
tions. Assuming that all the possible proportions

(

0, 1
N
, . . . , 1

)

of white
balls are equiprobable, what is the probability of extracting white ball in
the (m+ n+ 1)-th extraction, if we know that the previous m + n extrac-
tions resulted m times in white ball and n times in black ball?

*

The above problem is equivalent to the following one:
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There are N +1 urns, one of them with N black balls, another one with
1 white and N − 1 black balls, another one with 2 white and N − 2 black
balls, etc., until the last urn, containing N white balls.

Performing m + n extractions of one ball from a randomly chosen urn
(always returning the extracted ball to the urn before proceeding to the
next extraction), white ball is observed in m occasions, and black ball in n
occasions. What is the probability of extracting white ball in the (m+n+1)-
th extraction?

*

The solution is given in the corollary above, where we may use

p
k

=
k

N
and q

k
=
N − k

N
,

obtaining

P =

N
∑

k=0

(

k

N

)m+1 (

N − k

N

)n

N
∑

k=0

(

k

N

)m (

N − k

N

)n
,

which may be approximated by

P ≈

N
∫

0

( α

N

)m+1
(

N − α

N

)n

dα

N
∫

0

( α

N

)m
(

N − α

N

)n

dα

.

Using the substitution
α = N x,
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P ≈

1
∫

0

x
m+1

(1 − x)
n

dx

1
∫

0

x
m

(1 − x)
n

dx

.

As
1

∫

0

x
m

(1 − x)
n

dx =
Γ(m+ 1) Γ(n+ 1)

Γ(m+ n+ 2)

and, for natural n,
Γ(n) = (n− 1)!

it follows that

P ≈ Γ(m+ 2) Γ(n+ 1)

Γ(m+ n+ 3)

Γ(m+ n+ 2)

Γ(m+ 1) Γ(n+ 1)

or

P ≈ m+ 1

m+ n+ 2
,

where the closeness of the approximation improves with the increase of N .
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CONTINUOUS PROBABILITY

If A, B, . . . denote bounded regions in a space with any number of
dimensions, A ∪ B ∪ · · · denotes the region with all the points from A, B,
. . .

If A, B, . . . denote regions whatever, A×B will denote the set of ordered
pairs (a, b), obtained from the sets A and B, by associating each point a ∈ A

with each point b ∈ B.

*

In the above definitions the use of geometric terminology is merely
metaphoric, the word point meaning no more than any n-uple of numbers.

*

It has been proved in Pangeometry that if A and B are regions
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and µ(A), µ(B) the corresponding measures, then

µ(A×B) = µ(A) × µ(B);

more precisely, Pangeometry has generalized the concept of measure in
hyper-space in such a way that the relation

µ(A×B) = µ(A) × µ(B);

is valid.

We shall say that A × B is a compound region from A and B, and
its points (a, b) are referred to as compound points of a and b, similarly
to the conventions we have adopted in the former chapter, dealing with
discontinuous probability.

Primitive concept

a)

As in the case of probability of finite discontinuous sets, we consider as
primitive the concept of throwing [or selecting, or choosing, or extracting] a
point, at random, in the bounded region A in any number of dimensions.

b)

The statement X is a point thrown, at random, in A has the same mean-
ing as a), b) being better suited to the formal symbolism of mathematical
logic.

DEFINITION 1

Randomly extracting one point from A, or B, or C, . . . , is the same as
randomly choosing one point in the region A ∪B ∪ C ∪ · · ·
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DEFINITION 2

a)

Randomly throwing one point from A and another[, independently,] from
B is, by definition, the same as randomly throwing one point from A×B.

b)

Randomly throwing one point from A, another from B and another from
C is, by definition, the same as randomly throwing one point from A × B

and another from C, [independently,] etc.

Thus, randomly choos-
ing one point X in the seg-
ment ab and one point Y in
the segment ac is the same
as randomly choosing one
point Z in the parallelogram
[abcd] (Fig. 1).

a b

c d

X

Y Z

Figure 1

Randomly choosing one point in one arc and one point in a non coplanar
line segment is the same as randomly choosing a point in the cylindrical
surface generated by them, etc.

DEFINITION 3

a)

We now consider the case of constrained random selection, made in
regions subject to some sort of mutual dependence.
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Let us associate with each a ∈ A a region B
a
, and denote {a} ×B

a
the

set of ordered pairs {(a, b) : b ∈ B
a
}.

Randomly selecting (or throwing) one point in A and another point in
the corresponding region B

a
is, by definition, the same as randomly choosing

one point (a, b) from A×B
a
.

b)

If to each b ∈ B
a

we associate a region C
b
, randomly throwing one point

in A, another point in the corresponding region B
a

and another point in the

X

Y

0 a b

A B

c

x

Figure 2

corresponding region C
b

is, by definition, the same as randomly throwing
one point (a, b, c) in A×B

a
× C

b
, etc.

*

As an example, let A be (Fig. 2) the line segment ab on the
−→

OX axis
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and that for each x in ab the corresponding B
x

is the vertical segment with

endpoints in the
−→

OX axis and on the curve
⌢

acb.

If in the first point randomly thrown in ab results x the second point will
be randomly thrown in xc which is equivalent, according to the definition, of
making only one random throw in the parallelogram with ab as base and the
upper side passing from the point c, which is a subset of the parallelogram
[abAB].(7)

Possibility

According to the above definitions, we consider either randomly throw-
ing one point in one region, single or compound (primitive concept. and Def.
1 and 2) or constrained randomly throwing one point in a complex region
(Def. 3 a and b)

In the first situation, we shall consider possible all the points in the
region where the random throws are done. For instance, in the example
illustrated in Fig. 1, all the points in the parallelogram [abcd] are possible
points.

In the case of Def. 3 a) we shall say that the possible points are those that
result from associating each point from region A with each point from the

corresponding region B
a
, i.e., the complex of regions A ;

⊙

B =
⋃

a∈A

{a}×B
a
.

For instance, in the example illustrated in Fig. 2, the possible points are

those lying in he region limited by the segment line ab and the curve
⌢

acb,

etc.

Point possibility or unit possibility

Let µ(A) be the measure of the region A where we are throwing points
at random.

The number

π
a

=
1

µ(A)

(7) Editors’ note: In fact this is not true, and the observation where Pacheco d’Amorim
says that all sampling schemes can be reduced to a single selection (or throw) are contra-
dictory to the very detailed construction he builds to overpass the question of dependence;
this is never explicitly stated, but it is evident that Pacheco d’Amorim tries to solve el-
egantly how to deal with joint probabilities. Observe also that his “reconstruction” of
Fubinni’s theorem is chapter IV clearly shows that this bold statement that hierarchical
sampling can be reduced to single sampling cannot hold in dependent settings.
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will be called possibility at point a or unit possibility.

Similarly with what happens in the case of discontinuous probability, we
may say that, in case all the random throwing of points is performed in the
same [single or compound] region, all the sample points are equally possible,
in the sense that the possibility is the same in each of those points.

*

According to this definition, all the points from regions as described in
the primitive concept and in Def. 1 and 2 are equally possible. But in the
cases addressed in Def. 3 the possibility will not be, in general, the same for
all points.

However, the possibility is always well defined, since in all those defi-
nitions one point belongs to some uniquely defined region, where random
throws are performed, its possibility resulting from the random throwing
system adopted.

The possibility of each point is then a function of its coordinates.

Proposition I

Similarly to what happens in the case of probability in finite sets, the
possibility of a compound point (a, b) ∈ A × B is the product of the possi-
bilities of its components. The proof is in all points similar to the proof for
the finite sets case.

Possibility of a region

One region is said to be possible if all its points are possible.
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The possibility of a given possible region A′ is the integral of the unit
possibility over that region, in case this integral exists.

We shall denote ̟
A′ the possibility of a possible region A′.

Proposition II

If A′ is a possible region which may be partitioned into pairwise disjoint
regions

A′ = A′

1
∪ A′

2
∪ · · · ∪ A′

n

then
̟

A′ = ̟
A′

1

+̟
A′

2

+ · · · +̟
A′

n

.

*

The possible regions A′ are subsets of the total possible region A, the
region of all possible points in the random throwing system considered.

Proposition III

The possibility of the total possible region is 1. (The proof has exactly
the same steps detailed in the proof of the similar property in the case of
finite sets.)

Proposition IV

If the region A×B is compound from the regions A and B, then

̟
A×B

= ̟
A
×̟

B
,
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In fact, as the function
1

µ(B)
is independent of the coordinates of points

from the region A, recalling that

µ(A×B) = µ(A) × µ(B)

we have

̟
A×B

=

∫

A×B

d(a, b)

µ(A×B)
=

∫

A

d(a)

µ(A)
×
∫

B

d(b)

µ(B)
= ω

A
× ω

B

Probability

Let A′ be a possible region in what concerns a given random throwing
system, and A′′⊂ A′ another possible region.

We shall call probability of the region A′′ relative to the region A′ the
number

P
A′ (A

′′) =
̟

A′′

̟
A′

,

̟
A′′ and ̟

A′ denoting, as above, the possibilities of the regions A′′ and of
A′, respectively.

*

If the elements in A′ are equally possible, it follows that

P
A′ (A

′′) =
µ(A′′)

µ(A′)
.

When the possible set A′ is the total possible set A, from

̟
A

= 1

it follows that
P

A
(A′′) = ̟

A′′
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Examples:

1st

A line segment is randomly broken into three parts. What is the proba-
bility that the three resulting segments can be taken for sides of a triangle?

To break a segment into three parts, randomly, is the same as to throw
randomly two points X and Y on it. By Def. 2, this is the same as to throw,
randomly, one point in the square having the segment as one of its sides.

Let ab be the segment (Fig. 3) and [abcd] be the associated square (Fig.
4).

a b
X Y

x y

Figure 3

Let (X,Y ) be the coor-
dinates of the point Z corre-
sponding to the positions X
and Y of the two points ran-
domly marked in the seg-
ment ab.
Assuming that the segments
mentioned in the problem
are additive, we shall need
to determine the probabil-
ity that the segments aX,
XY and Y b can be taken as
the sides of a triangle (case
X < Y );

a b

c

c¢

d d¢

e

e¢

0

x

q

p

Figure 4
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or else, that the segments aY , Y X and Xb can be taken as the sides of a
triangle (case X > Y ).

Let us analyze first the case X < Y .

Denoting α the length of the segment ab [and assuming a=0, for sim-
plicity], the three segments can be the sides of a triangle if and only if

0 < X < (Y −X) + (α− Y ),

0 < Y −X < X + (α− Y ),

0 < α− Y < X + (Y −X).

These conditions are equivalent to

0 < X <
α

2
,

0 < Y−X <
α

2
, (2.1)

α

2
< Y < α.

The totality of points from the square [abcd] whose coordinates verify
condition (2.1) is the favorable region.

From the analysis of Fig. 4, it is obvious that this region is [od′e].

In the case X > Y , a similar analysis shows that the favorable region is
the triangle [oc′e′], symmetrical to [od′e] in reference to the line ac.

As in this randomly throwing system all points are equally possible, the
probability is given by the quotient of the area of the favorable region by
the area of the possible region, i.e.

P =
1

4
.





CHAPTER II — Continuous Probability 47

2nd

Let us now assume that the segment is randomly broken into two seg-
ments, and then that the bigger subsegment is randomly broken into two.
What is the probability that the three resulting segments can be the sides
of a triangle?

The favorable region is obviously the same that we have constructed in
the previous problem; let us now find the possible region.

When X < α
2

, we shall have aX < Xb and therefore X < Y < α, i.e.,

conditionally on the first point being X < α
2

the second point is in Xb, and
thus (cf. Fig. 4) all the points in B

x
= qp are possible. Hence, all the point

in region [aod′d] are possible.

For identical reasons, in the case α
2
< X < α the favorable region is

[oc′e′] and the possible region is [e′ocb]; as all is symmetrical in reference
to ac, we shall make our computation for the case X < α

2
, the other one

having the same numerical solution.

In the previous problem, all the possible points were equally possible,
since each of the two points was randomly thrown into the segment ab,
without any restriction. In the present problem, this is not so(8). Denoting
F the favorable region and P the possible region, we have

̟
P

= 1

and

̟
F

=

∫∫

[od′e]

2 dx

α
· dy

α− x
=

2

α

α
2

∫

0







x+α
2

∫

α
2

dy







dx

α− x
,

(8) Editors’ note: Observe that to any X ∈
(

0, α
2

)

we associate B
X

= (X,α), and
hence the possibility of any (X,Y ) ∈ [aod′d] is 2

α
× 1

α−X
.
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and so

̟
F

=
2

α

α
2

∫

0

x

α− x
dx =

=
2

α

α
2

∫

0

[

−1 +
α

α− x

]

dx = −1 + 2
(

− log(α− x)
]

α
2

0
=

= 2 log 2 − 1 ≈ 0.386

and therefore the probability we wanted to compute is

P ≈ 0.386

i.e., we get in this problem a bigger probability, as it should be expected
by the extra conditions, which have increase the possibility of the three
segments forming a triangle(9).

3rd

Now we consider a follow up of the above problem.

One point X is randomly thrown in ae′ (Fig. 4), and another point X ′ is
randomly thrown in the segment Xb, and we further assume the condition
that X ′ ∈ e′b; what is the probability that the three segments aX, XX ′

and X ′b can be the sides of a triangle?

The total possible region, the possible region and the favorable region
are [aod′d], [eod′d] and [eod′], respectively.

Therefore

̟
P

=

∫∫

[eod′d]

2 dx

α
· dy

α− x
=

=

α
2

∫

0

dx

α− x

(9) Editors’ note: We have corrected the final result given by the author who presents
0.44.
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or
̟

P
= (− log(α− x)]

α
2

0
=

= log α− log
α

2
=

= log 2,

and (probl. 2nd)

̟
F

= 2 log 2 − 1;

therefore

P = 2 − 1

log 2
≈ 0, 557.(10)

Observation

All that has been said about discontinuous probability, is also valid for
continuous probability. Therefore Propositions V, VI and VII from Chapter
I may be established for continuous probability using the same arguments
that have been used in the case of discontinuous probability, and we take
them as Propositions V, VI and VII in this Chapter II, without explicitly
rewriting them. The “problem of the probabilities of causes” could be dealt
with here as we did in Chapter I.

But we postpone the investigation of that problem to Chapter IV, using
a different and more general methodology.

Proposition VIII

If a variable point X in some given region can be decomposed in two
components X1 and X2 in such a way that

(10) Editors’ note: We have detailed the final result given by the author who presents
0.6.
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whatever the position of X1 the corresponding X2 has always the same
favorable and possible regions, X1 and X2 are independent, and henceforth
their probabilities can be computed separately; this, as a rule, simplifies
considerably the solution of problems. If, in particular, the probability of
X1 is 1, the probability of X is independent of the parameters defining the
position of X1 , which as a consequence we may assume fixed.

When the region where points are randomly thrown has a symmetry
element, this proposition can in general be used.

Example:

Two points are randomly thrown on a spherical surface. What is the
probability that the smaller arc of the maximum circle defined by the two
points is smaller than α?

Whatever the position of one of the points, say X, the favorable and
possible regions for the other point Y are always the same.

In fact, given X, the favorable region is the spherical cap having vertex
X and an angle 2α, and the possible region is the entire spherical surface.
Therefore, the problem can be reformulated as follows: What is the prob-
ability that one point Y randomly thrown on a spherical surface lies in a
given spherical cap? This problem has immediate solution.
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Proposition IX

If the region of variation of X can be partitioned into subregions in such
a way that the probability of X in each of them is always the same, the
probability in the total region is the same as the probability in any of those
regions.

In fact, let A1 , A2 , . . . , AL
be the pairwise disjoint subregions of the pos-

sible region A, and A′

1
, A′

2
, . . . , A′

L
the corresponding favorable subregions

of the favorable region A′; from the hypothesis

P =
̟

A′
1

̟
A1

=
̟

A′
2

̟
A2

= · · · =
̟

A′
L

̟
A

L

we get that

P =

L
∑

k=1

̟
A′

k

L
∑

k=1

̟
A

k

,

which is the probability of X.

DEFINITION 4

The proposition randomly throw one point in the region A, A being
unbounded, has the same meaning as randomly throw one point in the region
A′, where A′ ⊂ A is an arbitrarily large bounded region.

If X is a randomly thrown point in A and A is unbounded, the proba-
bility of X in region A is the limit of the probability of X in A′ when A′

increases indefinitely, i.e. the probability of X is the number P such that
for all δ > 0
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there corresponds a region C such that

|P − P
B
| < δ

for all regions B such that
C ⊂ B.

This case will be dealt with in detail in an appendix, where we investigate
the probability of denumerable sets(11).

(11) Editors’ note: In the last sentence of the Preface, Pacheco d’Amorim says that he
had conceived the intention of including an appendix on this subject, but that finally he
has decided otherwise.
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RANDOM FIGURES

FIRST PART

All the propositions where the terms randomly extracting or randomly
throwing, or equivalents are used in the context of the construction of ran-
dom figures (either rigid or variable) will be defined through the use of the
concepts of random extractions from a finite set or random throws of points
in a continuous region, as indicated in definitions 1, 2 and 3 of Chapters I
and II.

Random rigid figures

DEFINITION 1

The random choice of an orientation in a space of dimension n is, by
definition, the same as randomly throwing a point (x1 , . . . , xn

) in the set
defined by the equation

(

x1 − x′
1

)2

+
(

x2 − x′
2

)2

+ · · · +
(

x
n
− x′

n

)2

= 1.

The orientation will be that of the vector having (x′1 , . . . , x
′

n
) as origin

and the randomly thrown point (x1 , . . . , xn
) as extremity.

Any point in the space may be taken as origin (x′1 , . . . , x
′

n
).
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In the particular case n = 2, the random throw is done in a circum-
ference, and in the case n = 3 the random throw is done in a spherical
surface.

The definition of a random direction is done by analogy.

DEFINITION 2

Let ab and a′b′ be two line segments. Superimpose the two segments in
such a way that a and a′ coincide, and then let the smaller one slide over
the bigger one until points b and b′ coincide. In other words, the smaller
segment goes through all positions it may have upon the bigger one, and
at the end of this procedure each point of the smaller segment will have
defined segment trajectories of the same length.

Randomly throwing a smaller segment on a bigger one is the same as
randomly throwing any given point of the smaller segment on the segment
it defines when the smaller segment slides over the bigger one, as described
above.

Randomly throwing the bigger segment on the smaller one is the same
as randomly throwing the smaller segment on the bigger one.

*

The validity of the definition lies in the fact that all the segments defined
by each point of the smaller segment when it slides over the bigger one are
of equal length. Hence, it doesn’t depend on a particular choice of the point,
it has the same meaning whatever the point chosen in the segment.

As, in view of definitions 1, 2 and 3 of Chapters I and II, every random
choice can be viewed either as a random choice in a single or compound
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region or as a choice in a complex region, the choice of a random figure
corresponds, as a rule, to randomly choosing a point which determines the
figure in this random choice. We shall call such a point the equivalent point
to the figure, in what concerns the random choice at hand. The equivalent
point must be independent of all points from the figure, whichever the figure
in question.

Problem

Each of two friends goes for a half hour walk to a public garden open
from 2 p.m. till 4 p.m., separately. What is the probability that in a given
day they meet during their walk in the public garden?

We assume that the time each of them starts his walk is random. Then,
as time is continuous in one dimension, the problem may be reformulated
as follows:

We randomly throw two segments of lengths b and c, respectively, over
a given segment of length a. What is the probability that the two random
segments have a nonempty intersection?

If b+ c > a, the two segments always overlap, and therefore

P = 1.

Now we analyze the case b+ c < a.

When the segment of length b slides over the segment of length a, each
of its points describes a segment of length a− b and, similarly,
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each point of the segment of length c generates segments of length a − c.
Randomly throwing the two segments over the segment of length a is the
same as randomly throwing one point of the segment of length b in a − b

and one point of the segment of length c in a − c; and this is the same as
randomly throwing one point in the rectangle (a− b) × (a− c).

Let’s take as equivalent points of those segments, in what concerns the
random throw described, their right extremities, and let x and y denote the
distances of those right extremities to the origin 0 of the segment of length
a (Fig. 5).

0 a

c yx b

Figure 5

The two random segments don’t overlap if and only if

y − x > b or x− y > c.

The lines with equations

y − x = b and x− y = c

determine on the rectangle (a− b) × (a− c) two half-squares which are, in
what concerns this problem, the contrary region. It is then easy to compute

1 − P =
1
2
(a− b− c)

2
+ 1

2
(a− c− b)

2

(a− b)(a− c)
=

(a− b− c)
2

(a− b)(a− c)
.

In the special case

a = 2, b = c =
1

2
,

we get

P = 1 − 4

9
=

5

9
.
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DEFINITION 3

To throw a straight line at random in a given region A means, by def-
inition, to throw a point, at random, in A, and to select at random one
direction in the region A, which determine the straight line.

Example(12):

A straight line is randomly thrown in a circle. What is the probability
that its intersection with the circle is a chord smaller than a given chord of
length c?

Without loss of generality, we
shall solve the problem in the
unit circle S, i.e. with area π.
Any chord of length c defines a
smaller arc of amplitude α, say,
and the area of the correspond-
ing smaller circular segment is
α−sin α

2
. Therefore (Prop. VIII

of Chapter II) the probability
wanted is independent of the di-
rection D of the random straight
line.

\Α

Figure 6

Whatever the direction of the random straight line, its intersection with
the circle is a chord of length smaller than c if and only if the associated
smaller circular segment has area less than α−sin α

2
.

Therefore when throwing a random chord in the circle, for any randomly
chosen direction, any point in the circle is a possible point so that the
straight line is thrown in the circle (Def. 3), and the favorable points M
are those in the [two] circular segments S ′

1
[and S ′

2
], with area α−sin α

2
each,

defined by the straight line[s] with the given direction whose intersection
with the circle is a chord of length c.

Thus, the probability in question is

P =
2 · area of the circular segment S ′

area of the circle S
=
α− sin α

π
,

(12) Editors’ note: We have corrected the misprints in the formulation and drawn a
figure more suited to follow the arguments in the solution given by Pacheco d’Amorim.
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since the chord which is the intersection of the random straight line with
the circle will have length less or equal to c if and only if the point M lies
on a segment in a region S ′ = S ′

1
∪ S ′

2
with area α− sin α.(13)

*

The solution has immediate generalization for the case of a straight line
thrown in a sphere.

The same solution applies, with the necessary modifications, for a similar
problem, where the straight line is replaced by a plane and the chord by the
area of a plane section.

DEFINITION 4

To throw, at random, one straight line segment in a region A means, by
definition, to throw a straight line at random in A (Def. 3) and to throw the
segment in question (Def. 2) in the segment which is the intersection of A
with the random straight line.

Example:

The needle problem

A needle (straight line segment) is randomly thrown over a sheet of
paper (unlimited plane) where parallel and equidistant straight lines have
been drawn. What is the probability that the needle intersects one of those
straight lines?

Let l denote the needle length, and δ denote the distance between the
parallel straight lines ab, a′b′, . . . (Fig. 7).

We first randomly select the direction α of the straight line that contains
the segment; next we throw a random point X in a portion arbitrarily large
of the plane (Chapt. II, Def. 4). However big

(13) Editors’ note: Although in the explanation Pacheco d’Amorim seems to overlook
the fact that there are two circular segments, symmetrical in respect to the diameter
with the chosen direction, whose points are favorable, the final expression he presents is
correct. We have introduced the necessary corrections in his arguments.

Note however that, in our opinion, this ingenious solution he gives to the problem, of
the class of the famous Bertrand’s paradoxes, has a flaw. In fact, all the points that lie
in a given chord with the given direction will correspond to the same randomly thrown
straight line of the given direction, in Pacheco d’Amorim’s definition, and it is obviously
untrue that the two sets of points that lie in two chords of different lengths carry equal
probability.
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this portion of the plane, we may always define in it a parallelogram [pqsr]
whose sides are parallel to the direction selected, and whose bases are par-
allel to the straight lines ab, a′b′, containing that portion of the plane, and

throw the point X inside it. Assume
that these two random throws have
determined the straight line de. Once
this random straight line has been
thrown, the next step is to throw the
segment of length l over the segment
de (Def. 4). Or, whatever the posi-
tion of point X, the probability that
the segment of length l intersects one
of the parallel straight lines is always
the same. Therefore (Chapt. II,
Prop. 8) we may take X as fixed.

q e s

a b

a¢ b¢

a² b²

p rd

∆

Α

Figure 7

Let the segment of length l slides over the straight line de; when its
origin goes from one parallel to the next one, the segment it generates while
the segment of length l intersects the next parallel straight line has always
the same length.

Thus the parallel straight lines divide the possible region where the
segment of length l is randomly thrown over de in subregions with equal
probability (with the exception of the first and of the last ones, which may
be discarded, in view of the arbitrary size of the parallelogram). Therefore,
in view of Prop. IX of Chapt. II, it is enough to compute the probability in
one of them:

P =
l

bb′
=
l sin α

δ
,
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(where α is the angle 〈[edr]), in case δ ≥ l; on the other hand, the unit
possibility of α is 1

π
; therefore

P =

π
∫

0

1

π
· l sin α

δ
dα =

l

δ π
(− cos α]

π

0
=

2l

δ π
.

In the case δ ≤ l, let us partition the field of variation of α in two parts:
the first one the totality of values of α for which the intersection is void;

l l∆
Β

Α0

Figure 8

the second one with all the other values. Using the theorems of total prob-
ability and of compound probability, and writing

δ = l cos β = l sin α0 ,

we get

P =
π − 2α0

π
· 1 + 2

α0

π

α0
∫

0

l sin α

δ
· dα

α0

=

=
π − 2α0

π
+

2l

δ π
[1 − cos α0 ] =

=
2β

π
+

2l

δ π
(1 − sin β) .
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Note

It is worth noting that when l < δ the probability that the needle inter-
sects one of the parallel straight lines is directly proportional to the length
of the needle.

DEFINITION 5

To throw a plane(14) at random in a plane region A means, by definition,
to choose randomly an orientation in A.

DEFINITION 6

To throw, at random, a plane region in another plane region A means,
by definition, to throw a random plane in A (Def. 5) and then to throw,
at random, a point of the mobile region (or a point invariably tied to that
region) in the region that this point defines when the mobile plane region
occupies inside A all the positions that are compatible with the orientation
randomly chosen in the first step.

It is obvious that an equivalent point will always have the same possibil-
ity, whichever the randomly chosen point in the plane of the mobile figure,
since all the points of the mobile figure describe identical regions when the
plane containing it moves taking on positions which are parallel to each
other.

(14) The orientation of this plane is determined by a half-line.
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DEFINITION 7

To throw a plane at random in an n-dimensional space, n ≥ 3 means,
by definition, to choose a random point and two directions emerging from it
in that space.

DEFINITION 8

To throw randomly a plane figure in an n-dimensional region means,
by definition, to throw a random plane in that region and then to throw at
random that figure in the portion of the random plane inside that region.

DEFINITION 9

To throw at random a three dimensional space in a three dimensional
region A means, by definition, to throw a point at random in A and to
choose two random directions(15) emerging from it.

*

The above definitions are easily extended for higher dimensional spaces.

Note

It is worth observing that, according to the above definitions, to throw
at random a finite region B on another finite region A is equivalent to
randomly throwing a point in a region that depends both from A and from
B. From that dependence we may immediately conclude (it is enough to
analyze one particular case, for instance throwing a straight line segment
on a rectangular plane region)

(15) Two directions is sufficient to direct three axes.
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that from the random throw of all B we cannot conclude the random throw
of any of its parts, because in the case of finite regions, the equivalent point
of a part of B will vary in a different region of the equivalent point of all
B, that is, if we throw together all region B the field of variation of its
equivalent point (field of the equivalent point of the all) will be different
from its field of variation if we throw the parts of B separately.

In the special case of random throws in an unbounded region, it may
happen that the global random throw determines the partial random throws.

For instance, in the [Buffon’s] needle problem (Def. 4), the random throw
of the needle determines the random throw of any of its parts, since we get
the same result conceptualizing the random throw of part of the needle
either in isolation or as part of the needle, because its equivalent point
would have the same field of variation in both cases.

SECOND PART

Random variable figures

DEFINITION 10

Randomly throwing a variable figure in a given region A is, by definition,
to select, at random, the form of the figure and, then, to throw it at random
in A, as if it were a rigid figure.

The discussion of the second statement in this definition
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has been done in the first part of the present Chapter. So, our present task
is to discuss the meaning of randomly choosing the form of a variable figure.

Obviously this question cannot have an exhaustive treatment. We shall
limit ourselves to articulated polygonal figures (either open or closed) and,
as a limit case, of flexible inextensible curves.

DEFINITION 11

Open polygonal lines

An articulated polygonal figure is a polygonal line whose consecutive
segments form variable angles.

a

Figure 9

To choose, at random, its form
is, by definition, to choose, ran-
domly, the form of each of its ver-
tices.
To explain the meaning of this
last statement, let us consider one
vertex or articulation a (Fig. 9),
which we may assume to be an el-
ement of the n-dimensional space,

with coordinates (x′
1
, x′

2
, . . . , x′

n
). Let us consider the hyperspherical surface

defined by

(x1 −x′1)2 + · · ·+(x
n
−x′

n
)2 = 1. (3.1)

We assume that one of the sides of the articulation a is fixed, and that
the other one can occupy any of the possible positions; therefore, at distance
1 from the vertex, it intersects the hyperspherical surface (3.1). Denote B
the set of such intersection points (16).

(16) It is possible that B does not correspond to the total hyperspherical surface.
Editors’ note: This is a mysterious footnote. How can the region B being constrained
when we are choosing, at random, the form of one vertex of an open polygonal line?
Perhaps this footnote is in the wrong place and it’s relate about the random choose of
the form of a closed polygonal line where it makes sense.
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Thus, to choose at random the form of the articulation a is, by definition,
to choose a random point in the subset B of the hyperspherical surface.

DEFINITION 12

Closed polygonal lines

a)

In the plane

We begin with plane figures, and next we shall discuss articulated figures
in the higher dimensional spaces.

1st

Let’s discuss, to start with, how to choose randomly the form of a four

a

b

c

d

c¢

Figure 10

sided plane polygon [abcd] (Fig. 10). When
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this polygon assumes all possible forms, its angle a can take values of one of
two kinds: those corresponding to the position c of its non-adjacent vertex,
and those corresponding to the position c′ of its non-adjacent vertex. In
other words, drawing a circumference with unit radius with center a, and
considering the side ad fixed, the intersection point of the moving side with
the circumference defines two regions, that can have non-empty intersection
(17) when the polygon assumes all its possible forms. But we shall, in all
cases, consider the two regions, which we denote A and A1 , as distinct.
Once one point from one of those regions is given, the form of the figure
has been determined. Consider similar regions with vertices b, c and d, and
denote them B and B1 , C and C1 , D and D1 , respectively.

Randomly choosing the form of the plane four sided polygon is, by defi-
nition, to choose randomly one point (Chapter II, Def. 1) from A or A1, or
from B or B1, or from C or C1, or from D or D1.

With this definition, the equivalent point doesn’t depend on any element
of the figure.

2nd

Let us now consider a pentagon, and investigate how to progress from
the previous case to the random choice of a pentagon.

When the articulation a takes on the particular form shown in Fig. 11,
the four sided plane polygon [bcde] can take an infinity number

(17) The articulations can be subjected to restrictions such that the position c′ is inad-
missible.
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of forms, some in the half-plane [bce], others in the half-plane[bc′e].

These forms correspond to groups B and B′, C and C ′, D and D′, E and
E ′, for the angles of [bcde], and similar groups, but in general different ones,
for the angles of [bc′d′e]. Let’s associate the possible values of a with each
of the elements of the groups [bcde], and denote A the set thus obtained.

a

b
c

d

e

c¢

d¢

Figure 11

Let’s do the same in what regards [bc′d′e], and denote A1 the set thus
obtained. Any element of any of those sets will define the pentagon. Let’s
do the same with all the other vertices, and denote B and B1 , C and C1 ,
. . . , the sets obtained as described.

Randomly choosing a pentagon is, by definition, to choose, randomly, an
element from A or A1, or from B or B1, . . .
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The definition of random choice of a hexagon, or of a heptagon, etc., is
similar in all points.

b)

In the space

Randomly throwing a closed polygonal line in an n-dimensional space
is in all points similar to what we have seen about randomly throwing
a closed polygonal line in the plane, we only need to substitute, in the
preceding definitions, the points varying in circumferences by points varying
in hyperspherical surfaces(18).

Randomly throwing flexible inextensible curves

By definition, randomly throwing a flexible inextensible curve, open or
closed in the space A is to throw in that space, at random, a polygon with
the same length and an arbitrary large number of sides.

*

Any problem referring to an articulated polygon with an arbitrary num-
ber of sides will have a solution which depends on the number and length
of those sides. If that solution converges for some limit when the supremum
length of the polygons sides decreases to zero, we shall say that this limit is
the solution of the same problem in the case of a flexible and inextensible
curve.

(18) Editors’ note: Cf. footnote 13.
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Proposition I

Let A and B be two regions such that it is possible to define a bijective,
complete and continuous correspondence between their points. When a
point M is randomly chosen in A, the corresponding point N in B is said
to be the image point of M . Generally, each element in B is the image of a
corresponding randomly chosen element in A.

The image point N is random, insofar as it depends on the original
point M randomly chosen in A. But the random status of M in B is clearly
different from the random status of M in A, since its random choice in A

has been direct, while N randomly varies in B, but as an image of M .

For that reason we say that M is a free point, while N is an image or
dependent point.

The possibility of a dependent point is, by definition, the possibility of
the corresponding free point. The possibility of a region B′ which is the
image of a region A′ is the possibility of A′. In a general way, all that can
be said, in what concerns probability, about an image point N ,
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varying in B, is defined via the corresponding free point varying in A. It is
easily seen that the properties established for the free point [in the previous
chapters] are also valid for the image point.

Application

Let f be a continuous increasing function defined in an interval [α, β].
A number X is randomly chosen in that interval, and we want to know the
probability that the corresponding Y has the digit d as its a−th decimal.

Let ω and ω′ be the integers which most closely satisfy the inequalities

f(α) <
10ω + d

10a
f(β) >

10ω′ + d+ 1

10a
,

and let us represent f−1 the inverse function of f ; the values f(x) which
verify the conditions in our problem lie in the intervals

(

10ω + d

10a
,
10ω + d+ 1

10a

)

,

(

10 (ω + 1) + d

10a
,
10 (ω + 1) + d+ 1

10a

)

, . . .

(

10 (ω + i) + d

10a
,
10 (ω + i) + d+ 1

10a

)

, . . .
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(

10ω′ + d

10a
,
10ω′ + d+ 1

10a

)

.

Taking into account the foregoing definitions and the theorem of total
probability, the probability we wish to compute is therefore

P
(α, β)

(d, a) =

∑

{

f
−1

(

10 (ω + i) + d+ 1

10a

)

− f
−1

(

10 (ω + i) + d

10a

)}

β − α
,

1st

Let us apply the above formula to the function

y = log
α
x

in the variation interval for y

(

0,
10ω + 10

10a

)

.

In this case,

ω = 0, ω′ = ω, and P
(α, β)

(d, a) =

ω
∑

i=0

[

α
10i+d+1

10a − α
10i+d
10a

]

α
10 ω+10

10a − 1
=

= α
d

10a

[

α
1

10a − 1
]

ω
∑

i=0

α
i

10a−1

α
ω+1

10a−1 − 1
= α

d
10a α

1
10a − 1

α
1

10a−1 − 1
. (4.1)
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Expression (4.1) shows that this probability doesn’t depend on ω, and
thus doesn’t depend on the interval of variation of y; therefore, it can be
represented P(d, a).

*

From (4.1) it is clear that

P(d+ 1, a)

P(d, a)
= α

1
10a

,

independent of d.

It is easily seen that P(d, a) goes quickly to 1
10

when a increases.

2nd

Let us now consider the function

y = α
x

, α > 1

in the interval corresponding to (ω, ω′); we get

P
(ω, ω′)

(d, a) =

ω′

∑

n=ω

(

log
α

10n+ d+ 1

10a
− log

α

10n+ d

10a

)

log
α

10 ω′+10
10a − log

α

10 ω
10a

=

=

ω′

∑

n=ω

log
α

(

1 +
1

10n+ d

)

log
α

ω′+1
ω

,
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showing that this probability is independent of a.

*

It is easily seen that

lim
ω′→∞

P
(ω, ω′)

(d, a) =
1

10
.

In order to establish this result, we shall first show that the sequence
with general term

U
n
(d) =

n
∑

k=ω

log
α

(

1 +
1

10 k + d

)

n
∑

k=ω

log
α

(

1 +
1

k

)

is increasing; then, we shall prove that it is upper bounded by 1.

a)

The sequence U
n
(d) is increasing when d > 9 (in the expression of U

n
(d),

d may be any [integer] number).

In effect

f(k) =

log
α

(

1 +
1

10 k + d

)

log
α

(

1 +
1

k

)
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is an increasing function, since its derivative

f ′(k) =

− 10

(10 k + d)(10 k + d+ 1)
log

α

(

1 +
1

k

)

+
1

k (k + 1)
log

α

(

1 +
1

10 k + d

)

log α

[

log
α

(

1 +
1

k

)]2

is such that f ′(k) > 0. In effect, as

(

1 +
1

x

)x

is an increasing function, we get

(

1 +
1

10 k + d

)10 k+d

>

(

1 +
1

k

)k

and, on the other hand, if d ≥ 9,

[

(

1 +
1

10 k + d

)10 k+d
]10 k+d+1

>

[

(

1 +
1

k

)k
]10 k+10

;

taking basis α logarithms on both sides of the above inequality, it is imme-
diate that

f ′(k) > 0.

As the general term of the sequence U
n

is a fraction whose numerator is
the sum of the numerators of

f(1), f(2), . . . , f(n)
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and whose denominator is the sum of their denominators, and as f(k) is
increasing, U

n
(d) is also increasing.

b)

U
n
(d) < 1

for any n.

In effect

log
α

(

1 +
1

10 k + d

)

< log
α

(

1 +
1

k

)

and therefore

∑

log
α

(

1 +
1

10 k + d

)

<
∑

log
α

(

1 +
1

k

)

from which we get
U

n
(d) < 1.

As a consequence, we may state that U
n
(d) has a limit when n → ∞

and d ≥ 9.

*

From the expression of U
n
(d) we have that

0 ≤ d ≤ 10 =⇒ U
n
(0) ≥ U

n
(d) ≥ U

n
(10);





80 Elements of Probability Calculus

and therefore, for n large enough,

U
n
(d) − U

n
(10) ≤ U

n
(0) − U

n
(10) =

=

n
∑

k=ω

[

log
α

(

1 +
1

10 k

)

− log
α

(

1 +
1

10 (k + 1)

)]

log
α
(n+ 1) − log

α
ω

=

=
log

α

(

1 + 1
10 ω

)

− log
α

(

1 + 1
10 (n+1)

)

log
α
(n+ 1) − log

α
ω

<

<
log

α

(

1 + 1
10 ω

)

log
α
(n+ 1)

< δ,

for any δ > 0. Thus the limit

lim
n→∞

U
n
(d)

exists for any d, and that limit doesn’t depend on d; but as

lim
n→∞

9
∑

d=0

U
n
(d) = 1 =

9
∑

d=0

lim
n→∞

U
n
(d)

it follows that

lim
n→∞

U
n
(d) =

1

10
.

It is easily seen that U
n

converges towards 1
10

very quickly.
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Observation

The general problem that we have just solved gives the distribution of
the digits in an ideal table containing all values of a regular function in
an interval (α, β). In any real table with independent values in arithmetic
progression, equal subsets of (α, β) contain approximately the same number
of values of x written down in the table, with relative error decreasing with
the step of the arithmetic progression of x values. From that, the probability
that a value of x randomly chosen in (α, β) lies in a given subinterval is
approximately proportional to the size of that subinterval, exactly as it
happens in the ideal table.

This ideal table may be regarded as the limit of a sequence of real tables
as described when the step of the arithmetic progression of the x’s decreases
towards 0. Thus, the smaller is the step of the arithmetic progression of the
x’s, the closer general formula (4.1) will be to the distribution of digits in a
table of f(x). Therefore, in a table of basis 10 logarithms, as the mantissa
doesn’t change when dividing x by an (integer) power of 10, we expect the
formula

P(d+ 1, a)

P(d, a)
= 10

1
10a

to give much closer results at the end of the table than at its beginning.

This is in fact so. For instance, counting the number of digits 1 and 2
in the second decimal place in a table of basis 10 logarithms between 1289
and 1319, or between 1319 and 1349, we find
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30 of each of those digits, getting

P(2, 2)

P(1, 2)
=

30

30
= 1;

on the other hand, the number of digits 1 and 2 in the second decimal place
in a tables of basis 10 logarithms between 10232 and 10471, or between
10471 and 19715, are respectively 239 and 244, and thus

P(2, 2)

P(1, 2)
=

244

239
≈ 1.0209,

much closer to the theoretical value

100
√

10 ≈ 1.0233

for the ideal table.

3rd

It has some independent interest to compute the ratio

P(d+ 1)

P(d)

for the tabular differences of logarithms. Those differences may be regarded
as values of the function

y = log (1 + x) − log x =

= log

(

1 +
1

x

)





CHAPTER IV — Image Point 83

corresponding to x values in arithmetic progression. Rewriting

log

(

1 +
1

x

)

=
10ω + d

10a
,

log

(

1 +
1

x′

)

=
10ω + d+ 1

10a
,

log

(

1 +
1

x′′

)

=
10ω + d+ 2

10a
,

we get
P(d+ 1)

P(d)
=
x′′ − x′

x′ − x
=

=

1

10
10 ω+d+2

10a − 1
− 1

10
10 ω+d+1

10a − 1
1

10
10 ω+d+1

10a − 1
− 1

10
10 ω+d

10a − 1

very approximately

≈

1

10ω + d+ 2

10a
log 10

− 1

10ω + d+ 1

10a
log 10

1

10ω + d+ 1

10a
log 10

− 1

10ω + d

10a
log 10

=

=
(10ω + d) (10ω + d+ 1)

(10ω + d+ 1) (10ω + d+ 2)
=

10ω + d

10ω + d+ 2
;
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therefore

P(d)

P(d+ 1)
= 1 +

2

10N + d
= 1 +

2

10aD
, (4.2)

where

D = log

(

1 +
1

x

)

=
10N + d

10a
.

As 10aD is the integer part of the product of 10a by any tabular differ-
ence, with the digit d in the a−th decimal place, we conclude that, given a
tabular difference D, we can get from (4.2) the ratio

P(d)

P(d+ 1)
,

where d is the digit in the a−th decimal place of D.

As an example, given the tabular difference 0.0000524, we get for a = 5,

P(5)

P(6)
= 1 +

2

5
= 1.400.

Searching in the tables we find that the tabular difference 0.0000500 has
a corresponding maximum at 8694; that the tabular difference 0.0000600 has
a corresponding maximum at 7243; that the tabular difference 0.0000700 has
a corresponding maximum at 6208; we therefore have, for those tables

P(5)

P(6)
=

1451

1035
= 1.401.
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Observation

For the integer positions, i.e. for a = 0,−1,−2, . . . , the formula

P(d+ 1, a)

P(d, a)
= 10

1
10a

is exact, since the integers are logarithms of values of x written in the tables.

Proposition II

Law of possibilities

Let A′ ⊂ A, and let B and B′ be the images of, respectively, A and A′.
Let M denote a free point in A, ∆S a neighborhood of M , and let N be
its image in B, its neighborhood ∆S ′ the image of ∆S. Denoting ∆ω the
possibility of ∆S, it will also be the possibility of ∆S ′. Let

lim
µ(∆S′)→0

∆ω

µ (∆S ′)
,

where we assume that the limit is taken with the supremum of the projection
of ∆S ′ on the coordinate axes goes to zero with ∆S ′. The set of points N
for which this limit exists is the domain of a function of the coordinates of
N , whose value in each point is the above limit. That function is the law of
possibility.
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Corollary

The possibility of B′ is

ω
B′ =

∫

B′

lim
µ(∆S′)→0

∆ω

µ (∆S ′)
dS ′.

Thus, once the possibility law is known, we can compute the possibility
of any region B′ without any reference to the region A′ of which B′ is the
image.

Proposition III

Law of probability

In analogy with the above definition, we define the probability law as
the function whose value at each point N is given by

lim
µ(∆S′)→0

∆P

µ (∆S ′)
.

Proposition IV

If A is the possible region in what regards the probability ∆P and ω(N)
denotes the possibility of N , then

lim
µ(∆S′)→0

∆P

µ (∆S ′)
= lim

µ(∆S′)→0

∆ω
∫

A
ω(N) dω

µ (∆S ′)
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or

lim
µ(∆S′)→0

∆ω
µ(∆S′)

∫

A
ω(N) dω

=
ω(N)

∫

A
ω(N) dω

,

showing that in each possible region the probability law is proportional to
the possibility law.

A priori and a posteriori laws

In what follows, we assume, without loss of generality, that the random
point varies in a plane region, so that the arguments can be presented in an
easy way.

A priori law

Let M(x, y) denote a random point varying in a plane region (Fig. 12),
and let m(x) denote its projection in the OX axis.

The a priori law of the point M(x, y) is the probability law of its projec-
tion m(x).

Proposition V

If ϕ(x, y) denotes the probability law of M(x, y) in the region A, then its
a priori probability law is

a(x) =

∫

ϕ(x, y) dy.
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In effect, let us consider a vertical band with width ∆S, containing the
points with abscissa x.

X

Y

A B

CD

a b

c d

MHx,yL

DS

DS¢y

mHxL0

Figure 12

The probability ∆P that the point m lies in a neighborhood ∆S of x is
the probability that the point M(x, y) lies in the region [abcd]; therefore

∆P =

∫∫

[abcd]

ϕ(x, y) dx dy = µ (∆S)

y′

2
∫

y′
1

ϕ(x1 , y) dy,

where y′
1
and y′

2
stand for the smaller and the greater ordinates of the points

in A
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with abscissa x1 . Or, according to the definition of a priori law,

a(x) = lim
µ(∆S)→0

∆P

µ (∆S)
=

y′

2
∫

y′
1

ϕ(x, y) dy,

*

Similarly,

a(y) =

∫

ϕ(x, y) dx.

We shall use a to denote an a priori law, and p to denote an a posteriori
law.

A posteriori law

Let us consider an horizontal and a vertical band in region A (Fig. 12),
containing respectively the points with ordinate y and the points with ab-
scissa x, and assume that the bandwidths are respectively ∆S ′ and ∆S. The
probability of the region [ABCD] in relation to the region [abcd] (Chapter
II, Prop. VII, Observation) is

∆P =

∫∫

[ABCD]

ϕ(x, y) dx dy

∫∫

[abcd]

ϕ(x, y) dx dy
=
µ (∆S) · µ (∆S ′) · ϕ(x′, y′)

µ (∆S)

y′

2
∫

y′
1

ϕ(x′
1
, y) dy

=

=
µ (∆S ′) · ϕ(x′, y′)

y′

2
∫

y′
1

ϕ(x′
1
, y) dy
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where x′ and x′
1

are functions of ∆S that converge to x when ∆S goes to
zero. We shall say that

lim
µ(∆S)→0

∆P =
µ (∆S ′) · ϕ(x, y′)

y′

2
∫

y′
1

ϕ(x′
1
, y) dy

is the a posteriori probability of ∆S ′.

We may interpret that a posteriori probability as the probability that y
lies in the interval ∆S ′, given that x has taken the particular value x.

p(y) = lim
µ(∆S′)→0

∆P

µ (∆S ′)
=

ϕ(x, y)
∫

ϕ(x, y) dy
(4.3)

is the a posteriori law of y.

Proposition VI

From Prop. V and (4.3) we get

ϕ(x, y) = a(x) · p(y) = a(y) · p(x).

*

Prop. V and VI are similar to the propositions about total probability
and compound probability.

From those two propositions it is easy to infer a formula similar to

Bayes’ formula

and this justifies the terminology a priori and a posteriori laws that we have
been using.
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In effect, from Prop. VI

ϕ(x, y) = a(x) · p(y) = a(y) · p(x).

and

a(y) =

∫

ϕ(x, y) dx =

∫

a(x) p(y) dx

it follows that

p(x) =
ϕ(x, y)

a(y)
=

a(x) p(y)
∫

a(x) p(y) dx
,

and, similarly,

p(y) =
a(y) p(x)

∫

a(y) p(x) dy
.

Those are the formulas for the a posteriori law for each of the variables.
Hence the a posteriori law of one variable can be computed from its a priori
law, if the a posteriori law of the other variable and the corresponding
domain of variation are known.

*

From the above formulas we can infer other formulas, which we shall
call

Inverses to Bayes’ formula

From

p(x) =
a(x) p(y)

∫

a(x) p(y) dx
,

taking partial derivative in order to x and remembering that

∫

a(x) p(y) dx
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doesn’t depend on x, we get

∂p(x)

∂x
p(x)

=
a′(x)

a(x)
+

∂p(y)

∂x
p(y)

;

from this,

a′(x)

a(x)
=

∂p(x)

∂x
p(x)

−
∂p(y)

∂x
p(y)

;

thus

a(x) = k(y)
p(x)

p(y)
,

where k(y) is an arbitrary function of y which we determine using the con-
dition

∫

a(x) dx = k(y)

∫

p(x)

p(y)
dx = 1 ;

therefore

k(y) =
1

∫

p(x)

p(y)
dx

and

a(x) =

p(x)

p(y)
∫

p(x)

p(y)
dx

.

Similarly,

a(y) =

p(y)

p(x)
∫

p(y)

p(x)
dy

.
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These formulas are analogous to those deduced in Chapter I.

*

The definitions and demonstrations we have presented have immediate
generalization for higher dimensions. What we have established about a
point varying in a plane region can be extended immediately for a point in
any region, the only exception being these last formulas inverse to Bayes’
formula, since the arguments are not usable in higher dimensions. But the
extension to higher dimensions can also be made very easily.

In effect, if x and y are vectors, we still have

a(x) · p(y) = a(y) · p(x). (4.4)

where a(x) and a(y) are functions of only x and of y, respectively, and p(y)
and p(x) are functions of, simultaneously, x and y. From (4.4) we get

a(x) = a(y) · p(x)

p(y)

and from this it follows that

∫

(x)

a(x) dx = a(y)

∫

(x)

p(x)

p(y)
dx = 1.
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Therefore

a(x) =

p(x)

p(y)
∫

(x)

p(x)

p(y)
dx

in all cases.









CHAPTER V

JACOB BERNOULLI’S
THEOREMS

AND THE

ERROR LAW





FIRST PART

Jacob Bernoulli’s theorems

As usual, we shall say that the result of the random selection of an
element from a finite set, or of randomly throwing one point in a bounded
region, is a case, or an event. A result, case or event is said to be favorable
[or a success] if it is an element of the favorable set, and contrary [or a
failure] if it is an element of the contrary set.

Let us denote p the probability of success, and q the probability of failure.
Obviously,

p+ q = 1.

Performing once a random experiment [trial] as described, two cases can
occur, with probabilities

p or q
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Performing this random experiment twice, there are four possible outcomes,
the corresponding probabilities being

pp or pq or qp or qq

Three trials would produce eight possible outcomes, with probabilities
given by arrangements with repetitions of the two elementary probabilities
p and q, three by three, etc. In the above reasoning, we are assuming that
any outcome doesn’t change the probability of the outcomes in the following
experiment.

We may therefore conclude the following:

Proposition I

Performing m times an experiment whose possible results are success,
with probability p, or failure, with probability q, the probability of getting
m− i successes and i failures, in a given order, is

P = pm−iqi;

this is a direct consequence of the propositions concerning compound prob-
ability.

Corollary

The probability of any given sequence of outcomes in pre-arranged order
decreases to zero, when the number of trials increase.

As a matter of fact, and assuming, without loss of generality, that q ≤ p,
from

P = pm−iqi ≤ pm
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with p < 1, the result follows, and we see that pm goes to zero when m

increases to infinity.

*

When performing m trials as described, the probability of getting as
outcome m− i successes and i failures in a pre-arrange order is always the
same, P = pm−iqi; therefore, the probability of getting m− i successes and i
failures, whichever their order, depends on the number of possible sequences
of m trials whose outcome consists exactly of m− i successes and i failures.
Our immediate goal will be to establish the appropriate formula.

For the sake of clarity, we solve the question in the context of the random
extraction of white and black balls from an urn whose composition is such
that the probability of extracting white ball is p and the probability of
extracting black ball is q. Clearly this identification of the two problems is
legitimate only when p and q are rational numbers; but, as a metaphor, we
shall use this language in all cases.

Proposition II

In one urn there are white and black balls, the probability of getting white ball
in a random extraction being p; performing m extractions, [with replacement
of the extracted ball in the urn after each of them,] the probability of getting
white ball in n of those extractions, and black ball in the remaining m − n

extractions, is

P
m,n

=
m!

(m− n)!n!
pn qm−n.

In effect, the probability of any of the sequences of n
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white and m− n black balls is (Prop. I)

pn qm−n.

On the other hand, the number of possible different sequences composed
of n white and m−n black balls is the number of combinations of m objects
of two types, having n of the first and m− n if the second type, i.e.,

m!

(m− n)!n!
.

Therefore,

P
m,n

=
m!

(m− n)!n!
pn qm−n.

Corollary

The probability of getting n white and m − n black balls is given by the
corresponding term in the expansion of

(p+ q)m.

Proposition III

Assuming m fixed, we have:

1. The probability P
m,n

increases with n while n goes from zero until the
biggest integer not greater than

p (m+ 1).
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2 The probability P
m,n

decreases from the least integer greater than

p (m+ 1) − 1

until n = m.

3 The probability P
m,n

assumes its maximum in the integers in the in-
terval [p (m+ 1) − 1, p (m+ 1)].

In effect,

1st

If

n ≤ p(m+ 1) (5.1)

we have
1

p
≤ m+ 1

n
,

q

p
≤ m+ 1

n
− 1 =

m− n+ 1

n

and

1 ≤ m− n+ 1

n
· p
q
.

But
m− n+ 1

n
· p
q

=
P

m,n

P
m,n−1

,

and therefore
P

m,n−1 ≤ P
m,n
.

2nd

If

n ≥ p(m+1)−1 (5.2)
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we have
1

p
≥ m+ 1

1 + n
,

1 +
q

p
≥ m+ 1

1 + n
,

q

p
≥ m− n

n+ 1
,

and

1 ≥ m− n

n+ 1
· p
q
.

But
m− n

n+ 1
· p
q

=
P

m,n+1

P
m,n

,

and therefore

P
m,n

≥ P
m,n+1 .

3rd

From the first and the second part of the present proposition, we can
deduce that P

m,n
will assume its maximum value when n verifies both (5.1)

and (5.2), i.e., when it is an integer of the form

p(m+ 1) − r, (0 ≤ r ≤ 1).

When p(m + 1) is non integer, there is a unique value of n in
[p (m+ 1) − 1, p (m+ 1)] for which P

m,n
assumes its maximum value. When

p(m+ 1) is an integer,
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P
m,n

assumes its maximum for any of the terms of order

p(m+ 1) or p(m+ 1) − 1.

Proposition IV

Let us consider all the sequences that may be obtained by repeatedly
extracting two objects, with replacement after each extraction.

For clarity, let the two objects be white ball and black ball [extracted
from one urn such that the probability of extracting white ball is p and
that of extracting black ball is q = 1 − p]. We shall call a combination of
outcomes the totality of sequences with the same number k of white and
m− k of black balls. With these assumptions, we have:

The probability of the most probable combination decreases to zero when
the number of trials increases to infinity.

In effect, using Prop. III, the probability of the most probable combina-
tion is

P
m,p(m+1)−r

=
m!

[p(m+ 1) − r]! [q(m+ 1) − 1 + r]!
pp(m+1)−rqq(m+1)−1+r ,

since when the number of white balls is (m + 1)p − r (the most probable
outcome in m extractions), the corresponding number of black balls is

m− (m+ 1)p+ r = (m+ 1)q + r − 1.
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However,
m! = mm e−m

√
2πm (1 + ε

m
),

where ε
m

is a function going to zero when m goes to infinity. Therefore we
may write

P
m,p(m+1)−r

=

=
mm e−m

√
2πm (1 + εm)

(mp)mp e−mp
√

2πmp (1 + εmp) (mq)mq e−mq
√

2πmq (1 + εmq)
pmpqmq ,

an expression obtained using Stirling’s approximation for the factorials in
the previous expression, and cutting out the vanishingly small terms in p−r
and q + r − 1 (a legitimate approximation when m becomes as large as we
want). This may be rewritten

P
m,p(m+1)−r

=
1 + α

m√
2πmp q

where α
m

denotes a function going to zero when m goes to infinity. There-
fore, P

m,p(m+1)−r
goes to zero when m goes to infinity, as stated.

Proposition V

(Jacob Bernoulli’s 1st Theorem)

Let p denote the probability of the favorable event or success, and q the
probability of the contrary event or failure. Performing a certain number
of trials, let us denote by (p) and by (q) the number of successes and the
number of failures that occur [in the m = (p) + (q) trials], respectively.
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The ratio
(p)

(q)
can take different values; but the most probable among

them is the one nearer to
p

q
; the more

(p)

(q)
differs from

p

q
, the less probable

it is.

The probability of
(p)

(q)
in the above proposition is the combination of

(p) successes and (q) failures in any order.

The proposition may be established as follows:

As seen in Prop. III (3rd part), the most probable number of successes
in m trials is the greatest integer that can be written in the form

p (m+ 1) − r, (0 ≤ r ≤ 1);

the corresponding number of failures is

q (m+ 1) − 1 + r;

the ratio of those numbers is

(p)

(q)
=

p (m+ 1) − r

q (m+ 1) − 1 + r
=
p

q
+

(1 − r) p− qr

(m+ 1) q − 1 + r
· 1

q
.

Assuming that the number of successes increases, the ratio with imme-
diately lower probability
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(Prop. III, 2nd part) is

(p)

(q)
=

p (m+ 1) − r + 1

q (m+ 1) − 1 + r − 1
=
p

q
+

(1 − r) p− qr + 1

(m+ 1) q − 1 + r − 1
· 1

q
;

and the immediate one is

(p)

(q)
=

p (m+ 1) − r + 2

q (m+ 1) − 1 + r − 2
=
p

q
+

(1 − r) p− qr + 2

(m+ 1) q − 1 + r − 2
· 1

q
;

when the most probable number of successes is exceeded by α units, the
ratio in question will be

(p)

(q)
=

p (m+ 1) − r + α

q (m+ 1) − 1 + r − α
=
p

q
+

(1 − r) p− qr + α

(m+ 1) q − 1 + r − α
· 1

q
.

As those expressions show, the difference

(p)

(q)
− p

q

increases with α; therefore (Prop. III, 2nd part), its probability decreases.

*

If the number of successes would decrease, we would work out similarly

with the ratio
(q)

(p)
, and so this case could be dealt with as the above one.
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Proposition VI

(Jacob Bernoulli’s 2nd Theorem)

As the number of trials increases, the probability of each ratio
(p)

(q)
de-

creases, and the greater is the absolute value of the difference

∣

∣

∣

∣

∣

p

q
− (p)

(q)

∣

∣

∣

∣

∣

the greater will be the rate of decrease.

The number α used in the proof of the previous proposition will be called

deviation; the probability of
(p)

(q)
attains its maximum when that deviation

is zero (Prop. V), and since in that case it decreases to zero when m goes to
infinity (Prop. IV), it will also decrease to zero in all the other less probable
cases. On the other hand,

P
α−1

P
α

=
q (m+ 1) + r − α

p (m+ 1) − r − α+ 1
· p
q

=
A+ pα

B − q α
,

an expression that shows that the ratio

P
α−1

P
α

decreases with α. In other words,
P

α−1

Pα
decreases with

∣

∣

∣

∣

∣

p

q
− (p)

(q)

∣

∣

∣

∣

∣

,
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since what is true for the deviation from p is also true for the deviation from
q.

Proposition VII

(Vallée–Poussin’s Lemma)

We now denote T
i

the probability of a combination of outcomes with i

successes, and by T
n

the probability of the most probable combination of
outcomes.

Denoting

S = T
n−α

+ T
n−α+1 + · · · + T

n
+ · · · + T

n+α

we have
1 − S <

m
(

1 +
α

(m+ 1) p q

)

α
2
.

In effect, we have
T

n+1

T
n

=
m− n

n+ 1
· p
q
,

where
n = (m+ 1) p− r

and
n+ 1 = (m+ 1) p− r + 1

and
m− n = (m+ 1) q − 1 + r ;
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with
1 − r = ε, (0 ≤ ε ≤ 1),

we get

T
n+1

T
n

=
(m+ 1) q − ε

(m+ 1) p+ ε
· p
q

=

1 − ε

q (m+ 1)

1 +
ε

p (m+ 1)

.

It is easily established that for any ε > 0

1 − ε

q (m+ 1)

1 +
ε

p (m+ 1)

<
1

1 +
ε

pq (m+ 1)

;

therefore
T

n+1

T
n

<
1

1 +
ε

pq (m+ 1)

.

As ε can be any positive number, using similar arguments we get

T
n+2

T
n+1

=
m− n− 1

n+ 1 + 1
· p
q

=
(m+ 1) q − ε− 1

(m+ 1) p+ ε− 1
· p
q

=

=
(m+ 1) q − (1 + ε)

(m+ 1) p+ (1 + ε)
· p
q
<

<
1

1 +
ε+ 1

pq (m+ 1)

;
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and, in general
T

n+α+1

T
n+α

<
1

1 +
ε+ α

pq (m+ 1)

.

Multiplying term by term these inequalities, we get

T
n+α+1

T
n

<
1

1 +
ε

pq (m+ 1)

· 1

1 +
ε+ 1

pq (m+ 1)

· · · 1

1 +
ε+ α

pq (m+ 1)

<

<
1

1 +
1

pq (m+ 1)

· · · 1

1 +
α

pq (m+ 1)

=

=
α
∏

k=1

1

1 +
k

pq (m+ 1)

;

reversing the order of all the above factors

T
n+α+1

T
n

<

α
∏

k=1

1

1 +
α+ 1 − k

pq (m+ 1)

;

multiplying term by term those two inequalities, we get

(

T
n+α+1

T
n

)2

<

α
∏

k=1











1

1 +
k

pq (m+ 1)

· 1

1 +
α+ 1 − k

pq (m+ 1)











;
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but
[

1 +
k

pq (m+ 1)

] [

1 +
α+ 1 − k

pq (m+ 1)

]

=

= 1 +
α+ 1

pq (m+ 1)
+

k(α+ 1 − k)

[pq (m+ 1)]
2 >

> 1 +
α+ 1

pq (m+ 1)
;

therefore
(

T
n+α+1

T
n

)2

<

α
∏

k=1

[

1 +
α+ 1

pq (m+ 1)

]−1

=

=

[

1 +
α+ 1

pq (m+ 1)

]−α

<

<

[

1 +
α

pq (m+ 1)

]−α

;

from the above inequality, it follows that

T
n+α+1 < T

n

[

1 +
α

pq (m+ 1)

]
−α

2

and, as
T

n
< 1,

we get

T
n+α+1 <

[

1 +
α

pq (m+ 1)

]
−α

2

On the other hand, the probabilities of the combinations of outcomes
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which are not in S are all smaller than T
n+α+1 (Prop. III); in consequence,

1 − S < [m− (2α + 1)]T
n+α+1 < mT

n+α+1 <

<
m

[

1 + α
pq (m+1)

]

α
2
.

Proposition VIII

(Jacob Bernoulli’s 3rd Theorem)

The probability that the deviation of the ratio (p)
(q)

between the number of

successes and the number of failures from the odds ratio p

q
of the correspond-

ing probabilities falls within given bounds is always increasing to 1, when the
number of trials is large enough, however tight these bounds may be.

In effect, in Prop. V we have seen that, assuming the deviation to be
positive,

(p)

(q)
=
p

q
+

p− r + α

mq − p+ r − α
· 1

q
,

and therefore
∣

∣

∣

∣

(p)

(q)
− p

q

∣

∣

∣

∣

=
p− r + α

mq − p+ r − α
· 1

q
.
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For
∣

∣

∣

∣

(p)

(q)
− p

q

∣

∣

∣

∣

> ε

it is necessary that
p− r + α

mq − p+ r − α
· 1

q
> ε

or
p− r + α > mq2ε− pqε+ rqε− qαε

i.e.
α (1 + qε) > mq2ε+ · · ·

or

α > A (m+ 1) +B, (5.3)

where A > 0 and B are constants.

But, in Prop. VII, S denotes the probability that the deviation is less
than or equal to α; in other words, 1−S is the probability that the deviation
is greater than α.

In consequence, the probability that

∣

∣

∣

∣

(p)

(q)
− p

q

∣

∣

∣

∣

> ε

is
1 − S <

m
[

1 +
α

(m+ 1) pq

]

α
2
<

<
m

(

1 +
A (m+ 1) +B

pq (m+ 1)

)

A (m+1)+B
2
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an expression that decreases to zero when m goes to infinity, since A > 0.

This theorem is also known as the law of large numbers.

Observation

We do not explicit the case α < 0 since in that case an inequality similar
to (5.3) holds, and therefore it reduces to the former situation α > 0.

*

The 3rd Bernoulli’s theorem may be rephrased as follows:

The probability that the deviation [of (p)
(q)

from the odds ratio p

q
] is of the

order of the number of trials decreases to zero when the number of trials
goes to infinity.

Proposition IX

The probability that the deviation α is such that

αn+1

mn
> ε, (5.4)

decreases to zero when m increases, if n > 1.

In effect, from (5.4) we get

m
[

1 +
α

pq (m+ 1)

]

α
2
<

m

[

1 +
ε′m

n
n+1

pq (m+ 1)

]

ε′ m

n
n+1

2

.
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Disregarding vanishing terms, the second member of the above inequality
can be approximated by

m

[

1 + Am
− 1

n+1

]B m

n
n+1

,

which in turn may be expanded as

m

1 + A1m
n

n+1 m
− 1

n+1 + A2m
2 n

n+1 m
− 2

n+1 + · · ·
=

=
m

1 + A1m
n−1
n+1 + A2m

2 n−1
n+1 + · · ·

=

=
1

1
m

+ A1m
n−1
n+1−1

+ A2m
2 n−1

n+1−1

+ · · ·
an expression that decreases to zero when the number of trials goes to
infinity, provided n > 1, since there exists some integer i for which

i
n− 1

n+ 1
− 1 > 0.

This proposition may be rephrased as follows:

The probability that the number of trials is of order less than two of the
deviation α is zero.
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Proposition X

The probability that
α

n
√
m

< ε

decreases to zero when the number of trials goes to infinity, if n > 2.

In effect, as

T
n−α

< T
n

=
1 + α

m√
2π p q m

,

it follows that

S < (2α + 1)T
n

=
2α + 1√
2π p q m

(1 + α
m
) ,

or
S <

α√
m
C

m
,

where C
m

converges to a constant when m goes to infinity. Therefore, if

α
n
√
m

< ε

we get

S <
n
√
m√
m
εC

m
=

= m
1
n− 1

2 · εC
m
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and thus
lim

m→∞

S = 0

if
1

n
− 1

2
< 0, or n > 2.

From this, it follows that the probability that the number of trials is of
order greater than two of the deviation α is zero.

Henceforth,

Proposition XI

The number of trials is of order 2 in what regards the deviation α, an
immediate consequence of Prop. IX and X.

*

* *

Any real number can be written in decimal form with an infinite number
of decimal places. For instance, the number 1

2
can be written 0.50000. . .

Assuming that we are dealing with numbers in that form of representa-
tion, we shall examine the following

Problem

A number is randomly chosen in the interval (0, 1); what is the probabil-
ity that the sequence of digits in its decimal expansion satisfies Bernoulli’s
law?





118 Elements of Probability Calculus

The problem as stated has no solution with the definition of probability
that we have adopted.

In effect, we have a problem of continuous probability, since the random
extraction is performed in the interval (0, 1), and in Chapter II we have
solely defined the probability of regions in reference to other possible re-
gions. Therefore, in the context we have adopted, the problem would have
a solution if the favorable class, i.e. the sequence of digits of a number,
would be a complete interval contained in (0, 1), which is not true, or at
least a priori cannot be taken for granted.

In view of that, we shall instead consider a simpler problem, namely:
what is the probability that the N first digits in the decimal expression of a
number randomly chosen in (0, 1) satisfy Bernoulli’s law?

This problem has a solution, since the set of numbers which share the
first N digits is an interval.

Some of these intervals are favorable, others aren’t.

The measure of the union of the favorable intervals is the solution we
search.

As all the intervals are identical, they are equally possible, and as there
are 10N of those intervals, the possibility of each of them is

1

10N
.

Let us consider one urn with 10 balls, numbered 0, 1, . . . , 9. The first
N digits of any number in (0, 1) can be identified
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with the sequence of digits obtained in N random extractions, with replace-
ment, of balls from that urn. In effect, the possibility of each sequence
is

1

10
· 1

10
· · · 1

10
=

1

10N
,

the same that we had found previously for each of the partial intervals.

Therefore, in the problem at hand, randomly selecting a number in the
interval (0, 1) is the same as performing N random extractions, with re-
placement, of balls of the urn described.

The same conclusion could be reached, also, using the expression ob-
tained in the problem solved in page 74 of these Elements, assuming
f(x) = x, that would immediately imply that

P =
1

10

whatever a and d.

From the identification of the modified problem with random extrac-
tions, it is immediate that the ratio between the number of combinations
of outcomes that satisfy Bernoulli’s law and the total number of combina-
tions of outcomes increases towards 1, as N increases. This is the core of
Bernoulli’s theorem.

Thus, the probability asked for in the restated problem, increases to 1
when N increases. We may conclude that the probability asked for in the
original problem, which corresponds to the limit when N → ∞, is equal to
1.
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*

The argument above also shows that the probability that the sequence
of digits of a randomly chosen number in (0, 1) satisfies all laws similar to
that of Bernoulli is 1.

*

From this we may deduce that the probability that a randomly chosen
number in (0, 1) is rational is zero.

In effect, a rational number has periodic decimal representation.

And the two possible cases are: either all digits from 0 to 9 appear, in the
same proportion, in its period, or this is not so. In the second instance, the
sequence of digits doesn’t satisfy Bernoulli’s law. On the other hand, in the
first case, the distribution of the digits in the sequence satisfies Bernoulli’s
law, but none of the others, since the absolute deviation will periodically
take on the same values, therefore it will never remain lower than a given
bound.

Therefore, the set of rational numbers corresponds to a combination of
outcomes that either doesn’t satisfy Bernoulli’s law or doesn’t satisfy the
analogous laws. Its probability is, therefore, zero.
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SECOND PART

LAW OF DEVIATIONS

(ERROR LAW)

After having presented a rigorous proof of Jacob Bernoulli’s 3rd theorem
and others similar theorems on the order of magnitude of deviations [from
the most probable combination of outcomes], we shall now establish an
approximate relation between the deviations and their probabilities.

Proposition XII

Denoting T
n

the probability of the combination of outcomes of maximum
probability, which we may call normal combination, the probability that the
deviation has absolute value less than or equal to k is

P(k) = T
n−k

+ · · · + T
n

+ · · · + T
n+k

=
k
∑

i=−k

T
n+i
,

where

T
n+i

=
m!

(n+ i)! (m− n− i)!
p

n+i

q
m−n−i

,

where n denotes the number of white balls in the normal combination, and
therefore is of the form

n = (m+ 1) p− r, (0 ≤ r ≤ 1).

Assuming that m is large enough, we can use
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mp

as an approximation for
(m+ 1) p− r;

in Stirling’s approximation for

(m− n− i)! and (n+ i)!.

T
n+i

may then be approximated by

T
n+i

=
m

m

e
−m √

2πmp
mp+i

q
mq−i

(1 + α
m
)

(mp+ i)mp+i e−mp−i
√

2π (mp+ i) (mq − i)mq−i e−mq+i
√

2π (mq − i)
=

=

√
mp

mp+i

q
mq−i

(

p+
i

m

)mp+i (

q − i

m

)mq−i

√

2π (mp+ i) (mq − i)

(1 + α
m
) =

=
p

mp+i

q
mq−i

(

p+
i

m

)
mp+i+1

2 (

q − i

m

)
mq−i+1

2 √
2πm

(1 + α
m
) =

=
1√

2πmpq
· 1
(

1 +
i

mp

)
mp+i+1

2 (

1 − i

mq

)
mq−i+1

2

(1 + α
m
) =

=
1√

2πmpq
· H

where

H =

(

1 +
i

mp

)
−mp−i− 1

2 (

1 − i

mq

)
−mq+i− 1

2

(1 + α
m
)
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and

log H = −
(

mp+ i+
1

2

)

log

(

1 +
i

mp

)

−

−
(

mq − i+
1

2

)

log

(

1 − i

mq

)

+ log(1 + α
m
)

But (Bernoulli’s 3rd theorem) the probability that

∣

∣

∣

∣

i

m

∣

∣

∣

∣

> ε

decreases to zero when m increases; therefore the probability that

log H = −
(

mp+ i+
1

2

) [

i

mp
− i2

2m2p2
+

i3

3m3p3
− · · ·

]

−

−
(

mq − i+
1

2

)[

− i

mq
− i2

2m2q2
− i3

3m3q3
− · · ·

]

+

+ log(1 + α
m
) =

= − i2

m

(

1

p
+

1

q

)

− 1

2
· i
m

(

1

p
− 1

q

)

+

+
i2

2m

(

1

p
+

1

q

)

+
i3

2m2

(

1

p2
− 1

q2

)

+

+
1

2

i2

2m2

(

1

p2
+

1

q2

)

+ · · · + log(1 + α
m
) =

= − i2

2mpq
− i(q − p)

2mpq
+
i3(q2 − p2)

2m2p2q2
+ · · ·

is always increasing.
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On one hand, from what we know about Stirling’s approximation, the
term in α

m
goes to zero; on the other hand, the probability that the sum-

mands
i

m
,
i3

m2
, . . . ,

in

mn
,
in+1

mn
, . . .

remain greater than ε, however small, also goes to zero when m increases
(Prop. IX and X); therefore, the probability that

log H ≈ − i2

2mpq

is always increasing, and thus

H ≈ e
− i

2

2mpq

;

from this it follows that

T
n+i

≈ 1√
2πmpq

e
− i

2

2mpq

and

P(k) =
k
∑

i=−k

T
n+i

≈ 2√
2πmpq

k
∑

i=0

e
− i

2

2mpq

:

substituting
∑

by

∫

to be computed between the same limits, we have

P(k) ≈ 2√
2πmpq

k
∫

0

e
− x

2

2mpq

dx ,
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and with the substitution
x = λ

√

2mpq,

P(k) =
2√

2πmpq

λ1
∫

0

e
−λ

2

dλ
√

2mpq =

=
2√
π

λ1
∫

0

e
−λ

2

dλ,

where

λ1 =
k√

2mpq
.

We shall say that λ1 is the relative deviation, to distinguish it from the
absolute deviation k. The value

√

2mpq

is the deviation unit.

*

The probability that the absolute value of the relative deviation is
smaller than λ1 is the probability of λ1 .
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Proposition XIII

When m increases, the probability that the probability of the absolute
deviation is less than λ1 is given by

θ(λ1) =
2√
π

λ1
∫

0

e
−λ

2

dλ

also increases.

We shall refer to θ(λ1) as the error law, the deviations law, or Gauss’
law.

*

The law we have established is only a probable law and, in addition to
that, an approximate result. Its probability, however, rapidly converges to
1 when m increases, and the errors incurred in the approximations used to
deduce it vanish very quickly. The rate of convergence is so high that the
approximation it gives is, in many practical applications, equal to the true
result. It is always used in problems about deviations.

*

The probability that the variable |Λ|, the absolute value of the relative
deviation, is between 0 and ∞ is

P =
2√
π

∞
∫

0

e
−λ

2

dλ =
2√
π

√
π

2
= 1,
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this being a rigorous result, as should be expected; when λ1 → ∞, m→ ∞
also, and under that condition the law is exact.

*

The table that follows(19) shows the value of θ(λ1) for centesimal in-
creases in the argument. They show how quickly θ(λ1) → 1 when λ1 in-
creases.

λ1 θ(λ1) λ1 θ(λ1) λ1 θ(λ1)

0.00 0.0000000 0.24 0.2657001 0.48 0.5027497
0.01 0.0112834 0.25 0.2763264 0.49 0.5116683
0.02 0.0225646 0.26 0.2868997 0.50 0.5204999
0.03 0.0338412 0.27 0.2974182 0.51 0.5292436
0.04 0.0451111 0.28 0.3078801 0.52 0.5378986
0.05 0.0563720 0.29 0.3182835 0.53 0.5464641
0.06 0.0676216 0.30 0.3286268 0.54 0.5549393
0.07 0.0788577 0.31 0.3389082 0.55 0.5633234
0.08 0.0900781 0.32 0.3491260 0.56 0.5716158
0.09 0.1012806 0.33 0.3592787 0.57 0.5798158
0.10 0.1124629 0.34 0.3693645 0.58 0.5879229
0.11 0.1236229 0.35 0.3793821 0.59 0.5959365
0.12 0.1347584 0.36 0.3893297 0.60 0.6038561
0.13 0.1458671 0.37 0.3992060 0.61 0.6116812
0.14 0.1569470 0.38 0.4090095 0.62 0.6194115
0.15 0.1679960 0.39 0.4187387 0.63 0.6270464
0.16 0.1790118 0.40 0.4283924 0.64 0.6345858
0.17 0.1899925 0.41 0.4379691 0.65 0.6420293
0.18 0.2009358 0.42 0.4474676 0.66 0.6493767
0.19 0.2118399 0.43 0.4568867 0.67 0.6566277
0.20 0.2227026 0.44 0.4662251 0.68 0.6637822
0.21 0.2335219 0.45 0.4754817 0.69 0.6708401
0.22 0.2442959 0.46 0.4846554 0.70 0.6778012
0.23 0.2550226 0.47 0.4937451 0.71 0.6846656

(19) This table has been recalculated using Mathematica 5.1. Observe the accuracy of
the computations in the original.
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λ1 θ(λ1) λ1 θ(λ1) λ1 θ(λ1)

0.72 0.6914331 1.08 0.8733262 1.44 0.9582966
0.73 0.6981039 1.09 0.8768031 1.45 0.9596950
0.74 0.7046781 1.10 0.8802051 1.46 0.9610535
0.75 0.7111556 1.11 0.8835330 1.47 0.9623729
0.76 0.7175368 1.12 0.8867879 1.48 0.9636541
0.77 0.7238216 1.13 0.8899707 1.49 0.9648979
0.78 0.7300104 1.14 0.8930823 1.50 0.9661051
0.79 0.7361035 1.15 0.8961238 1.51 0.9672767
0.80 0.7421010 1.16 0.8990962 1.52 0.9684135
0.81 0.7480033 1.17 0.9020004 1.53 0.9695162
0.82 0.7538108 1.18 0.9048374 1.54 0.9705857
0.83 0.7595238 1.19 0.9076083 1.55 0.9716227
0.84 0.7651427 1.20 0.9103140 1.56 0.9726281
0.85 0.7706681 1.21 0.9129555 1.57 0.9736026
0.86 0.7761003 1.22 0.9155339 1.58 0.9745470
0.87 0.7814398 1.23 0.9180501 1.59 0.9754620
0.88 0.7866873 1.24 0.9205052 1.60 0.9763484
0.89 0.7918432 1.25 0.9229001 1.61 0.9772068
0.90 0.7969082 1.26 0.9252359 1.62 0.9780381
0.91 0.8018828 1.27 0.9275136 1.63 0.9788428
0.92 0.8067677 1.28 0.9297342 1.64 0.9796218
0.93 0.8115636 1.29 0.9318986 1.65 0.9803756
0.94 0.8162710 1.30 0.9340079 1.66 0.9811049
0.95 0.8208908 1.31 0.9360631 1.67 0.9818104
0.96 0.8254236 1.32 0.9380652 1.68 0.9824928
0.97 0.8298703 1.33 0.9400150 1.69 0.9831526
0.98 0.8342315 1.34 0.9419137 1.70 0.9837905
0.99 0.8385081 1.35 0.9437622 1.71 0.9844070
1.00 0.8427008 1.36 0.9455614 1.72 0.9850028
1.01 0.8468105 1.37 0.9473124 1.73 0.9855785
1.02 0.8508380 1.38 0.9490160 1.74 0.9861346
1.03 0.8547842 1.39 0.9506733 1.75 0.9866717
1.04 0.8586499 1.40 0.9522851 1.76 0.9871903
1.05 0.8624361 1.41 0.9538524 1.77 0.9876909
1.06 0.8661436 1.42 0.9553762 1.78 0.9881742
1.07 0.8697733 1.43 0.9568573 1.79 0.9886405
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λ1 θ(λ1) λ1 θ(λ1) λ1 θ(λ1)

1.80 0.9890905 2.16 0.9977472 2.52 0.9996345
1.81 0.9895245 2.17 0.9978511 2.53 0.9996537
1.82 0.9899432 2.18 0.9979506 2.54 0.9996720
1.83 0.9903468 2.19 0.9980459 2.55 0.9996893
1.84 0.9907359 2.20 0.9981372 2.56 0.9997058
1.85 0.9911110 2.21 0.9982244 2.57 0.9997215
1.86 0.9914725 2.22 0.9983079 2.58 0.9997364
1.87 0.9918207 2.23 0.9983878 2.59 0.9997505
1.88 0.9921562 2.24 0.9984642 2.60 0.9997640
1.89 0.9924793 2.25 0.9985373 2.61 0.9997767
1.90 0.9927904 2.26 0.9986071 2.62 0.9997888
1.91 0.9930899 2.27 0.9986739 2.63 0.9998003
1.92 0.9933782 2.28 0.9987377 2.64 0.9998112
1.93 0.9936557 2.29 0.9987986 2.65 0.9998215
1.94 0.9939226 2.30 0.9988568 2.66 0.9998313
1.95 0.9941793 2.31 0.9989124 2.67 0.9998406
1.96 0.9944263 2.32 0.9989655 2.68 0.9998494
1.97 0.9946637 2.33 0.9990162 2.69 0.9998578
1.98 0.9948920 2.34 0.9990646 2.70 0.9998657
1.99 0.9951114 2.35 0.9991107 2.71 0.9998732
2.00 0.9953223 2.36 0.9991548 2.72 0.9998803
2.01 0.9955248 2.37 0.9991968 2.73 0.9998870
2.02 0.9957195 2.38 0.9992369 2.74 0.9998934
2.03 0.9959063 2.39 0.9992751 2.75 0.9998994
2.04 0.9960858 2.40 0.9993115 2.76 0.9999051
2.05 0.9962581 2.41 0.9993462 2.77 0.9999105
2.06 0.9964235 2.42 0.9993793 2.78 0.9999156
2.07 0.9965822 2.43 0.9994108 2.79 0.9999204
2.08 0.9967344 2.44 0.9994408 2.80 0.9999250
2.09 0.9968805 2.45 0.9994694 2.81 0.9999293
2.10 0.9970205 2.46 0.9994966 2.82 0.9999334
2.11 0.9971548 2.47 0.9995226 2.83 0.9999373
2.12 0.9972836 2.48 0.9995472 2.84 0.9999409
2.13 0.9974070 2.49 0.9995707 2.85 0.9999443
2.14 0.9975253 2.50 0.9995930 2.86 0.9999476
2.15 0.9976386 2.51 0.9996143 2.87 0.9999507





130 Elements of Probability Calculus

λ1 θ(λ1) λ1 θ(λ1) λ1 θ(λ1)

2.88 0.9999536 3.24 0.9999954 3.60 0.99999964414
2.89 0.9999563 3.25 0.9999957 3.61 0.99999966975
2.90 0.9999589 3.26 0.9999960 3.62 0.99999969358
2.91 0.9999613 3.27 0.9999962 3.63 0.99999971574
2.92 0.9999636 3.28 0.9999965 3.64 0.99999973635
2.93 0.9999658 3.29 0.9999967 3.65 0.99999975552
2.94 0.9999679 3.30 0.9999969 3.66 0.99999977333
2.95 0.9999698 3.31 0.9999971 3.67 0.99999978989
2.96 0.9999716 3.32 0.9999973 3.68 0.99999980528
2.97 0.9999733 3.33 0.9999975 3.69 0.99999981957
2.98 0.9999750 3.34 0.9999977 3.70 0.99999983285
2.99 0.9999765 3.35 0.9999978 3.71 0.99999984518
3.00 0.9999779 3.36 0.9999980 3.72 0.99999985663
3.01 0.9999793 3.37 0.9999981 3.73 0.99999986726
3.02 0.9999805 3.38 0.9999982 3.74 0.99999987712
3.03 0.9999817 3.39 0.9999984 3.75 0.99999988627
3.04 0.9999829 3.40 0.9999985 3.76 0.99999989476
3.05 0.9999839 3.41 0.9999986 3.77 0.99999990264
3.06 0.9999849 3.42 0.9999987 3.78 0.99999990995
3.07 0.9999859 3.43 0.9999988 3.79 0.99999991672
3.08 0.9999867 3.44 0.9999989 3.80 0.99999992300
3.09 0.9999876 3.45 0.9999989 3.81 0.99999992881
3.10 0.9999884 3.46 0.99999900780 3.82 0.99999993421
3.11 0.9999891 3.47 0.99999907671 3.83 0.99999993920
3.12 0.9999898 3.48 0.99999914100 3.84 0.99999994383
3.13 0.9999904 3.49 0.99999920097 3.85 0.99999994811
3.14 0.9999910 3.50 0.99999925690 3.86 0.99999995208
3.15 0.9999916 3.51 0.99999930905 3.87 0.99999995575
3.16 0.9999921 3.52 0.99999935766 3.88 0.99999995915
3.17 0.9999926 3.53 0.99999940297 3.89 0.99999996230
3.18 0.9999931 3.54 0.99999944518 3.90 0.99999996521
3.19 0.9999936 3.55 0.99999948452 3.91 0.99999996790
3.20 0.9999940 3.56 0.99999952115 3.92 0.99999997039
3.21 0.9999944 3.57 0.99999955527 3.93 0.99999997269
3.22 0.9999947 3.58 0.99999958704 3.94 0.99999997482
3.23 0.9999951 3.59 0.99999961661 3.95 0.99999997678
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λ1 θ(λ1) λ1 θ(λ1) λ1 θ(λ1)

3.96 0.99999997860 4.10 0.99999999330 4.60 0.99999999992
3.97 0.99999998028 4.20 0.99999999714 4.70 0.99999999997
3.98 0.99999998183 4.30 0.99999999881 4.80 0.99999999999
3.99 0.99999998326 4.40 0.99999999951 4.90 1.00000000000
4.00 0.99999998458 4.50 0.99999999980 5.00 1.00000000000

Proposition XIV

The expression of (p)
(q)

that corresponds to an absolute deviation

k = λ1

√

2mpq

is
(p)

(q)
=
mp+ λ1

√
2mpq

mq − λ1

√
2mpq

.

where we assume, without loss of generality, that the deviation is the con-
sequence of an excess of successes; therefore

(p)

(q)
− p

q
=
mp+ λ1

√
2mpq

mq − λ1

√
2mpq

− p

q
=

λ1

√
2mpq

mq
2 − λ1q

√
2mpq

=
λ1

√
2pq

q
2√
m− λ1q

√
2pq

.

In case the deviation would be a consequence of an excess of failures,
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the only alteration would be to change the sign of λ1 [in the numerator]. In
any case, we have that

∣

∣

∣

∣

(p)

(q)
− p

q

∣

∣

∣

∣

=

∣

∣

∣

∣

λ1

√
2pq

q
2√
m− λ1q

√
2pq

∣

∣

∣

∣

> ε

if

|λ1 | >
ε q

2 √
m√

2pq (1 ± ε q)
(5.5)

The probability that (5.5) holds is (Prop. XII)

P = 1 − θ

(

ε q
2 √

m√
2pq (1 ± ε q)

)

.

Even for very small values of ε, P decreases very quickly towards 0,
because of the factor

√
m.

Example:

What is the probability of winning or loosing more than 10 cents in a
sequence of 200 bets on the result of coin throwing, when the money at
stake in each trial is 1 cent?

Assuming that

p = q =
1

2
; m = 200; k > 10;

therefore, if

k = λ1

√

2 · 200 · 1

2
· 1

2
= 10 · λ1 ,
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we get

λ1 > 1 and 1 − θ(1) =
16

100
=

4

25
,

approximately.

Proposition XV

Borel(20) proved a generalization of the law of deviations

θ(λ1) =
2√
π

λ1
∫

0

e
−λ

2

dλ

assuming that the extractions are done from urns with different composi-
tions.

Let
p1 and q1 , p2 and q2 , . . . p

n
and q

n

be the compositions of n urns with white and black balls.

Assume that we extract m1 balls from the first urn, m2 balls from the
second urn, . . . , m

n
balls from the last urn. The most probable number of

white balls in the lot will be

m1p1 +m2p2 + · · · +m
n
p

n
.

But in general this number of white balls, which we could

(20) E. BOREL, Eléments de la Théorie des Probabilités, deuxième édition, p. 77.
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call normal, is not the number of white balls that we fetch in a real experi-
ment. We shall in general get an absolute deviation h, which is the addition
of deviations h1 , h2 , . . . , h

n
of the white balls extracted from each urn when

compared to the corresponding normal number.

Borel has proved, and using very simple arguments, that the law of
deviations still holds true, provided we use as unit deviation h the square
root of the sum of squares of the deviations corresponding to the different
urns.
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MATHEMATICAL EXPECTATION AND

MEAN VALUE

DEFINITION 1

Let A′ be a subset of the possible class A. We associate to each element
a ∈ A′ one value, obtaining therefore one function that we shall denote
f . The sum of products of the probability of each a ∈ A′ by f(a) is the
mathematical expectation of the class A′, in what concerns the function f .

Assuming that the probability of the elements of A′ is relative to A, the
mathematical expectation of the class A′ = A is called the mean value or
probable value of the function f . (21)

We denote the mathematical expectation of A by

E
A

[f ]

(21) Although this distinction between mathematical expectation and mean value isn’t
explicitly stated in most Probability books, all authors attach to these terms the concepts
we state.
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and the mean or probable value

M
A

[f ] .

As an example, in dice throwing, consider the function that associates
to each face the number of dots in it. The mean value of that function is

M =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 = 3.5.

The mathematical expectation relative to the faces 1 and 2 is

E =
1

6
· 1 +

1

6
· 2 = 0.5.

Proposition I

The mathematical expectation of one class is the sum of the mathematical
expectations of its parts, an immediate consequence of Def. 1.

Proposition II

It is also obvious that the mathematical expectation of a sum of functions
is the sum of the mathematical expectations of the summands.
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Proposition III

Let A and B be two possible classes, and A×B the compound class of
the two. Define

f(a, b) = f1(a) · f2(b).

Under these assumptions, we get

E
A×B

[f ] = E
A

[f1 ] · EB
[f2 ] ,

i.e., the mathematical expectation of the compound class is the product of
the expectations of its components.

In effect, denoting P
x

the probability of x, we have

E
A

[f1 ] =
∑

a∈A

f1(a) P
a
, E

B
[f2 ] =

∑

b∈B

f2(b) P
b

E
A×B

[f ] =
∑

(a,b)∈A×B

f(a, b) P
(a,b)

As

∑

(a,b)∈A×B

f(a, b) P
(a,b)

=
∑

(a,b)∈A×B

f1(a) · f2(b) P
a
P

b
=

=
∑

a∈A

f1(a) P
a
·
∑

b∈B

f2(b) P
b

we conclude that
E

A×B
[f ] = E

A
[f1 ] · EB

[f2 ] .
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DEFINITION 2

Let X denote a free point or an image point varying in some region
containing the possible region A; and P

X
denote its probability law relative

to A. Consider a function ϕ(X), defined in A, of the coordinates of point
X. If A′ ⊂ A, the mathematical expectation of the region A′ relative to the
function ϕ(X) is

E
A′ [ϕ(X)] =

∫

A′

P
X
ϕ(X) da.

In the particular case A′ = A, that number is the mean value or probable
value of ϕ(X).

Proposition IV

It is evident that if A′ can be partitioned in pairwise disjoint sets

A′ = A1 ∪ A2 ∪ · · · ∪ A
n

then
E

A′ [X] = E
A1

[X] + E
A2

[X] + · · · + E
An

[X] .

Proposition V

It is also obvious that

E [ϕ1(X) + ϕ2(X) + · · · ] = E [ϕ1(X)] + E [ϕ2(X)] + · · · .
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Proposition VI

Let X denote a varying point in A, Y a varying point in B. Similarly to
what we stated in Prop. III (22),

E
A×B

[ϕ(X) · ψ(Y )] =

∫

A×B

P
X

P
Y
ϕ(X)ψ(Y ) d(a, b) =

=

∫

A

P
X
ϕ(X) da ·

∫

B

P
Y
ψ(Y ) db =

= E
A

[ϕ(X)] · E
B

[ψ(Y )] .

Proposition VII

Let X denote a varying point in some region containing A, ϕ denote some
function of its coordinates, and P

X
the probability law of X relative to A.

We have defined

E
A

[ϕ(X)] =

∫

A

P
X
ϕ(X) da.

Writing ϕ(X) = Z, we get

E =

∫

A

Z P
X

da =

z1
∫

z0

Z

∫

P
X
da

where the second integral is to be computed for the values of A for which

(22) Editors’ note: Perhaps this reference to Proposition III is to include the indepen-
dence hypotheses in this Proposition, because otherwise it would not be correct.
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Z is between z and z + dz. But this integral is, by definition, P
Z
, the

probability that Z lies between z and z+ dz, and its value may be denoted

P
Z
(z) dz,

where P
Z
(z) is the probability law of Z. Therefore,

E
A

[ϕ(X)] =

z1
∫

z0

Z P
Z
(z) dz = E

Z
(Z).

Later on, we shall present an example showing this proposition useful-
ness in the computation of mathematical expectations.

Proposition VIII

Given the probability law of the variable Z, the mathematical expectation
of any function ϕ(Z) of Z is

E
Z

[ϕ(Z)] =

z1
∫

z0

ϕ(z) P
Z
(z)dz.

To prove it let
f(X) = ϕ(Z)

in the previous proposition, computing the second integral
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in the region where Z takes values between z and z + dz.

Proposition IX

The mathematical expectation of a region A′, in what concerns a constant
function c, is the product of that constant by the probability of the region,
i.e.,

E
A′ (c) = c · P(A′),

a result that follows immediately from the definition.

In particular, the mean value of a constant is that constant, since

P(A) = 1 =⇒ M(c) = c.

Proposition X

If f(X) is a positive function and its mean value is smaller than a number
δ, however small this δ may be, the probability, that f(X) is greater than

a given m, is lower than
δ

m
.

In effect, if A′ is the region where

f(X) ≥ m,
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it follows that

∫

A

f(X) P
X
da =

∫

A−A′

f(X) P
X
da+

∫

A′

f(X) P
X
da ≥

≥
∫

A′

f(X) P
X
da ≥

≥ m · P(A′);

therefore
m · P(A′) ≤ δ

and

P(A′) ≤ δ

m
.

Problem

Consider a random plane open polygonal line with sides of lengths

l1 , l2 , . . . , ln ,

denote A and B its endpoints, and d the length of AB.

Compute
M

n
(d2).
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Solution

To compute M
n
(d2) we can use the probability law of d (Prop. VIII). But,

by Prop. VII, instead of the probability law of d we may use the probability
law of any convenient point X tied to it, for instance the equivalent point
to the polygonal line. Consider first the simplest case of a polygonal line
with only one side of length l1 ; from Prop. IX, it follows that

M1(d
2) = l

2

1
.

Let us now consider the case of a random polygonal line with two sides;
from Prop. VIII it follows that

M2(d
2) =

l1+l2
∫

0

P(d) d2 dd =

=

π
∫

0

1

π
(l

2

1
+ l

2

2
− 2 l1 l2 cos α) dα =

= l
2

1
+ l

2

2
,

where in the above computation α denotes the angle between the two sides
of the polygonal line.

Let us now assume the induction hypothesis that in the case of a polyg-
onal line with i sides we have

M
i
(d2) = l

2

1
+ l

2

2
+ · · · + l

2

i
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in order to prove that we also get

M
i+1

(d2) = l
2

1
+ l

2

2
+ · · · + l

2

i
+ l

2

i+1
.

Denoting δ the length of the segment from the origin of l1 with the
endpoint of l

i
, from the induction hypothesis

M
i
(δ2) = l

2

1
+ l

2

2
+ · · · + l

2

i
.

Denoting α1 , α2 , . . . , αi
the angles in the articulations of the polygonal

line, d2 is a function f(α1 , α2 , . . . , αi
) of those angles, and the mean value

we want to compute is of the form

M
i+1

(d2) =

∫

f(α1 , α2 , . . . , αi
)
dα1

2π
· dα2

2π
· · · dα

i

2π
=

=

∫

dα1

2π
· dα2

2π
· · · dα

i−1

2π

2π
∫

0

f(α1 , α2 , . . . , αi
)

dα
i

2π
=

=

∫

dα1

2π
· dα2

2π
· · · dα

i−1

2π

2π
∫

0

1

2π
(δ2 + l

2

i+1
− 2 δl

i+1
cos α

i
) dα

i
=

=

∫

dα1

2π
· dα2

2π
· · · dα

i−1

2π
(δ2 + l

2

i+1
) =

= M
i
(δ2 + l

2

i+1
) =

= M
i
(δ2) + M

i
(l

2

i+1
) =

= l
2

1
+ l

2

2
+ · · · + l

2

i
+ l

2

i+1
.
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From this it follows that

M
n
(d2) = l

2

1
+ l

2

2
+ · · · + l

2

n
.

If the sides of the random polygonal line are all of equal length, denoting
L its perimeter we have

M
n
(d2) = n l

2

1
=

L2

n
.

From this, letting n→ ∞, we get that:

The probable value of the square of the distance between the endpoints
of a random plane flexible curve is zero, whatever the length of the curve,
provided this is finite.

Proposition XI

The mathematical expectation can be computed, in some cases, without
previous computation of the summands involved in its definition, or of the
probability law. We exemplify using a curious example, an alternative way
of solving Buffon’s needle problem. As remarked in the observation in page
64, dividing the needle into equal parts, each of those would have equal
probability of intersection one of the separation lines. If those parts, instead
of being collinear, have different relative positions, forming a polygonal line,
each part will still have the same probability, an immediate consequence
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of the definition of randomly throwing a variable form figure.

Let us assume, now, that we associate the same number, one, to each
intersection of one side of the polygonal line with one of the parallel lines.
The mathematical expectation of each part will be the probability that it
hits one parallel. The sum of all these expectations is proportional to the
number of parts, and thus proportional to the perimeter of the polygonal
line. And this is so, whatever the polygonal line, rigid or articulated, and
whatever the length of its sides. In the limit, we can still say that the integral
of the elementary expectations of a rigid or flexible curve is proportional to
its length:

E(l) = K l,

where K is independent of the form, nature and perimeter of the figure.

To determine K, let us consider a needle which is a circumference whose
diameter is the distance between two consecutive parallels.

Randomly throwing this circumference in the plane of the parallels, it
will always have two points in common with the system of parallels, [either]
because it intersects one parallel in two points, [or because it is tangent to
two consecutive parallels](23); therefore

E(π a) = K π a = 2

and

K =
2

π a
.

(23) Editors’ note: Pacheco d’Amorim forgets the second possibility.
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From that we get

E(l) =
2 l

π a
.

This is the value we had obtained for the probability that the needle
intersects one of the parallels, when solving Buffon’s needle problem, when
l ≤ a. In fact, when l ≤ a, the needle either intersects one of the parallels in
one point, or it doesn’t, and therefore the mathematical expectation is the
probability of the event that it intersects one of the parallels. So, another
way of solving Buffon’s needle problem is via the exploitation of the concept
of mathematical expectation.

*

If the parallel lines are substituted by equidistant circumferences with
the same center, the mathematical expectation would still be the same, but
we couldn’t state anything about the probability of intersection of a linear
segment with one of the circumferences.

Proposition XII

Let us consider an experiment with two possible outcomes, [success or
failure,] and denote p and q the corresponding probabilities. Consider the
function f(success) = a, f(failure) = b.

The mean value of this function is

M = ap+ bq.

Repeat the experiment a large number of times,
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and let’s assume that (p) times we get success and (q) times we get failure.

Denote

x =
(p) a+ (q) b

(p) + (q)

the arithmetic mean of the observed values of the function we have defined.

The expression

|M − x | =

∣

∣

∣

∣

ap+ bq − (p) a+ (q) b

(p) + (q)

∣

∣

∣

∣

≤

≤ |a| ·
∣

∣

∣

∣

p− (p)

(p) + (q)

∣

∣

∣

∣

+ |b| ·
∣

∣

∣

∣

q − (q)

(p) + (q)

∣

∣

∣

∣

;

goes to zero when (p) + (q) increases; more precisely, the probability that
|M − x| is smaller than ε, however small ε is, goes to one when (p)+(q) → ∞
(3rd Bernoulli’s theorem).

*

What we just established for a random experiment with two possible
outcomes is valid for an experiment with any number of possible outcomes.

*

What we have proved about mean values is valid, with the necessary
adaptations, for the mathematical expectation of any class. Therefore:

The mathematical expectation of a finite class of numerical elements
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i.e., of elements to which we associated a number, is the limit, when the
number of experiments goes to infinity, of the sum of the observed numbers
in that class when we perform repeated experiments, divided by the number
of experiments.

The practical importance of the mathematical expectation comes from
the above statement.

If the class considered in the above statement is the total possible class,
the mathematical expectation is the mean value, and the above proposition
becomes:

The mean value of a function that can assume a finite number of values
is the limit of the averages of the observed values of that function, in repeated
experiments, when the number of experiments goes to infinity.

This is the reason why averages are so important in the applications of
Probability.

*

All those propositions can be generalized for functions continuously vary-
ing in some region.

For instance, considering the mean value, that only formally differs from
the mathematical expectation:

Let A be the region, f(X) the function, P
X

the probability law.
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The mean value of the function is

M =

∫

A

f(X) P
X
da.

Let’s partition A in n parts A
i
, i = 1, . . . , n. The mathematical expec-

tation of each of the parts is

E
i
=

∫

A
i

f(X) P
X
da =

= f(X
i
)

∫

A
i

P
X
da =

= f(X
i
) · P(A

i
), (6.1)

since P
X

is always a positive function, and thus we can use the mean value
1st theorem. In (6.1), X

i
denotes the value of the function f in a point

X
i
∈ A

i
, and P(A

i
) the probability of the region A

i
.

On the other hand, we have

M =
∑

E
i
=
∑

f(X
i
) P(A

i
).

Let us now assume that we group the observed values of the function
f in classes corresponding to the partial regions A

i
and that, inside each

of those regions, we substitute f(X) by f(X
i
) + ε

i
, where ε

i
= o (f (X

i
)),

because of the assumed continuity of f . Thus ε
i
→ 0 when A

i
decreases to

∅.
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Let us consider the average of the observed values f(x
k
) of f(X) de-

composed into two summands, the first one corresponding to the values
to the values f(X

i
) and the second one corresponding to the values ε

i
.

When the number of experiments goes to infinity, the first summand goes

to
∑

f(X
i
) P(A

i
), and therefore to M, whatever the partition of A (Prop.

XII). The second summand, as we can partition A in subsets whose measure
is as small as we want, converges to zero.

Therefore the limit of the averages of the observed values f(x
k
) of f(X)

exists, and it is the mean value or probable value of f(X).

*

* *

As we have seen in the previous chapter, the probability that the absolute
value of the relative deviation, denoted |Λ|, is less than λ1 is

θ (λ1) =
2√
π

λ1
∫

0

e
−λ

2

dλ.

Therefore the probability law of the relative deviation Λ is

P
Λ
(λ) =

1√
π

e
−λ

2

for all real λ.
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The mean value of Λ is

M(Λ) =
1√
π

∞
∫

−∞

e
−λ

2

λ dλ = 0.

The mean value of |Λ| is

M(|Λ|) =
1√
π

∞
∫

−∞

e
−λ

2

|λ| dλ =

=
1√
π

∞
∫

0

2 e
−λ

2

λ dλ =

=
1√
π

(

− e
−λ

2
]∞

0

=

=
1√
π
.

The mean value of Λ
2

is

M

[

Λ
2
]

=
1√
π

∞
∫

−∞

e
−λ

2

λ
2

dλ =

=
1√
π

∞
∫

0

λ · e
−λ

2

2λ dλ =

=
1√
π

(

−λ e−λ
2

+

∫

e−λ
2

dλ

]∞

0

=

=
1√
π

·
√
π

2
=

1

2
.
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Therefore

M

[

Λ
2
]

[M(|Λ|)]2
=

1

2
1

π

=
π

2
.

Proposition XII from this chapter confers a remarkable interpretation to
this result: it is possible, using random throws, to rectify the circumference.
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CONCLUSION

In the preceding chapters, we have investigated the probability of events
which can be thought of as random extractions from a finite set, or as ran-
dom throws in a region, on the assumption that we are, ourselves, the agents
of the random selection, and that the set or the region are qualitatively and
quantitatively specified. We also described how a sequence of random ex-
tractions or of random throws can be reduced to a single extraction from a
finite set or to a single throw in a region.

We now describe how the scope of Probability can be broadened, using
the principles formerly established.

For clarity, we start with a classification of the facts we want to investi-
gate.

To do so, we shall admit the possibility that someone like us, or even
essentially diverse agents can, in some circumstances, perform random ex-
tractions (or random throws) with analogous outcomes to those performed
by us.

Once this has been accepted as admissible, we shall consider three groups
of phenomena whose probability can be investigated.
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In the first group, we enclose the phenomena that can be assimilated either
to random extractions or to random throws performed by us; in the second
group, phenomena that can be viewed as random extractions or as random
throws, but performed by someone similar to us; in the third group, phe-
nomena that can be assimilated either to random extractions or to random
throws, done by some essentially different agent.

Each of those three groups will be further divided into two subgroups.
In the first one, we consider the phenomena that can have a finite number
of possible outcomes. In the second one, the phenomena whose possible
outcomes conceptually form a continuous region.

In each of those subgroups, we consider three possible situations. In
the first subgroup of each of the three groups, the three possible situations
are: the set of phenomenon on outcomes is qualitatively and quantitatively
known (first case); it is qualitatively known, but quantitatively unknown
(second case); or it is unknown, both qualitatively and quantitatively (third
case).

In the second subgroup of each group, we may know the probability law
of the phenomenon, and the corresponding support (first case); or we may
know the support, but ignore the probability law (second case); or we may
ignore both the probability law and its support (third case).

The criterion used in the first classification is the nature of the agent of
random extractions or of random throws. The second classification is done
on the nature of the phenomenon; the third classification is based on our
degree of knowledge of the phenomenon.

As we have seen in the Introduction to these Elements of Probability
Calculus, we consider a phenomenon which can be identified to a random
extraction (or to a random throw) done by us, ourselves, from qualitatively
and quantitatively known finite set (or in a qualitatively and quantitatively
known bounded region) as known, in the sense that everything is well spec-
ified. This is the description of our standard phenomenon, standard model,
or elementary fact.
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Only the phenomena amenable to the standard model can be the object of
Probability.

We shall start our program of standardization of phenomena with the

1st Group

which, as we have seen, is the one in which random extractions or random
throws are performed by us. In this group, as we said before, we must
consider two subgroups, of which the

1st SUBGROUP

contains those phenomena having a finite number of outcomes. Such phe-
nomena may be conceptualized as random extractions from finite discrete
sets, or to random throws in bounded regions divided into a finite number
of parts.

Its

1st case

has been studied in Chapters I, II and III of these Elements of Probability
Calculus. It includes the standard model; thus, the starting point of our
standardization program must investigate how to reduce to it the

2nd case

which deals with phenomena amenable to random extractions from sets
qualitatively known but quantitatively unknown.

In this situation, the aim of the reduction procedure is, therefore, the
quantitative determination of the set from which the random extractions
are done.

This can be done with
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high probability and precision, i.e. with the accuracy we wish in the ap-
proximation, and with as probability as large (24) as we want, insofar as it
is feasible to perform as many trials as needed (J. Bernoulli’s 3rd theorem).

The determination is therefore approximate and probabilistic. But the
probability that the approximation produces an error whose absolute value
is lower than ε, however small ε is, will approach 1 as much as we want.
Thus this 2nd case is separated from the 1st case by the same hiatus that
separates probability from certitude. (25)

(24) I.e., 1 − ε, with ε as small as desired.
(25) Certitude is the probability of extracting one white ball from an urn containing
only white balls. Laplace “ Quand tous les cas sont favorables à un évènement, sa prob-
abilité se change en certitude, et son expression devient égale à l’unité. Sous ce rapport,
la certitude et la probabilité sont comparables, quoiqu’il y ait une différence essentielle
entre les deux états de l’esprit, lorsqu’une vérité lui est rigoureusement démontrée, ou
lorsqu’il aperçoit encore une petite source d’erreur.” (LAPLACE, Essai Philosophique

sur les Probabilités). In Jacob Bernoulli’s view, there is no essential difference between
probability and certitude: “Certitudo rerum, spectata in ordine ad nos, non omnium
eadem est, sed multipliciter variat secundum majis et minus. Illa de quibus revelatione,
ratione, sensu, experientia, άνιoψία aut aliter ita constat, ut de eorum existentia vel fu-
turitione nullo modo dubitare possimus, summa et absoluta certitudine gaudent. Caetera
omnia imperfectiorem ejus mensuram in mentibus nostris obtinent, majorem minoremve,
prout plures vel pauciores sunt probabilitates, quae suadent rem aliquam esse, fore aut
fuisse.

Probabilitas enim est gradus certitudinis, et ab hac differt ut pars a toto.” (J.
BERNOULLI, Ars Conjectandi, Pars Quarta, Chap. I)

(Laplace’s text: “When all cases are favorable to an event, its probability becomes
certitude, and its value is unity. In this perspective, probability and certitude are com-
parable, although there is an essential difference between the two states of mind, resulting
from the rigorous proof of a true statement, or from an argument where a possible source
of error is still perceived.”

Bernoulli’s text: “Our view on the certitude of things is not always the same, it
varies, being high in what concerns some, low in respect to others. We have complete
and absolute certitude on those things that we know by revelation, by the exercise of the
intellect or of the senses, by experience, by direct observation, or otherwise constated, and
in no way doubt that they will exist or occur in the future. Under other circumstances,
our mind assigns to things some lower degree of belief, higher or lower according to
whether we judge large or small the probability that they exist, existed or will exist.

Probability is, thus, a degree of certitude, and differs from it as a part differs from the
whole.”)





CHAPTER VII — Conclusion 163

The identification cannot be but probable, but, having no better choice
we accept it, since probabilistic knowledge is a useful degree of knowledge.

“All the science of philosophers and all the prudence of politicians deals
with” the evaluation of the probability of events ([. . . ] in quo solo omnis
Philosophi sapientia et Politici prudentia versatur) (26)

The identification of the

3rd case

with the 1st one is done in a similar fashion, with the extra task of identifying
qualitatively the set of possible outcomes. But the identification procedure
is, in all steps, similar to the former one.

Let us now consider the

2nd SUBGROUP

which, as we have seen, contains the phenomena whose set of possible out-
comes is infinite, building up a continuous that we shall assume to be of the
second species, in the terminology of H. Poincaré (27). We shall therefore
assume that to each possible outcome of the phenomenon we associate one
point in a space with the convenient number of dimensions. The

1st case

from this subgroup, characterized by the fact that its probability law and

(26) J. BERNOULLI, Ars Conjectandi, Pars Quarta, Chap. II.
(27) H. POINCARÉ, La Science et l’Hypothése, Chap. II.
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the corresponding support are known, has been dealt with in Chapters II,
III and IV. We may therefore proceed to the

2nd case

in which the support is known, but the probability law itself is not known.
The reduction of this case to the previous one consists, therefore, in the
determination of the probability law.

When we execute a sequence of random throws in some region and we
observe directly the points that result from each trial, the ratio of the num-
ber of points that lie in a given subregion to the number of points that lie
in another region of the same size will converge to one as the number of
trials increases (Bernoulli’s 3rd theorem). In other words, as the number
of trials increases, the distribution of the points approaches the uniform
distribution.

But if, instead of directly observing the points randomly chosen, our goal
is to study the law of the point’s projections or of some other image point,
the probability law is no longer uniform. But, according to the above men-
tioned Bernoulli’s 3rd theorem, the distribution of these image points will
be governed by the corresponding probability law. The observed points will
be concentrate in the neighborhood of the maxima of such probability law.
When the probability law is known, we can forecast the distribution of the
points projections or of other image points of the randomly thrown points,
and the probability that this forecast agrees with the reality is increasing
with the number of points.

The other way round, observing a large number of points, we can deter-
mine the corresponding probability law, with a probability as large as we
wish; more precisely, we may compute the value
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of the integral, in any given interval from its support, of that unknown
probability function (Bernoulli’s 3rd theorem).

From this fact we get two methods to determine the unknown law:

1st method

It may happen that some reasons which are inherent to the nature of
the phenomenon we are studying point towards the adoption, a priori, of
some specified probability law — as it happens, for instance, when we are
dealing with observation errors. In order to decide whether this is so, we
perform a large number of sequences of trials, each sequence with a number
large enough of trials, so that the probability that its distribution doesn’t
agree with the a priori law, provided this one is the true one, is negligible.

The ratio of the number of sequences whose empirical law matches with
the hypothesized probability law to the total number of series approaches a
number that (as we have already seen in the 2nd case of the 1st subgroup)
we may call the probability of that law. If in our view that probability is
large enough, the a priori law is maintained; otherwise, it is rejected.

The

2nd method

is the following: partition the region — which is assumed to be known —
where the observed point varies into a large enough (28) number of subre-
gions.

Once this has been done, we perform a large enough sequence of random
throws in that region. The ratio of the number of points

(28) The number of subregions and the number of trials can be tuned so that we can
achieve the accuracy we wish in the final results.
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we observe in each subregion to the total number of random throws gives
us, with the degree of probability and approximation we want, the integral
of the unknown function in each of the partial subregions.

Dividing each number computed as described by the size of the corre-
sponding subregion, we obtain an equal number of points of the function
we wish. This, however, isn’t sufficient to determine the probability law.

In fact, there is an infinite number of functions that, when integrated
in the considered subregions, furnish the same results, namely the ones
computed as described above. How to select one among this infinite number
of possibilities?

All the functions whose integrals in the subregions match those numbers
are equally plausible, since they have the same degree of agreement with
Bernoulli’s 3rd theorem. Among them, we choose the simpler one, the one
which is more adequate for our goals, if no deeper reasons can guide our
judgement.

As in the preceding subgroup, the

3rd case

reduces to the 2nd one. The observed points are distributed in a region of
arbitrary boundary.

We can even assume that the support of the probability law is unbounded
in all directions; the specification of the law will indicate, afterwards, which
subregions do have null probability; in other words, the law itself will limit
its domains of existence.

We might as well assume, as in the 3rd case of the 1st subgroup, that the
phenomenon was qualitatively unknown; the quantitative determination of
its probability law would then specify the events of null probability.
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In that perspective, these two cases are identical. We insist however in
distinguishing the two cases, for the sake of clarity in the exposition.

Note

In all that has been said it was implicitly assumed that the sets and
regions in which the random operations are performed remain invariable
during the experiments, both qualitatively and quantitatively. Otherwise,
no sound conclusions could be reached, unless the law of such variation was
known, thus allowing the necessary corrections.

Let’s now investigate the

2nd Group

of phenomena, starting with an explanation of the hypothesis assumed for
its construction, and of its meaning.

The proposition to extract, at random, one element from a set has for
us a precise meaning, when we are the agents of such random selection.

But when the agent of the selection is someone else, this proposition is
ambiguous, in the sense that it has no different meaning from the propo-
sition to extract one element from a set. In some situations, however, it is
legitimate to retain the expression random, essential for our study.

What are the conditions needed to accept that the selection has been
done at random?

First of all, the distribution of the elements in the class where the
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selection is done must be ignored.

Further, the extraction has to be done in such a way that it is impossible
to forecast either which element will be selected, or its quality; this impos-
sibility of forecasting must hold in what concerns not only us, ourselves, as
anyone similar to us.

Hence, if the extractions are done by someone similar to us, according
to the above requirements, nothing opposes, a priori, the hypothesis that
the outcome of such extractions has the some informative value that would
have the outcome of a random selection done by us.

For instance, assuming that 90% of the balls in one urn are white and
the remaining 10% are black, we would favor a bet that the outcome of a
random extraction would be white ball, in case we would be the agent of the
random extraction. But we would surely stick to this bet, the extraction
being performed by someone else, in case we would be satisfied that the
circumstances of the extraction were as described: namely, the agent of the
extraction was unable to predict the element he would extract, and ignorant
of how the balls are mixed in the urn. All games of chance take those
assumptions for granted; shuffling the deck before dealing the cards, and
the fact that the back of all cards in a deck is the same, fulfills the above
requirements.

*

Whenever the above requirements are not fulfilled, the phenomenon is out
of the scope of the Science of Probability.
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*

We must reject the hypothesis that another agent is doing random ex-
tractions whenever the outcome doesn’t agree with Bernoulli’s and similar
laws. In fact, as in any other Science, external circumstances can cheat us.

This is clearly demonstrated in an anecdote that Bertrand reports about
Galiani, philosopher and economist of the XVIII century:

“Un jour, à Naples, un homme de Basilicate, en présence de l’abbé
Galiani, agita trois dés dans un cornet et paria d’amener rafle de 6; il
l’amena sur-le-champ. Cette chance est possible, dit-on; l’homme réunit
une seconde fois, et l’on répéta la même chose; il réunit les dés dans le
cornet trois, quatre, cinq fois, et toujours rafle de 6. Sangue di Bacco,
s’écria l’abbé, les dés sont pipés”. (29)

*

As we have just discussed, the phenomena in the second group can be
reduced to phenomena in the first group, and in that case we can view them
as studied, or they are not amenable to phenomena in the first group, and
they do not fall in the scope of Probability.

*

In what we said above about phenomena in

(29) J. BERTRAND, Calcul des Probabilités, Préface.
“One day, at Naples, a man from Basilicate, the abbot Galiani being present, shacked

a cornet with three dice and bet he would throw a 6; he did, in fact, throw a 6. This is
possible, no doubt; but he made a second throw, obtaining once again 6, and the same
happened in a third throw, a fourth throw, a fifth throw — always he got a 6. Sangue

di Bacco, said the abbot, these dice are loaded.”
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the second group, we skipped the phenomena in the second subgroup. In
fact, this is a reasonable option, in view of the analogy between the qual-
itative composition of a finite set and the support of the probability law,
and between the quantitative composition in the former case and the form
of the probability law.

Let us now consider the

3rd Group

of phenomena.

When we execute a sequence of random extractions (or of random
throws), the elements we get are unordered, with runs that apparently do
not follow any law. Otherwise, we could predict them, and this is incom-
patible with what intuition tells us about random extractions. Henceforth,
when the outcomes of some phenomenon do occur in an unordered fash-
ion, this hazardous character gives us a vague feeling that it is governed by
chance.

Can we identify that vague feeling of chance intervention with the ran-
dom character of sequences of random extrations we have studied? In other
words, can we quantitatively determine the set of the qualitative outcomes of
the said phenomenon, so that we may assume that the outcomes produced
by natural causes have the same random character possessed by random
extractions done by us in that set?

Or, if only part of the possible outcomes of the phenomenon is known
(and this may always be assumed), can we in all cases determine qualita-
tively and quantitatively the corresponding set?

We shall hypothesize that this is so.
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How can we justify such a hypothesis?

There is one way out: we must verify whether the conclusions that we
can deduce from it conform to the observed facts.

Bernoulli’s theorems, and those analogous to them, are the appropriate
tools to judge whether this is so.

The first step is to analyze what we get in the light of Bernoulli’s 3rd
theorem, since it is useful in the qualitative and quantitative determination
of the law.

In fact, Bernoulli’s 3rd theorem tells us that the probability that the
relative frequency of each possible outcome approaches, as much as desired,
the probability of that outcome is always increasing. In other words: if after
experiment we divide the number of times we got each of the outcomes
by the total number of experiments, we obtain relative frequencies that
converge to the probabilities of the outcomes. The probability that those
numbers get closer and closer to the corresponding limits increases with the
number of trials.

So, while the number of trials is moderate, those numbers will fluctuate
showing some irregularity (since the probability that they are close to their
limits is small); but their fluctuation will be smoother and smoother when
the number of trials increases.

If the observed facts do not agree with this pattern of behavior, this must
be interpreted as an indication that the hypothesis we assumed is wrong,
either these phenomena have a pattern that is not identifiable with random
extractions, or the phenomenon is varying in time.

If the facts are in agreement with Bernoulli’s 3rd theorem and
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with the analogous theorems we discussed in Chapter V, we may maintain
the hypothesis that the observed outcomes of the phenomenon behaved like
random extractions, during the period taken in the verification.

So, while there is no reason to question the stability of the process
producing this phenomenon, there is no substantial reason to doubt that
hypothesis. Even if the process changes, the hypothesis may still be accept-
able, but further investigation has to be carried out, to make the necessary
adaptations and amendments, and as often as required to determine the
eventual pattern of variation.
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