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We study the gauge dependence of the quark propagator in quantum chromodynamics by solving the gap
equation with a nonperturbative quark-gluon vertex which is constrained by longitudinal and transverse
Slavnov-Taylor identities, the discrete charge conjugation and parity symmetries and which is free of
kinematic singularities in the limit of equal incoming and outgoing quark momenta. We employ gluon
propagators in renormalizable Rξ gauges obtained in lattice QCD studies. We report the dependence of the
nonperturbative quark propagator on the gauge parameter, in particular we observe an increase,
proportional to the gauge-fixing parameter, of the mass function in the infrared domain, whereas the
wave renormalization decreases within the range 0 ≤ ξ ≤ 1 considered here. The chiral quark condensate
reveals a mild gauge dependence in the region of ξ investigated. We comment on how to build and improve
upon this exploratory study in future in conjunction with generalized gauge covariance relations for QCD.
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I. INTRODUCTION

Gauge symmetry and its innumerable consequences have
played a fundamental role in the development of modern
quantum field theory during the past century. Amongst its
celebrated implications, the Ward-Takahashi identities
(WTIs) [1,2] in quantum electrodynamics (QED) and the
corresponding Slavnov-Taylor identities (STIs) [3,4] of
quantum chromodynamics (QCD) relate different n-point
Green functions to each other. In particular, the WTI and
the STI connecting the divergence of the fermion-boson
vertex to the fermion propagator help us identify the
longitudinal part [5–7] of this three-point vertex, whether
it be the quark-photon or the quark-gluon vertex. These are
exact nonperturbative relations which are observed order

by order in perturbation theory. There exists a plethora of
work within the nonperturbative exploration of Dyson-
Schwinger equations (DSEs) which incorporates these
identities in studying dynamical chiral symmetry breaking
(DCSB) via the electron/quark gap equation.
Whereas the usual WTI or STI relates the divergence of

the three-point fermion-boson vertex to the inverse fermion
propagator, there exist transverse Takahashi identities
(TTIs) and transverse Slavnov-Taylor identities (TSTIs)
which play a similar role for the curl of the fermion-boson
vertex [8–12]. The TTIs and TSTIs are richer and more
complicated in their structure, and they shed light on the
transverse part of the fermion-boson vertex. They have
been employed to compute the critical coupling and study
its gauge independence, as well as the quark condensate
and pion decay constant [13–17].
While the longitudinal and transverse gauge identities

relate different n-point Green functions with each other,
another important consequence of gauge covariance in
QED are the Landau-Khalatnikov-Fradkin transformations
(LKFTs), which describe how the individual Green func-
tions respond to an arbitrary gauge transformation [18,19].
The LKFTs are a well-defined set of transformations which
leave the DSEs and related WTIs of the fermion-boson
vertex form invariant. While the STIs are the QCD
generalization of the WTIs, the equivalent generalization
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of the LKFTs has only recently been derived by two groups
employing two different methods: (i) ABG in Ref. [20]
through direct generalization of the method employed by
Landau and Khalatnikov, and (ii) MDSDB in Refs. [21,22]
based on the introduction of a gauge invariant transverse
gauge field. Moreover, the Nielsen identities allow us to
study the variation of Green functions as derivatives with
respect to the gauge parameter [22,23]. Nevertheless, even
with these formal results available, starting from the
knowledge of Green functions in a given gauge, their
explicit extraction in another gauge remains a nontrivial
problem in QCD even at one loop in perturbation theory.
This is already the case for two-point Green functions, let
alone their nonperturbative transformation and that of
three- and higher n-point Green functions.
These local transformations are in no simple manner

amenable to straightforward comparisons of Green func-
tions in different gauges, especially in momentum space,
nor to explicitly prove the gauge invariance of physical
observables. However, it has explicitly been shown in
QED, and verified in QED3 by constructing a nonpertur-
bative vertex [24], studying gauge covariance relations
[25,26] and generating numerical solutions of the electron
gap equation, that the electron condensate is manifestly
gauge independent once its propagator is correctly LKF
transformed from a given covariant gauge to other covariant
gauges [27,28]. Moreover, the ABG and the MDSDB
generalizations of LKFT in QCD confirm the formal
gauge-invariance of the quark condensate after the quark
propagator has been adequately gauge transformed.
We are not able to directly verify this result by gauge

transforming every Green function computed in the Landau
gauge to repeat the calculation in any other gauge—it
remains a prohibitively difficult task for the time being.
We thus follow a more modest approach to study the gauge
dependence of the quark propagator in QCD and solve the
associated DSE, employing quenched gluon propagators in
Rξ gauges from lattice QCD [29], and the dressed quark-
gluon vertex constructed in Ref. [17], invoking the STI and
TSTI. Our approach not only allows for a comparison of
the DSE solutions in Rξ gauges, i.e., the mass and wave
renormalization functions of the quark for gauge parameters
in the range ξ ∈ ½0; 0.5�, extrapolated to the Feynman gauge,
ξ ¼ 1, but also to compute the quark condensate as a function
of the gauge parameter within this interval. We emphasize
that this is an initial, exploratory study which we expect to
shed light on how far we are from obtaining the gauge
independence of the condensate. This invariance would be
obtained through formal incorporation of the local gauge
transformations of every Green function in the gap equation,
i.e., the gluon propagator, the quark-gluon vertex, as well as
the ghost propagator and the ghost-quark scattering kernel.
Within the limitations of this hybrid approach, we

demonstrate how the numerical solutions of the quark
propagator vary as function of the gauge parameter in Rξ

gauges, and that this behavior leads to a slightly gauge-
dependent quark condensate up to Feynman gauge within
the error estimates involved. Nonetheless, to our knowl-
edge, we present the first DSE solutions for the quark
obtained with all 12 vector structures of the nonperturbative
quark-gluon vertex and the gluon and ghost propagators in
covariant Rξ gauges. Our findings are encouraging and
represent an important first step as they incorporate the
gauge covariance into the DSEs through the formal
implementation of gauge identities for the Green functions.
This is a necessary, though not sufficient, requirement for
calculating gauge-independent bound-state properties.
This article is organized as follows: in Sec. II we describe

our functional approach to QCD and discuss the quark-
gluon vertex, the lattice-extracted gluon, and ghost propa-
gators and the quark-ghost form factor in different gauges.
In Sec. III, we solve the quark gap equation and obtain the
mass and wave renormalization functions in different
gauges and calculate the quark condensate. Final remarks
are given in Sec. IV.

II. DYSON-SCHWINGER EQUATION IN Rξ
GAUGES

The DSEs are the relativistic equations of motion in
quantum field theory, see, e.g., Ref. [30] for a review. For a
given flavor and in the Rξ gauge, the DSE of the inverse
quark propagator in Euclidean space reads

S−1ξ ðpÞ ¼ Z2iγ · pþ Z4mðμÞ

þ Z14πα
ξ
s

Z
Λ d4k
ð2πÞ4 Δ

ab
μνðqÞγμtaSξðkÞΓbξ

ν ðk; pÞ;

ð1Þ

where mðμÞ is the renormalized current-quark mass,
Z1ðμ;ΛÞ, Z2ðμ;ΛÞ, and Z4ðμ;ΛÞ are the vertex, wave
function, and mass renormalization constants, respectively,
while Γaξ

μ ðk; pÞ ¼ Γξ
μðk; pÞta is the dressed quark-gluon

vertex and ta ¼ λa=2 are the SU(3) group generators in the
fundamental representation. The gluon propagator in Rξ

gauge with momentum q ¼ k − p,

Δab
μνðqÞ ¼ δab

�
δμν −

qμqν
q2

�
Δξðq2Þ þ δabξ

qμqν
q4

ð2Þ

is characterized by a nonperturbative transverse dressing
function, Δξðμ2Þ ¼ 1=μ2, and was studied with different
lattice and functional approaches, e.g., Refs. [29,31,32].
The most general Poincaré-covariant form of the sol-

utions to Eq. (1) is written in terms of covariant scalar and
vector amplitudes:

SξðpÞ ¼
1

iγ · pAξðp2Þ þ Bξðp2Þ ¼
Zξðp2Þ

iγ · pþMξðp2Þ : ð3Þ
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In the self-energy integral, Λ is a Poincaré-invariant ultra-
violet cutoff and μ is the renormalization scale imposed
such that Λ ≫ μ. This scale is implicit in our convenient
notation: Aðp2Þ≡ Aðp2; μ2Þ and Bðp2Þ≡ Bðp2; μ2Þ, as is a
flavor index f for these quantities and for all renormaliza-
tion constants. The flavor- and gauge-dependent mass and
wave renormalization functions are, respectively,

Mξðp2Þ ¼ Bξðp2; μ2Þ=Aξðp2; μ2Þ; ð4Þ

Zξðp2; μ2Þ ¼ 1=Aξðp2; μ2Þ: ð5Þ

We choose the renormalization scale, μ ¼ 4.3 GeV, for a
twofold reason: (i) we consistently renormalize the DSE at
the scale at which the transverse dressing function Δξðq2Þ
in Rξ gauge is renormalized [29], and (ii) we can compare
the dressed functions Mξðp2Þ and Zξðp2;Λ2Þ with the
solutions of lattice regularized QCD at this scale [33,34].
We therefore impose [35,36] Zξðμ2Þ ¼ 1 and Mξðμ2Þ≡
mðμ2Þ ¼ 25 MeV.
For the dressed quark-gluon vertex we employ the

decomposition detailed, e.g., in Ref. [16],

Γξ
μðk; pÞ ¼ ΓLξ

μ ðk; pÞ þ ΓTξ
μ ðk; pÞ

¼
X4
i¼1

λξi ðk; pÞLi
μðk; pÞ þ

X8
i¼1

τξi ðk; pÞTi
μðk; pÞ;

ð6Þ

where the transverse vertex ΓTξ
μ ðk; pÞ in Eq. (6) is naturally

defined by iq · ΓTξðk; pÞ ¼ 0. The usual STI [3,4] con-
strains the longitudinal vertex, ΓLξ

μ ðk; pÞ, to four indepen-
dent structures but leaves the transverse components
undetermined. The remaining eight tensor structures can
be explored with TSTI derived from the symmetry trans-
formation that involves the Lorentz transformation acting
on the usual infinitesimal gauge transformation.
The TSTI [13] constrain but also couple the vector and

axial vector vertices. However, as shown in Refs. [14,16],
these can be decoupled and merely one identity for the
vector vertex is sufficient to obtain analytic expressions for
the transverse form factors τξi ðk; pÞ. The full vertex is thus
described by the form factors derived in Refs. [17,37],

λξ1ðk; pÞ ¼
1

2
Gðq2ÞXξ

0ðq2Þ½Aξðk2Þ þ Aξðp2Þ�; ð7Þ

λξ2ðk; pÞ ¼ Gðq2ÞXξ
0ðq2Þ

Aξðk2Þ − Aξðp2Þ
k2 − p2

; ð8Þ

λξ3ðk; pÞ ¼ Gðq2ÞXξ
0ðq2Þ

Bξðk2Þ − Bξðp2Þ
k2 − p2

; ð9Þ

λξ4ðk; pÞ ¼ 0; ð10Þ

for the longitudinal part and by

τξ1ðk; pÞ ¼ −
Y1

2ðk2 − p2Þ∇ðk; pÞ ; ð11Þ

τξ2ðk; pÞ ¼ −
Y5 − 3Y3

4ðk2 − p2Þ∇ðk; pÞ ; ð12Þ

τξ3ðk; pÞ ¼
1

2
Gðq2ÞXξ

0ðq2Þ
�
Aξðk2Þ − Aξðp2Þ

k2 − p2

�

þ Y2

4∇ðk; pÞ −
ðkþ pÞ2ðY3 − Y5Þ
8ðk2 − p2Þ∇ðk; pÞ ; ð13Þ

τξ4ðk; pÞ ¼ −
6Y4 þ YA

6

8∇ðk; pÞ −
ðkþ pÞ2YS

7

8ðk2 − p2Þ∇ðk; pÞ ; ð14Þ

τξ5ðk; pÞ ¼ −Gðq2ÞXξ
0ðq2Þ

�
Bξðk2Þ − Bξðp2Þ

k2 − p2

�

−
2Y4 þ YA

6

2ðk2 − p2Þ ; ð15Þ

τξ6ðk; pÞ ¼
ðk − pÞ2Y2

4ðk2 − p2Þ∇ðk; pÞ −
Y3 − Y5

8∇ðk; pÞ ; ð16Þ

τξ7ðk; pÞ ¼
q2ð6Y4 þ YA

6 Þ
4ðk2 − p2Þ∇ðk; pÞ þ

YS
7

4∇ðk; pÞ ; ð17Þ

τξ8ðk; pÞ ¼ −Gðq2ÞXξ
0ðq2Þ

�
Aξðk2Þ − Aξðp2Þ

k2 − p2

�

−
2YA

8

k2 − p2
; ð18Þ

for the transverse components, where the Gram determi-
nant is defined as ∇ðk; pÞ ¼ k2p2 − ðk · pÞ2.
The form factors λiðk; pÞ, i ¼ 1; 2; 3, and τiðk; pÞ, i ¼

3; 5; 8 are proportional to the ghost-dressing functionGðq2Þ
defined by the propagator

Dabðq2Þ ¼ −δab
Gðq2Þ
q2

; ð19Þ

and are renormalized as Gðμ2Þ ¼ 1; Xξ
0ðq2Þ is the leading

form factor of the quark-ghost scattering amplitude [38,39],
Haξðk; pÞ ¼ Hξðk; pÞta, which can most generally be
decomposed as

Hξðk; pÞ ¼ Xξ
0ðk; pÞ1D þ iXξ

1ðk; pÞγ · k
þ iXξ

2ðk; pÞγ · pþ Xξ
3ðk; pÞ½γ · k; γ · p�: ð20Þ

Calculated in one-loop dressed approximation [35,40],
Xξ
0ðk; pÞ can be projected out from the integral equation

for the quark-ghost scattering amplitude. We do so in the
simplified kinematic configuration k ¼ −p ¼ q=2, thus
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omitting an angular dependence between k and p, which is
expressed by the following integral:

Xξ
0ðq2Þ ¼

1

4
TrCDHξðq=2;−q=2Þ;

¼ 1þ CA

4
g2
Z

Λ d4l
ð2πÞ4 Δ

ξ
μνðlÞDðlþ qÞ

× TrD

�
GνSξ

�
lþ q

2

�
Γξ
μ

�
lþ q

2
;−

q
2

��
: ð21Þ

Here, CA ¼ 3 is the Casimir operator in the adjoint
representation,

Gν ¼ iðlν þ qνÞH1 − ilνH2 ð22Þ

is the dressed ghost-gluon vertex for which the form factor
H1 was calculated in Ref. [41], l is the gluon momentum
exchanged between the quark and the ghost, and in this
configuration q coincides with the gluon momentum in the
DSE (1). The trace is over color and Dirac indices. Beyond
Landau gauge, the integral in Eq. (21) diverges since the
gluon propagator (2) is not transverse anymore and does
therefore not project out the lμ terms of the ghost-gluon
vertex (22). The divergence is mildly logarithmic and given
that we employ lattice-QCD propagators for momenta
p≲ 8 GeV, no renormalization constant is necessary in
the numerical integration, even for large Λ. Nonetheless,
we multiply the left-hand side of Eq. (21) with a renorm-
alization factor ZH and impose X0ðμ2Þ ¼ 1.
We neglect the remaining Xξ

i ðk; pÞ form factors as they
are suppressed with respect to Xξ

0ðk; pÞ [6] in the Landau
gauge. One may ask whether this approximation is justified
in other gauges as the form factors may vary in strength
with the gauge parameter. This dependence is depicted in
Fig. 1 for Xξ

0ðq2Þ and discussed in more detail in Sec. III. It
turns out that setting Xξ

0ðq2Þ ¼ 1 has only modest quanti-
tative effects on Mξðp2Þ and Zξðp2Þ, at least for ξ ∈ ½0; 1�.
Therefore, we make bold to assume that our observation is
valid for the other form factors and will analyze their
behavior as a function of ξ in a forthcoming study. We will
see in Sec. III that the contribution of X0ðq2Þ to DCSB is
small compared with the effect of the transverse vertex.

The YðA;SÞ
i functions represent the form-factor decom-

position of the Fourier transform of a four-point function in
coordinate space in the TSTI. The latter involves a line
integral over a nonlocal vector vertex and a Wilson line to
preserve gauge invariance. As its matrix elements are rather
complicated expressions, we refer to the discussion in

Ref. [13]. We note that the YðA;SÞ
i functions are a priori

unknown and have been constrained by us [16] with the
vertex ansatz in Ref. [42]; i.e., we equated our transverse
form factors (11)–(18) with those of Ref. [42] and derived
expressions for the Yiðk; pÞ that depend on Aðp2Þ, Bðp2Þ,

andX0ðp2Þ. On the other hand, if theYðA;SÞ
i form factorswere

known exactly, so would be the vertex. However, additional
input, e.g., from the generalized LKFT that describes the
vertex itself, would be required for its full determination. We
remind that we do not solve the BSE of the quark-gluon
vertex; hence we do not truncate the vertex form factors.
Therefore, the expressions in Eqs. (7)–(18) represent a most
complete form factor decomposition of the vertex that
satisfies SU(3) gauge symmetry and theC andP symmetries
of the bare vertex, and which is not plagued by kinematic
singularities in the limit k → p.
In principle, one must also solve the gluon and ghost

DSE which are coupled to the gap equation (1). We
deliberately abstain from doing so, as our interest is in
employing quenched gluon and ghost propagators in Rξ

gauge from lattice QCD [29]. For practical reasons in their
numerical implementation, we fit the gluon dressing
functions with the parametrization [43]

Δξðq2Þ ¼
Zðq2 þM2

1Þ
q4 þM2

2q
2 þM4

3

�
1þ ω ln

�
q2 þM2

0

Λ2
QCD

��−γgl
;

ð23Þ

where ω ¼ 11NcαsðμÞ=12π, ΛQCD ¼ 0.425 GeV, and
γgl ¼ ð13 − 3ξÞ=22 is the 1-loop anomalous gluon dimen-
sion. The renormalization scale is μ ¼ 4.3 GeV at which
the strong coupling is chosen to be αs ¼ 0.29 in Landau
gauge [44]. This parametrization is motivated by the
refined Gribov-Zwanziger tree-level gluon propagator in
the infrared domain and by the one-loop renormali-
zation group behavior for large momenta, which amounts
to a renormalization-group improved Padé approximation.
We collect the values Z,M0,M1,M2, andM3 as a function
of the gauge parameter ξ in Table I. It turns out that all fit

FIG. 1. Gauge-parameter dependence of the form factor Xξ
0ðq2Þ

associated with the quark-ghost scattering amplitude.

JOSÉ ROBERTO LESSA et al. PHYS. REV. D 107, 074017 (2023)

074017-4



parameters depend linearly on ξ and we take this feature to
our advantage to extrapolate the parametrization to ξ ¼ 1.
The bare lattice data [45] for the ghost propagator is

parametrized with an analogous expression,

Gðq2Þ ¼ Zðq4 þM2
2q

2 þM4
1Þ

q4 þM2
4q

2 þM4
3

"
1þω ln

 
q2 þ m4

1

q2þm2
0

Λ2
QCD

!#γgh
;

ð24Þ

independent of ξ, as supported by a preliminary study in
lattice QCD [46]. The anomalous ghost dimension is
γgh ¼ −9=44, while ω, ΛQCD and μ are as in Eq. (23). A
least-squares fit yields χ2=d.o.f. ¼ 0.247 and the param-
eters: Z ¼ 5.068� 0.012, M4

1 ¼ 19.281� 0.552 GeV4,
M2

2 ¼ 27.721� 0.696 GeV2, M4
3 ¼ 7.695� 0.329 GeV4,

M2
4 ¼ 24.340� 0.565 GeV2, m2

0 ¼ 0.527� 1.263 GeV2,
m4

1 ¼ 0.018� 0.035 GeV4; this fit must be normalized

by a factor N ¼ 1=4.706 to ensure the renormalization
condition Gð4.3 GeVÞ ¼ 1.

III. GAUGE DEPENDENCE OF THE QUARK
PROPAGATOR AND INVARIANCE
OF THE QUARK CONDENSATE

With all the calculational tools and elements at hand
in the gauge-parameter interval between the Landau and
Feynman gauges, we can evaluate the gauge dependence of
the quark’s mass and wave-renormalization functions as
well as that of the quark condensate.

A. Gauge dependent mass
and wave-renormalization functions

Since the gauge propagators and the quark-gluon vertex
are now determined we can proceed to solve the DSE (1).
After taking the color trace, and with the renormalization
procedure detailed in Ref. [17], the DSE becomes

TABLE I. Parameters of the gluon-dressing parametrization (23) as a function of the gauge parameter ξ. Note that the bare gluon
propagators of Ref. [29] were fitted which must be renormalized as Δξðμ2Þ ¼ 1=μ2. The values ξ ¼ 0.7 and ξ ¼ 1 are obtained from a
linear extrapolation.

ξ Z M2
0 [GeV2] M2

1 [GeV2] M2
2 [GeV2] M4

3 [GeV4] χ2=d.o.f.

0.0 8.407� 0.031 0.071� 0.023 2.783� 0.128 0.532� 0.055 0.380� 0.012 1.209
0.1 8.321� 0.023 0.071� 0.018 2.712� 0.099 0.517� 0.043 0.374� 0.009 0.734
0.2 8.238� 0.018 0.074� 0.015 2.677� 0.076 0.515� 0.033 0.371� 0.007 0.421
0.3 8.160� 0.012 0.069� 0.010 2.617� 0.051 0.499� 0.023 0.367� 0.005 0.205
0.4 8.072� 0.011 0.076� 0.010 2.595� 0.046 0.499� 0.020 0.363� 0.004 0.178
0.5 7.996� 0.009 0.075� 0.009 2.570� 0.041 0.500� 0.018 0.362� 0.004 0.162

0.7 7.831 0.077 2.488 0.487 0.354 � � �
1.0 7.585 0.080 2.378 0.473 0.344 � � �

FIG. 2. Mass function Mξðp2Þ and wave renormalization Zξðp2Þ as functions of the gauge parameter ξ obtained by solving the DSE
(25) with the gluon and ghost propagators in Eqs. (23) and (24), respectively, and the vertex Γξ

μðk; pÞ of Eq. (6) with corresponding form
factors λξi ðk; pÞ and τξi ðk; pÞ.
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S−1ξ ðpÞ ¼ Z2iγ · pþ Z4mðμÞ

þ Z2

16παξs
3

Z
Λ d4k
ð2πÞ4Δ

ξ
μνðqÞγμSξðkÞΓξ

νðk; pÞ:

ð25Þ

We plot the solutions of this DSE in Fig. 2, which clearly
exposes that the mass function Mξðp2Þ increases with ξ
below the renormalization point μ ¼ 4.3 GeV, whereas the
wave renormalization Zξðp2Þ is suppressed. In fact, Mξð0Þ
increases rather continuously with ξ, whereas Zξð0Þ slowly
decreases as a function of ξ, as can be read from Fig. 3.
We remark that the gauge dependence is threefold in
Eq. (25), namely ξ enters directly via the longitudinal
component and indirectly via the dressing function of the

transverse component, Δξðq2Þ, of the gluon propagator (2)

but also via the gauge-dependent strong coupling αξs for
which we use the parametrization [44]

αξs ¼ 0.29þ 0.098ξ − 0.064ξ2: ð26Þ

The mass-function enhancement in Fig. 2 is due to the
feedback of the gauge dependent Aξðp2Þ and Bξðp2Þ
functions in the dressed quark-gluon vertex, namely
Eqs. (7)–(18), as Mξðp2Þ also increases when we keep
the coupling αs ¼ 0.29 constant for all values of ξ.
Moreover, Mξðp2Þ slightly decreases with ξ in the rainbow

truncation, Γξ
μðk; pÞ ¼ γμ, while the DSE solutions

employing ΓLξ
μ ðk; pÞ with Eqs. (7)–(10) show an enhance-

ment of the mass as a function of ξ. We emphasize that the
overwhelming contribution to mass generation is due to the
massive terms in the expressions for λξi ðk; pÞ and τξi ðk; pÞ.
While Xξ

0ðq2Þ is gauge dependent, as becomes clear from
Fig. 1 where an enhancement of this form factor with
increasing values of ξ in the low-momentum region is
observed, setting Xξ

0ðq2Þ ¼ 1; ξ ∈ ½0; 1�, leads to a 10%
reduction of Mξ¼1ð0Þ in the Feynman gauge and to almost
no variation of Mξ¼0ðp2Þ in the Landau gauge. Neglecting

Xξ
0ðq2Þ does not qualitatively alter our results; in particular

our conclusions about the quark condensate remain the
same.
We also illustrate the gauge-variation impact on the

strength of the quark-gluon vertex in Fig. 4 with the form
factors λξ1ðk; pÞ and λξ3ðk; pÞ obtained in the symmetric
limit k ¼ −p and with the solutions forMξðp2Þ and Zξðp2Þ
in Fig. 2. Both form factors are enhanced, though this is
more so the case for λξ3ð−p; pÞ. The latter is proportional to
the mass function Bξðp2Þ whose variation with ξ is more
prominent.

FIG. 3. Increasing and decreasing dependence of the mass
function Mξð0Þ and wave renormalization Zξð0Þ, respectively, on
the gauge parameter ξ.

FIG. 4. The form factors λξ1ð−p; pÞ and λξ3ð−p; pÞ as functions of the gauge parameter ξ, obtained with Eqs. (7) and (9) in the
symmetric limit k ¼ −p. Note that the dimensionless quantity pλξ3 is plotted.

JOSÉ ROBERTO LESSA et al. PHYS. REV. D 107, 074017 (2023)

074017-6



B. Quark condensate and gauge invariance

As a practical application, we calculate the quark
condensate which is an order parameter for DCSB and
was shown to be a manifestly gauge-invariant quantity in
any SUðNÞ theory using the generalized LKFT (ABG)
transformations [20]:

−hq̄qi0ξ ≡ Z4Nc

Z
Λ d4k
ð2πÞ4 trD½S

0
ξðkÞ�: ð27Þ

To this end, we obtain Mξðp2Þ and Zξðp2Þ in the limit
mðμÞ → 0 with which we compute ð−hq̄qi0ξÞ1=3 as a
function of ξ. The result is presented in Fig. 5, where
the central value exhibits a moderate dependence on ξ, i.e.,
a maximum deviation from the Landau-gauge value of 7%
for ξ≳ 0.3 after which its dependence on ξ appears to
become milder. The green-shaded band depicts an error
estimate due to the statistical error of �10% of the gluon
propagator. This is because the lattice calculations of the
gluon propagator in Rξ gauges were performed using
smaller physical volumes, V ≃ ð3.2 fmÞ4, and smaller
gauge ensembles than for the ghost propagator for which
the fit reproduces the simulation results in a large physical
volume, V ≃ ð8.1 fmÞ4, and with an ensemble of gauge
configurations that is about three times larger. Therefore,
the main error source is due to the gluon propagator and we
neglect a statistical error associated with the ghost.
Our error estimate only enters via the transverse part of

the gluon propagator (2), yet with increasing values of the
gauge parameter the contribution of the longitudinal
component is more important. This is the reason why
the error band is wider in Landau gauge and narrows
towards the Feynman gauge. We did not include the
uncertainty of the strong coupling (26) and the systematic

error due to our treatment of the nonlocal four-point
functions in the TSTI.

IV. FINAL REMARKS

We have calculated the quark propagator’s dependence
on the gauge parameter ξ in covariant gauges. It turns out
that the gluon propagator parameterization and Mξð0Þ can
be fitted with linear functions of ξ within the gauge-
parameter interval, ξ ∈ ½0; 0.5�, while Zξð0Þ decreases in
a proportionate manner. Furthermore, the strength of the
quark-gluon interaction increases with ξ which illustrates
the gauge dependence of the quark dynamics. Having
said that, studying the local gauge transformation of
the nonperturbative quark propagator directly from its
solution in a given gauge is illuminating, as were similar
QED3 studies [28] that explicitly demonstrated the
gauge independence of the fermion condensate. Both the
Nielsen identities and the generalized LKFTs (ABG and
MDSDB) [20–23] formally provide the basis for this
endeavor. However, it is not a straightforward exercise
in QCD, even at the perturbative level [47].
While Green functions are not physical observables, they

are essential objects for the elucidation and understanding
of strong interactions. They enter each and every hadron
observable computed from QCD’s elementary degrees of
freedom, namely quarks and gluons (and ghosts within
covariant gauges). How the dependence on ξ is washed out
in the building of physical observables is a nontrivial
problem that constrains the truncated kernels of Bethe-
Salpeter and Faddeev equations and deserves further
attention. The quark mass function inserted in a bound-
state equation conspires with an intricate interaction kernel
involving quarks and gluons at all energy scales in a
manner that preserves the axial vector Ward-Takahashi
identity in addition to all other gauge identities and trans-
formations mentioned in the text in detail, yielding gauge-
independent physical observables. Any variation of these
observables with the gauge parameter is a measure of our
departure from the full implementation of the generalized
LKFT and the Nielsen identities.
Our analysis of the DSE relies on the dressed vertex (6)

described by form factors λξi ðk; pÞ and τξi ðk; pÞ, which
are plotted for ξ ¼ 0 in Ref. [37] and show to be in
reasonable agreement with those obtained in lattice QCD
simulations [48]. We are thus encouraged by our explor-
atory study on the gauge dependence of the quark propa-
gator, as they provide a valuable initial step in the numerical
representation of the generalized LKFT and Nielsen iden-
tities in QCD despite the current limitations. However,
further efforts must be made to include all Xξ

i ðk; pÞ form
factors of the quark-ghost scattering amplitude, along
with their angular dependence, to derive a true analytic
expression for the four-point function in the TSTI and to
explore the dependence on these hitherto ignored features
in the current analysis.

FIG. 5. Gauge dependence of the quark condensate. The
horizontal pink-shaded band indicates the admissible region of
a gauge-independent chiral quark condensate as implied by the
LKFT in QCD.
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