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Abstract

Significance: The expansion of functional near-infrared spectroscopy (fNIRS) methodology and
analysis tools gives rise to various design and analytical decisions that researchers have to make.
Several recent efforts have developed guidelines for preprocessing, analyzing, and reporting
practices. For the planning stage of fNIRS studies, similar guidance is desirable. Study prereg-
istration helps researchers to transparently document study protocols before conducting the
study, including materials, methods, and analyses, and thus, others to verify, understand, and
reproduce a study. Preregistration can thus serve as a useful tool for transparent, careful, and
comprehensive fNIRS study design.

Aim: We aim to create a guide on the design and analysis steps involved in fNIRS studies and
to provide a preregistration template specified for fNIRS studies.

Approach: The presented preregistration guide has a strong focus on fNIRS specific require-
ments, and the associated template provides examples based on continuous-wave (CW) fNIRS
studies conducted in humans. These can, however, be extended to other types of fNIRS studies.

Results: On a step-by-step basis, we walk the fNIRS user through key methodological and
analysis-related aspects central to a comprehensive fNIRS study design. These include items
specific to the design of CW, task-based fNIRS studies, but also sections that are of general
importance, including an in-depth elaboration on sample size planning.

Conclusions: Our guide introduces these open science tools to the fNIRS community, providing
researchers with an overview of key design aspects and specification recommendations for com-
prehensive study planning. As such it can be used as a template to preregister fNIRS studies or
merely as a tool for transparent fNIRS study design.
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1 Introduction

The design and analysis of hemodynamic brain-imaging studies encompasses many degrees of
freedom in terms of parameter choices for data acquisition, preprocessing, and analysis.1,2

Replicability and reproducibility issues due to undisclosed analytical flexibility have been
intensively discussed and demonstrated for several brain imaging techniques, including hemo-
dynamic functional magnetic resonance imaging (fMRI)3–5 and electroencephalography.6,7

Similarly, the impact of different design and analytical choices in functional near-infrared spec-
troscopy (fNIRS) research has recently been a focus.8,9 When undisclosed, these bear the risk of
questionable research practices (QRPs) and may imperil the reproducibility and replicability of
published results.10 Addressing these widely pervasive concerns requires adopting transparent
study designs, reporting, and other highly encouraged open-research practices that researchers
across fields have developed. These include sharing materials, data, and code, releasing openly
accessible preprints, and publishing a preregistration protocol.11–14,15 In particular, study prereg-
istration has been recently highlighted as an important best practice tool for functional neuro-
imaging,3–6,16,17 including fNIRS research.18–20 However, drafting a preregistration protocol can
feel especially daunting for beginners as it requires formulating a detailed a priori study and
analysis plan,14,21 especially in a field with frequent methodological and technical advances that
make any attempt to standardize procedures challenging.

Preregistration protocols are time-stamped documents in which researchers specify their
hypotheses and plans for data collection, preprocessing, and analysis typically before data col-
lection starts.13,22 This procedure allows for transparency regarding which aspects of the study
were decided before (i.e., planned) or after (i.e., post-hoc) data collection and, thus, evaluating
where the study falls on the spectrum between confirmatory and exploratory research (Fig. 1).
Preregistration is expected to effectively prevent undisclosed analytical flexibility, including
(unintentional) p-hacking, cherry-picking of results, and certain forms of hypothesizing after
the results are known (HARKing).10,24–28 Preregistrations are made publicly available before
data collection or can be embargoed for a specific period of time on websites such as the
Open Science Framework (OSF; osf.io). An even more compelling variant of preregistration
is a Registered Report, which in its essence is a peer-reviewed preregistration with in-principle
acceptance. This publishing format is increasingly offered at peer-reviewed journals29 (or inde-
pendent of journals, e.g., Peer Community In Registered Reports30) and involves an initial stage
1 peer review based on the proposed methodology, hypotheses, analysis, and sampling plan.

Fig. 1 Overview of continuum between mostly intuition based (i.e., rather exploratory) and mostly
theory based (i.e., rather confirmatory) analyses and their relation to study preregistration and
Registered Reports.23
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Successful submissions are accepted-in-principle before the research is conducted and irrespec-
tive of the study’s outcome. Registered Reports are published following a final stage 2 peer
review to assess whether the research was conducted according to the preregistered research
protocol. Thereby, the format aims to mitigate researcher and publication biases.

The first meta-analyses of preregistered research showed that reported effect size estimates
are indeed substantially smaller,31,32 while the proportion of reported non-significant results14,33

is substantially larger than those reported for non-preregistered research. Taken together, these
findings may indicate that the process mitigates publication bias and other QRPs that inflate
effect sizes and result in false positive findings. Thus, it has been advocated that preregistration
benefits both the scientist directly and the field more broadly.13,14,22,27,34 For example, prereg-
istration can be a planning process to help researchers and their collaborators think through
decisions in advance in a structured way as the process involves documenting hypotheses before
the data were seen (i.e., a priori) and designing analysis and sampling plans accordingly. It can
thereby protect the researcher from implicit biases that may arise during data analysis (e.g.,
incorrectly recalling that the only significant effect is the one that was originally predicted).
In fNIRS research, several recent efforts have been made to develop guidelines for preprocessing
and analyzing fNIRS data,9,35,36 as well as for reporting practices.19 Similar guidance would be
desirable for the planning stage of an fNIRS experiment. For the field, preregistration is a trans-
parency tool that allows others to verify, understand, and reproduce a study. It can thereby
increase the perceived quality of research and may also enhance the trust that researchers have
in both their own and others’ research.14,21,27,37,38

To make the task of writing a preregistration protocol more tractable, proponents of open
science have developed guides, checklists, and templates to facilitate transparent study design,
preregistration, and reporting for various types of research including neuroimaging.7,39–45 For
fNIRS research, however, no similar resources exist yet, and they are highly desired.18

In what follows, we share and discuss a comprehensive preregistration guide and template
for continuous-wave (CW), task-based fNIRS experiments that were developed following the
2021 hybrid fNIRS summer school hosted by the University of Tübingen.46 Specifically, this
preregistration guide walks the fNIRS user through specific design and analysis considerations.
Further, we adapted and extended the previously established psychological research preregis-
tration-quantitative template34 toward fNIRS research-specific needs, which are elaborated in
the respective sections. For a better illustration, we provide examples and link the corresponding
text sections below to the items of the adapted preregistration template. We note that the exam-
ples may also include technical details, which should not be considered to be recommendations
regarding fNIRS methodology itself but are only included to exemplify the desired level of detail
for respective preregistration items. The preregistration template file can be accessed via an OSF
project page,55 and readers are welcome to contribute for future extensions.

We further wish to highlight that the overall goal of preregistration is to maximize transpar-
ency as much as possible, not to write the perfect and most complete preregistration. For some
researchers, especially those who write their first preregistration or who conduct their first fNIRS
study, this may mean that they may only be able to fill in details for those sections of the pre-
registration template that are most addressable for the current study, while stating explicitly for
which sections sufficient knowledge about study details at the point of conceptualization is still
lacking. Others may choose not to submit a preregistration at all, but instead to use this guide and
the template as a tool for designing an fNIRS study. Although we encourage researchers to
publish preregistrations of their fNIRS studies whenever possible, we have attempted to make
this template useful for those who wish to do either. For researchers who are still hesitant to
preregister, we discuss some common concerns and suggestions for potential solutions in
Fig. 2. Further, we note that, although this guide and the associated template were created with
the aim to assist researchers in designing their fNIRS studies, they can also support evaluating
these (e.g., as part of a literature search, systematic review, or manuscript submission review
process).

Finally, we note that with recent optical engineering and methodological advances, there is an
increasing demand for new analytic methodologies and procedures.56 This bears one particular
preregistration concern relevant for fNIRS: with regards to preprocessing and data analysis,
it may be possible that approaches considered state-of-the-art at the time of preregistration may
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seem somewhat outdated at a later study phase. This possibility can be daunting for fNIRS
researchers generally and for beginners in the field in particular. However, it can be mitigated
when researchers disclose and justify methodological deviations from the preregistered protocol
in the final manuscript or report updated analyses in addition to the preregistered analyses.

2 Step-by-Step fNIRS Study Design

In the following, we provide a comprehensive step-by-step preregistration guide for transparent
fNIRS study design as shown in Fig. 3. The guide covers all steps from generating a study
idea (cf., Sec. 2.1) to publishing research outcomes, including open access to data and code
(cf., Sec. 2.6), the corresponding items of the complementary preregistration template are
referenced. It aims to aid researchers getting started with preregistering an fNIRS study.

Fig. 2 Common preregistration concerns and potential solutions.14,15,47–54 Those indexed by “*”
have recently been identified in a survey conducted with researchers working in the field of func-
tional neuroimaging.21
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2.1 Study Idea

The idea of a study comes first. To conceptualize a new study, researchers conventionally start
with reviewing what is already known, i.e., they build up background knowledge (based on
existing literature). This process is ideally guided by genuine interest and allows researchers
to identify knowledge gaps. To fill in such a gap requires a specific study motivation (“Why
is it important to address this problem?”) and a justification (“Why is fNIRS an appropriate
method for this study?”). Researchers should consider the possible scope of their study: ideally,
the study should tell a specific story; otherwise, if the scope goes beyond a single story, it will
likely require defining a set of experiments or even a whole research program on this topic.
Importantly, in addition to original empirical and replication studies, researchers can also
preregister methodological studies (e.g., comparison of different motion artifact correction
algorithms), exploratory studies,47 or secondary analyses of existing data sets.40,57

The motivation and justification for a study provide its rationale. They lay the groundwork
for formulating research questions and generating hypotheses based on theory and previous find-
ings. Thereby, preregistration allows for evaluation of whether a research question and analysis is
rather confirmatory (i.e., mostly theory-based) or rather exploratory (i.e., mostly intuition-based)
as shown in Fig. 1.26 In confirmatory research, hypotheses are defined in advance to test a
specific relation between the variables (e.g., activation in area A is larger in condition C1 than
C2). Confirmatory hypotheses are the basis of designing a sampling and analysis plan (whereas
post-hoc exploratory analyses can follow confirmatory analyses). In exploratory research, open
questions or hypotheses with alternative outcomes under different assumptions can be stated.47

It is worth noting, however, that exploratory analyses can also be planned and preregistered.
Preregistration templates vary in the extent to which the study idea, theoretical background, and

previous results need to be articulated. We recommend providing sufficient theoretical information to
comprehend the study’s goals and the adequacy of investigating the research question with fNIRS.

Preregistration template item(s): T1, T9, I1/A1, I2/A2, I3, and I4.

2.2 Methods

2.2.1 Study design

The study design includes within-subject factors (e.g., different conditions in a cognitive or
motor task) and, where applicable, between-subject factors (e.g., different groups such as

Fig. 3 Overview of the fNIRS study design guide structure.
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patients and healthy controls or different training groups). fNIRS will be measured during a
certain task (e.g., task-related activation or intervention-induced activation changes) or during rest
(e.g., resting-state activation or functional connectivity). For a given task, the effect of interest
should be operationalized as the difference between conditions of interest (see Box 2 in Ref. 58).
Additionally, control variables (e.g., tests and questionnaires) and localizer tasks can be considered.

Task-based conditions are usually presented in a block design, an event-related design, or a
mixed block/event-related design. The number of blocks/trials, the duration between the blocks/
trials, and the order of trials/blocks determine the signal-to-noise ratio (SNR). These parameters
can be explicitly stated in a preregistration, for example: “In this study, a block design of 10
blocks per condition was presented in a fixed order with a duration of 15 s and a corresponding
jittered inter-block-interval of 20 to 23 s.” or “In this study, an event-related design was realized
with 30 trials per condition in a randomized order with a duration of 2 s and a jittered inter-
trial-interval of 10 to 15 s.” or “In this study, a rapid event-related design was realized with
15 trials per condition presented in a randomized order with a duration of 5 s and a jittered
inter-trial-interval of 2 to 3.5 s.”

Preregistration template item(s): A4, M11, M12, M14, and M15

2.2.2 Sample characteristics

A preregistration specifies the characteristics of the sample. This includes brief information
about the type of sample that will be recruited (e.g., healthy population, specific clinical pop-
ulation, specific age group, etc.). These details are relevant as they may impact any behavioral
but also fNIRS effects, e.g., due to atrophic processes or changes in hemodynamics that are
related to aging or a pathological condition. If the sample is divided into groups, objective
criteria or randomization procedures should be defined. Possible confounders inherent to groups
and how to address these (e.g., motion artifacts in children versus adolescents or patients versus
healthy controls) should be considered. For instance, sample characteristics such as age or
clinical status may impact fNIRS data analysis plans.19,59,60

An fNIRS preregistration should further specify study-specific inclusion and exclusion
criteria in accordance with the study’s ethical review board. Basic demographic information
should be collected and reported, if possible (e.g., age, gender, ethnicity, head size, hair color,
absence of hair, and skin pigmentation). Although including health information is likely inform-
ative and encouraged, sharing such information should be done with care to prevent harming the
privacy and data protection of participants, who must remain anonymous. In cases in which
sharing sensitive data is not required or adequate, such personal data may still be relevant for
screening exclusion criteria. If sample characteristics are relevant for the purpose of the study,
this should be apparent in the hypotheses.

NIR light transmission is affected by optical properties such as skin pigmentation, hair thick-
ness, and cortical thickness. The impact and correction of racial bias in fNIRS and other oxygen-
based measurements is an open topic that still needs further evaluation.61–64 Researchers should
be aware of this discussion and weigh the possible benefits of inclusive study designs (e.g., better
generalizability, the possibility to include moderators in a large sample) against less inclusive
designs (e.g., the possibility of a better signal quality) along with ethical considerations.

Preregistration template item(s): AP1-AP3 and M12

2.2.3 Sample size planning

The sample size (i.e., the final number of individuals included in a study) should be determined
in the study design phase as it is crucial for answering the research question. Justifying the choice
of sample sizes is essential in an adequate study design as it provides transparency about the
criterion used to determine when data collection is completed.65,66 Ideally, justifications should
account for potential drop-out and data censoring (e.g., due to compromised/missing data or
behavioral performance). Data drop-out/censoring may be considerable for fNIRS research,
depending on the context (e.g., for clinical or infant studies).

Transparent sample size justifications are pivotal to allow for evaluating the precision and
hence robustness of effects that a study is trying to detect. Different justification procedures exist:
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conducting an a priori power or sensitivity analysis is conventionally recommended as best
practice for confirmatory research when employing inferential statistics.3 In reality, however,
sampling plans may often be determined by external factors such as resource constraints
(e.g., time, funding or sample characteristics), which reflect another, albeit limited, justification
for sample size.65 Often resource constraints and heuristics result in too small sample sizes,
leading to lower statistical power and thus over or underestimation of true effects due to impre-
cision in the outcome estimate. This is why small studies, in particular, are more likely to yield
outcome estimates that are not as reliable and should thus not be a basis for future sample size
calculations.67 Further, in the presence of publication bias, they can contribute to inflated effect
size estimates in the literature.68

Putting a priori hypotheses to a fair confirmatory test requires sample size estimations that
are informed by an adequate statistical power analysis based on realistic or relevant effect size
assumptions.29 Statistical power describes the probability that a certain effect (size) can be
detected, assuming that it exists. All relevant details of sample size estimation should be reported
(i.e., assumed or targeted effect size, statistical model, assumptions on correlational designs,
and inferential parameters) in sufficient detail such that a power analysis can be reproduced.
Alternatively, Bayesian sequential sampling plans allow for flexible stopping once a predefined
evidence threshold in the form of a parameter estimate, or Bayes factor (following a Bayes factor
design analysis), is reached (see for example Ref. 67). They should be informed by a Bayesian
sensitivity analysis, which also relies on specifying an expected effect under the alternative (and
null) hypothesis. Further, they take into account the uncertainty around this point estimate via the
use of a prior distribution that covers a range of plausible effect sizes.69,70 Although Bayesian
approaches are far less used, they offer the main advantages that they are more resource efficient
and allow for sampling until sufficient evidence for the absence of an effect is accumulated.69,70

Bayesian sampling plans should be reported in sufficient detail, including the assumed effect
size, prior distribution, and stopping criterion in the form of a posterior interval or Bayes factor
for the alternative and null hypotheses.71,72

Frequentist and Bayesian sample size estimations both require specifying a minimum effect
size that the used statistical test aims to detect with a specific power or sensitivity, respectively.
Several open-source tools are available for power analysis computations (see Table 1).
Researchers should provide a rationale for the effect size estimate that is included in their power
or sensitivity analysis. Desired power or sensitivity thresholds are commonly set to 80% or 90%,
depending on the field and context. Importantly, the relationship between the targeted effect size
and its corresponding sample size and statistical power is curve shaped.86 Thus, for instance,
even small deviations between targeted versus observed effect sizes may result in a substantial
loss of statistical power. Traditionally, effect size estimates are drawn from previous, comparable
research. For example, if a previous published fNIRS study reported a medium effect size of
f ¼ 0.25 for interpersonal brain synchronization,87 with an acceptable power of 1 − b ¼ 0.8 and
a significance level of 0.05, replication of the effect in a paired samples t-test of HbO mean
amplitude in the predefined region of interest (ROI) would require n ¼ 34 participants. For more
complicated tests that might include interaction terms with other factors such as hemisphere,
channels, other ROIs, or conditions, it can be expedient to model the expected pattern of
results73; see M3 for an example with annotated R code. However, we advise caution with this
approach given the concerns described in the next paragraph. We further note that, in principle,
results from fMRI could also inform about the range of an anticipated effect size. However, the
sensitivity of fNIRS to deeper cortical regions is usually weaker and depends on the probe as
well as on other system and design characteristics such as the SNR and experimental design. We
are not aware of current standards for power analysis in fNIRS research and warrant that effect
sizes will be different for specific populations (adults, children, patient populations), for different
setups (e.g., fNIRS versus diffuse optical tomography), and parameters implied in experimental
design (e.g., different inter-stimulus intervals in event-related design88). If an effect size estimate
is available, researchers should specify the dependent variable [e.g., measure in the ROI/
channel(s)], clearly report the statistical model and effect of interest for the sample size justi-
fication (e.g., the main effect in a 2 × 2 mixed design) and the implicated type I and type II error
rates, as well as possible correction methods.
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Further, researchers should take into account that effect sizes reported in non-preregistered
studies and meta-analyses—in particular those that report significant findings—are more likely
to be affected by publication bias, small sample sizes, and researcher bias, and they thus more
likely overestimate true effect sizes. For instance, recent meta-research found overestimations of
a factor of two to three when compared with preregistered research.31,32,68 It is thus recom-
mended to either adjust for potential inflation in reported effect size estimates89 or refer exclu-
sively to literature that is unlikely to be affected by publication bias and is sufficiently powered
(e.g., meta-analyses based on Registered Reports and sufficiently large samples with high pre-
cision in reported effect size estimates).

Alternatively, an effect size of interest without prior empirical results could be also the small-
est effect size of interest (SESOI), which expresses the smallest relevant effect that the research-
ers care about (e.g., clinical significance and theoretical implication65). Researchers should
justify their choice of SESOI and may use anchors specific to their research question. For
instance, when powering for group or condition differences, other measures (e.g., clinical or
behavioral) can be used as an anchor for a SESOI. To provide an example from clinical research,
for instance, it has been estimated that improvements in depressive symptoms may need to
exceed a standardized mean difference (SMD) of at least 0.24 to be considered a clinically mean-
ingful change. If the goal of fNIRS recordings in the context of a depression trial is to detect
accompanying hemodynamic correlates as a potential biomarker that can indicate clinically
relevant improvements of depressive symptoms, the SESOI for hypothesized hemodynamic
changes assessed by fNIRS should be at least SMD ¼ 0.2490 to be sufficiently sensitive and
thus informative. An alternative anchor for SESOIs of hemodynamic effects may be effect sizes
that are observed for behavioral effects. For instance, rates of anticipated non-responders (e.g.,
percentages of successful trials) can inform the lower effect size boundary. Using sampling plans

Table 1 Open-source tools to conduct power and sensitivity analyses.

Name Description Link

InteractionPoweR R library for power analysis of interaction effects. https://github.com/dbaranger/
InteractionPoweR

ANOVA power shiny
app73

Monte Carlo simulations of factorial experimental
designs to estimate power for an ANOVA and
follow-up pairwise comparisons.

Ref. 74

Brainpower List with tools for power analyses, in particular for
fMRI studies.

Ref. 75

Bayes factor design
analysis69,70

R library to conduct Bayesian sensitivity
analyses and sampling plans.

https://github.com/nicebread/
BFDA

Superpower E-book, R library, and Shiny apps for power
analysis in factorial experimental designs.

Ref. 76

Jamovi77 Open-source software to conduct informative
power and sensitivity analyses for t -test family
(jpower plugin), including power curve
illustrations.68

Ref. 78

G*power79,80 Widely used open-source software to conduct
power and sensitivity analyses for commonly
used statistical tests and more advanced
statistical models.

Ref. 81

pwr R library for commonly used statistical tests. Ref. 82

More Power GUI for commonly used statistical tests andmore
advanced statistical models.

Ref. 83

SampleSizePlanner84 R library for different sample size planning
strategies and shiny app

Ref. 85
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that are based on SESOIs, it is more likely to detect meaningful effects. Moreover, in the case of
non-significant/inconclusive results, they are more likely to yield evidence for the absence of an
effect through follow-up equivalence tests (or their Bayesian equivalent) that allow for rejecting
the alternative hypothesis.48–92 In the context of hemodynamic brain imaging, such equivalence
tests have been recently discussed for fMRI applications.93

Sample size planning of any form described above should be done at least for the primary
outcome measures used for the critical hypothesis test of a study. In case other tests are also
planned (e.g., secondary outcomes and manipulation checks), researchers are free to calculate and
report multiple sample size estimations and determine the most conservative sample size estimate.

To assist researchers in performing adequate sample size planning, we provide an overview
of open-source software tools (cf., Table 1).

Preregistration template item(s): M3 and AP8

2.2.4 Instrumentation

In general, a detailed description of the fNIRS device including the name of the system and the
manufacturer should be provided. Further, the specific fNIRS optode placement settings are
determined by the used fNIRS device and to a lesser extent by several researcher decisions.
For instance, different options for attaching the optodes to a head cap (e.g., within an
fNIRS cap or a headband, self-printed) exist and should be reported. Moreover, the type and
number of sources (i.e., LED versus laser), detectors (i.e., silicon photodiode versus avalanche
photodiode), and short-distance detectors, including the corresponding source-detector distances
(e.g., ∼3 cm for long-separation channels and ∼0.8 cm for short-separation channels for
adults94), should be documented. If planned, auxiliary measurements integrated into the head
cap (e.g., accelerometer) and peripheral physiological measurements (e.g., blood pressure,
electrocardiogram, and plethysmography) should be documented together with a motivation for
their recording [e.g., as nuisance regressors in the general linear model (GLM)]. If any additional
measurements [e.g., electroencephalography (EEG), eye-tracking, and transcranial electric
stimulation] will be taken during the experiment, the preregistration should include how the
data across different measurement devices will be synchronized (e.g., via lab-streaming layer).

Preregistration template item(s): M9 and M10

2.2.5 Optode array design and optode placement

fNIRS recordings are limited to superficial cortical layers with a spatial resolution of around 2 to
3 cm and a penetration depth of around 1.5 to 2 cm into the cerebral cortex.36,56,95 Cortical brain
activity is measured by fNIRS from the brain area over which the optodes (i.e., sources and
detectors) are placed. Of note, the distance between optodes and underlying brain regions may
be variable, depending on the brain region that is targeted, and the amount of extra-cerebral tissue
present between the optode and the respective cortical area. In addition, optode placement at a
certain ROI can be challenging due to lacking anatomical information. Accordingly, designing
an optode array (i.e., optode arrangement) in relation to anatomical landmarks and/or standard-
ized locations (e.g., 10 to 20 EEG locations96,97) is essential for every fNIRS study to enhance
reproducibility and replicability. It is noteworthy, however, that the position of channels relative
to the scalp can also be variable between setups or even recording sessions.98,99 From a practical
point of view, any arrangements for reducing potential discomfort of the participant caused by
scalp-optode contact (e.g., different spring holder pressures) and additional materials used during
participant preparation (e.g., use of a cotton swab to move the hair away, use of a light-shielding
overcap) should be reported.

The most accurate optode array design results from individual anatomical information in
combination with individual 3D optode coordinates that are obtained by digitization, photogram-
metry-based,100–102 and neuronavigation tools.103–105 The precision of this procedure can be
further improved by incorporating functional MRI data of the same participant or based on a
probabilistic approach.89 If such procedures are anticipated, the applied tools or the performed
custom-made steps for the co-registration should be reported. Alternatively, procedures that
allow for the design of an optode array with respect to anatomical landmarks (e.g., nasion, inion,

Schroeder et al.: Using preregistration as a tool for transparent fNIRS study design

Neurophotonics 023515-9 Apr–Jun 2023 • Vol. 10(2)



and left and right preauricular points) and to the standard EEG 10 to 20 positions96,97 are often
applied. For this purpose, several software tools have been invented and validated by the fNIRS
community [e.g., AtlasViewer,106 Array Designer,107 fNIRS optode location designer (fOLD),108

dev-fOLD,109 modular optode configuration analyzer (MOCA),110 and simple and timely optode
registration method for functional near-infrared spectroscopy (STORM-Net)111].

In addition to the applied software, the used settings such as the brain parcellation atlas
(e.g., AAL2112,113 and Brodmann114), the basis of anatomical landmarks (e.g., 10–20, 10–10,
and 10–5 positions96,97), and the employed head model (e.g., Colin27115 and SPM12116) should
be specified in the preregistration. Moreover, the software-specific input parameters and settings
for the probe design should be documented in as much detail as necessary to be reproducible.
For example, fOLD108 allows for settings such as brain atlas, the basis of anatomical landmarks,
probe symmetry, and level of specificity (%) that are all necessary to reconstruct the optode array.

Preregistration template item(s): M10 and M13

2.3 Analysis Plan

2.3.1 Data exclusion criteria

After data collection and before starting data analysis, the quality of the data needs to be ensured.
To ensure sufficient fNIRS data quality, it is important to avoid the inclusion of channels with a
poor signal quality. These often result from light instabilities due to poor optode-scalp cou-
pling,117,118 which can influence the subsequent preprocessing steps. Therefore, the preregistra-
tion should define criteria for signal quality evaluation and data exclusion at the trial, channel
(so-called pruning), and participant levels. The quality of the fNIRS signal, for example, can be
evaluated by specific calculations (e.g., SNR, coefficient of variation,119 contrast-to-noise ratio,
and scalp coupling index19,120) applied on a certain type of fNIRS data (raw density, optical
density, or concentration data). Exclusion criteria should specify the critical measure (i.e., thresh-
old value or qualitative measure), the type of exclusion (i.e., listwise versus casewise), and the
level of exclusion (i.e., participant, channel, or trial). For example, studies might exclude chan-
nels with an SNR below 15 dB,121 participants with <50% usable channels,122 missing data or
invalid cap placement,123 or trials based on incorrectly solved trials.124

Defining data exclusion criteria a priorimay be challenging and is highly dependent on prior
knowledge, making it particularly difficult for researchers new to fNIRS. This challenge can be
overcome by performing initial pilot experiments that allow for the specification or change of
values. Moreover, hemodynamic data exclusion criteria can be deduced from comparable fNIRS
setups (when using identical fNIRS systems). Further, behavioral data exclusion criteria can be
retrieved from basic studies with comparable tasks.

Preregistration template item(s): M7

2.3.2 Data Preprocessing

An important step in fNIRS studies is the preprocessing of the data as one major issue of fNIRS
measurements is the contamination with different noise components that are either related to
motion (e.g., signal quality and motion artifacts117,118,125) or to systemic physiology (e.g., evoked
and non-evoked cerebral and extracerebral systemic confounds.36,126 These artifacts constrain
the main goal of task-related fNIRS research, namely, to restore the underlying hemodynamic
response to a certain task.

Most of the preprocessing steps, are complex and different parameter selection and/or differ-
ent orders of the applied preprocessing steps might lead to different results and thus to different
interpretations of the data.8,127,128 For instance, some parameters might be device-specific (e.g.,
sampling rate, but also measurement units and scales) and should be interpreted relative to the
technical setup. Furthermore, the implementation and parameters of similar preprocessing steps
may vary slightly between different fNIRS analysis toolboxes; therefore, the used toolbox should
be stated in preregistration protocols. We refer to other resources for an overview of existing
fNIRS analysis toolboxes.36,129–131

As a result, researchers might adapt their preprocessing pipeline until they find the desired
effect, which can increase type I error rates (i.e., the risk for false positive findings).7,132
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To prevent results-based analytic decisions, the decisions regarding data preprocessing should be
transparently documented a priori and ideally in a specific, precise, and exhaustive way.7,24

Accordingly, the preregistration of fNIRS data analysis steps should provide all details that are
necessary to reproduce the whole pipeline without seeing any of the code (i.e., specific) so that
each step is only interpretable in one direction (i.e., precise) without the possibility of changing
the options, for instance, after seeing the collected data (i.e., exhaustive).

However, we agree that data-driven approaches to adjust, for instance, specific parameters
necessary for a preprocessing step are important as those can differ between studies and depend
on the data. For instance, parameter tuning for motion artifact detection might differ between
participants, instruments, and brain regions.133 Accordingly, it is highly recommended to run a
pilot study on which these decisions can be based.7 A pilot study can help to estimate the fea-
sibility of the chosen parameters or algorithms, verify activation in ROIs, and test the pipeline
for possible errors. Alternatively, certain preprocessing steps can be tested on similar data from
existing open datasets, emphasizing the importance of data and code sharing (see section Sec. 2.6).

In the following sections, we focus on the main and, in most cases, absolute necessary
preprocessing steps in CW-fNIRS research. We appreciate that there are other fNIRS systems
(e.g., time domain NIRS and frequency domain NIRS), experimental setups, and designs that
might require preprocessing steps that can differ from the ones mentioned here. However, by
controlling whether the documentation of the steps is specific, precise, and exhaustive, finding
the correct way of accurately documenting them should be straightforward.

Modified Beer–Lambert law. CW-fNIRS cannot directly measure absolute values of
hemoglobin concentration due to its inability to determine the optical properties of the under-
lying tissues, for instance, the amount of absorbed and scattered light.36 Instead, it uses the modi-
fied Beer–Lambert law (mBLL) to calculate hemoglobin concentration changes, taking together
the linear relationship between the optical density (i.e., how much light survives the path from
the source to the detector) and the concentration of a medium and the assumption of constant
light scattering.

However, the mBLL depends on several parameters that should be determined beforehand,
such as the wavelength-dependent differential pathlength factors (DPFs) and the molar extinction
coefficients. First, as DPFs, a fixed or an age-adjusted value can be chosen.134,135 Alternatively,
a partial pathlength factor (PPF134,135), which corrects for the effective pathlength of the brain-
relevant tissue instead of the pathlength through all tissues, can be used. If a default value of
DPF/PPF is used, this should be mentioned accordingly (e.g., DPF = 6 as in the HomER2/
HomER3 software136 or PPF = 0.1 as in the NIRS Brain AnalyzIR toolbox137 or HomER2/
HomER3136,137). Second, tabularized molar extinction coefficients are typically applied in the
mBLL. For more information about the mBLL, see for instance Refs. 36, 56, 134, 135, and 137.

Motion artifact correction. Motion artifacts in the fNIRS time courses result mostly from
optode-scalp decoupling and/or head movement. These artifacts are typically characterized by
spikes and baseline shifts in the fNIRS signal133 and, if not properly corrected, can highly decrease
the reliability of the underlying hemodynamic response. There are several motion artifact correc-
tion algorithms available,60,133,138,139 and these can be split into two categories: (1) algorithms that
rely on a prior motion artifact detection step and (2) algorithms that need no extra step for motion
artifact detection. However, in both cases, most of the algorithms require parameter tuning.

Accordingly, in the case of (1), the motion artifact detection procedure and all respective param-
eters and thresholds should be reported (e.g., a motion artifact was defined as present if a signal
exceeded the M � X times SD). For both (1) and (2), the correction method including all param-
eters and/or corresponding thresholds should be documented (e.g., a filter based on principal com-
ponent analysis that accounted for 85% of the variance in the signal was applied). Further, whether
the choice of thresholds is based on the literature or pilot data should be mentioned.

For possible choices of motion artifact algorithms, see for example Refs. 60, 125, 133, and
138–145.

Filtering. A major part of the noise in the fNIRS signal is related to non-evoked or
spontaneous physiological processes.36,126 The frequency components mainly result from
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heartbeat (∼1 Hz), respiration (∼0.3 Hz), Mayer waves (∼0.1 Hz), and very low frequency
oscillations (∼0.01 to 0.05 Hz).9,36 Depending on the task frequency, i.e., 1/(task period [s] +
rest period [s]), some components can already relatively easily be eliminated by applying a
conventional temporal filter.9 In the preregistration, whether or not a filter will be used should
be noted.

As already recommended by Pinti et al.,9 whether an infinite or finite impulse response
(i.e., infinite impulse response versus finite impulse response) filter will be applied should be
documented, and the filter type itself should be specified (e.g., Butterworth filter and moving-
average filter). Moreover, the filter design (e.g., low-pass, high-pass, or band-pass filter),
cut-off frequencies (e.g., band-pass filter with cut-off frequencies of [0.01, 0.09] Hz) and the
filter order (e.g., a second-order Butterworth filter) should be documented. And finally, it is
important to specify whether a causal [e.g., MATLAB function filter()] or an acausal/zero-phase
filter [e.g., MATLAB function filtfilt()] will be applied.

The process of digital filtering is a complex topic and can be deepened by considering for
instance Refs. 146 and 147. For the specific application on fNIRS data we highly recommend
Ref. 9.

Systemic activity correction. Other signal confounds might result from task-evoked cer-
ebral and extracerebral systemic activity and are thus more difficult to remove. These artifacts
mostly result from changes in the partial pressure of arterial carbon dioxide as well as blood
pressure.36,126 They can mask or mimic hemodynamic activity and hence, if not properly cor-
rected, can result in false negative or false positive results.36,126 Conventional temporal filters fall
short of removing these artifacts because the artifact frequencies can overlap with the task fre-
quency. So far, the most accurate way of removing the extracerebral part of such artifacts is using
the hardware-based solution: short-distance channels (SDCs). SDCs are generated by placing the
source and detector at a distance of <1 cm, and ideally at ∼0.8 cm for adults,94 to capture the
hemodynamic activity from extracerebral tissue only.36,126,148–152 SDC signals can be used for
correcting the regular distance channels, for instance, by applying a regression-based approach.
If no SDCs are available, it is recommended to apply an alternative method to reduce the extrac-
erebral systemic activity.8,19,150,152

In any case, the type of algorithm that will be applied for correction should be documented.
For instance, for a simple regression, it is possible to use the closest SDC, the SDC with the
highest correlation, the average across SDCs, or the first n principal components resulting from
a principal component analysis of all SDCs. How correction will be handled if a number of
SDCs have a poor channel quality should be further noted.

If no SDCs are available for correction, the algorithm and potential algorithm-specific param-
eters should be specified. For instance, if a global signal is computed (e.g., by taking the average
of all channels), it is possible to simply subtract it from each channel or to use it as a regressor
either for simple channel-wise regression or within a GLM framework. If a more advanced
algorithm is applied, for instance, a principal component analysis of all available channels, the
number of principal components (or the amount of explained variance) that are filtered out and
the filter itself (e.g., subtracting, regression-based, and GLM) should be specified.

The topic of systemic activity correction is relatively new and very important for fNIRS
preprocessing; hence, recently it has been much discussed, and methods have been validated
in Refs. 36, 126, 148, and 150–154.

Preregistration template item(s): AP3 and AP4

2.4 Statistical Analysis

Similar to data preprocessing, the many options available for fNIRS statistics lead to analytic
flexibility, and therefore any intended statistical test for confirmatory analysis should be prereg-
istered before data analysis. We hereby differentiate between first-level (i.e., within-subject) and
second-level (i.e., group) analyses. First-level analysis of fNIRS data is typically performed by
block/trial averaging hemoglobin concentration changes over trials of the same condition or by
modeling the signal response with a GLM.9,35,155 The advantage of GLM over block-averaging is
its higher level of statistical power,9 and the possibility of modeling confounding factors along
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with the expected hemodynamic responses (e.g., by adding SDCs as nuisance regressors to
the model).126 The choice of the GLM should be informed by the research context. For instance,
if the shape of the expected HRF is unknown, then performing a block averaging or a GLM-
based deconvolution with multiple Gaussian functions is potentially preferable to performing
a GLM with a fixed HRF shape.156–158 For the second-level analysis, certain variables of the
first-level analysis are chosen (e.g., mean of the block average over a certain time period,
GLM estimates for certain conditions), and inferences are made with appropriate frequentist or
Bayesian statistical tests (e.g., t-test, ANOVA, and mixed models). All chosen methods and
variables should appropriately be reported and justified, and the researcher should clearly specify
on which measured variable the research hypothesis is tested [e.g., oxygenated hemoglobin
(HbO), deoxygenated hemoglobin (HbR), total hemoglobin, and hemoglobin difference].
Reporting of both HbO and HbR in the paper or its supplementary materials is recommended
even if the primary hypotheses refer to only one measure.

To control for researchers’ degrees of freedom, clear and comprehensible guidelines for ana-
lytic decisions are critical. For complex data with numerous interdependent preprocessing steps
the use of analytic decision trees is encouraged (cf., Fig. 4). These define the sequence of analy-
sis steps and decision rules that will be applied, depending on the outcome of a previous analysis
step.13 For example, analytic decision trees may start with quality criteria thresholds, continue
with assumption checks for statistical tests (e.g., parametric versus non-parametric), and follow
with branches for adequate statistical tests, depending on whether respective test assumptions are
met or not (cf., Fig. 4). Analytic decision trees can also be used to specify which follow-up tests
are carried out and for the event of inconclusive findings. Results initially found to be incon-
clusive (often erroneously referred to as null findings) may still be informative if followed up
with frequentist equivalence tests or Bayesian statistics that can provide evidence for the absence
of an effect.48 In general, the results of any analysis should be reported in the final manuscript
irrespective of their outcome.

Regardless of the choice to perform a block average or GLM, all potential analytical options
related to the method should be mentioned in the preregistration. For instance, when performing
a block average, the researcher should specify the variable that will be used for the second-level
analysis (e.g., average over a certain time period, peak, time to peak, slope, area under the curve),
as well as the way of defining this variable and the applied time periods (e.g., time period used
for baseline correction and average over task period). In contrast, when choosing a GLM-based
analysis, the researcher should clearly state not only the variable used for the second-level analy-
sis (e.g., beta values) but also the details about the model: the specific HRF model used including
its parameters (e.g., a double gamma function with τHbO ¼ 0.1; σHbO ¼ 3.0; τHbR ¼ 1.8; and
σHbR ¼ 3),159 the extra nuisance regressors added to the model (e.g., all available HbO and

Fig. 4 Example decision tree for fundamental test choices that are contingent on the data.
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HbR SDCs, accelerometers),150,160 and the method used to solve the GLM (e.g., ordinary least-
squares and autoregressive iteratively reweighted least-squares model).161

Further, when multiple fNIRS channels and measures (e.g., HbO and HbR) are tested simul-
taneously, there is an increased risk of obtaining false positive results. When applying inferential
frequentist statistics, the significance level should be declared (and ideally justified162,163).
Furthermore, adequate correction methods for multiple comparisons should be stated (e.g., false
discovery rate, Holm correction, and Bonferroni correction).35,164–166 To limit the number of
statistical tests performed, researchers may first combine signals across multiple neighboring
channels, yielding a smaller number of ROIs.167 However, this approach requires careful speci-
fication of the methods used to define (1) which channel belongs to which ROI and how was this
defined (cf., Sec. 2.2.5 Optode array design and optode placement) and (2) how the data over
channels belonging to the same ROI are combined (e.g., average, weighted average, the channel
with the highest activity, and the channel with the highest sensitivity based on a localizer task).
For Bayesian statistical approaches, the used prior distributions should be declared (and ideally
be justified168). We further encourage researchers to report descriptive statistics and effect sizes,
and where possible, to use effect sizes that are easy to interpret.169,170 For fNIRS studies
that employ machine-learning methodologies including classifiers, we recommend consulting
respective debates about best practices and the role of study preregistration.171–176

Preregistration template item(s): M13, AP5, AP6, and AP7

2.5 Optional: Exploratory Analyses

During or after data collection and analysis, new research questions and hypotheses may emerge.
We refer to those as post-hoc exploratory analyses, which should be differentiated from planned
exploratory analyses. Preregistration of an fNIRS study lends credibility to a researcher’s
hypothesis-driven analysis plan and distinguishes planned confirmatory from post-hoc explor-
atory analyses. In contrast to confirmatory hypotheses and analyses, post-hoc exploratory
analyses tend to investigate intuitions and ideas that evolve during the research process but did
not primarily guide the research design. By this definition, exploratory analyses have lower
prior odds, leading to a higher rate of false positive findings.177 Overall, unplanned and non-
preregistered exploratory analyses have a characteristic that can inform unspecific theories.178

Reporting of unplanned and non-preregistered exploratory results might therefore potentially
inspire subsequent confirmatory study designs. As such they should be given less weight in
the overall conclusion of the study in which they were investigated and first replicated via in-
dependent, confirmatory testing. Therefore, exploratory analyses need to be labeled explicitly
and differentiated from confirmatory analyses (although some authors argue for purely confirma-
tory scientific research26,179). However, researchers may have exploratory analyses already in
mind at the planning stage, which they can preregister as planned exploratory analyses
(i.e., either as specific analyses or as part of a decision tree under different analysis options/
scenarios/outcomes; cf., Fig. 4), lending them more credibility compared with post-hoc (i.e.,
non-preregistered) exploratory analyses that may be subjected to undisclosed analytical flexi-
bility and QRPs. Of note, preregistration does not preclude transparent, exhaustive post-hoc data
exploitation in the form of multi-verse analyses that can be of particular methodological interest
(e.g., artificial groups, moderators, and alternative data processing strategies2,180).

Preregistration template item(s): AP9

2.6 Data and Code Availability

Sharing data and code is undoubtedly part of open science. In general, open data and code
improve verification and reproducibility of study results, increase citation rates, encourage data
reuse for new research ideas, and are therefore increasingly part of research policies of public
funders, ethical committees, and scientific journals.181–183 With regards to preregistration,
we specifically encourage data and code sharing as a source for researchers new to fNIRS to
plan their own analysis pipelines.

There are several reasons that data and code sharing should be considered prior to data col-
lection. First, organizing and labeling data during data collection will save much time in the end
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when sharing data with other researchers in an understandable way. Second, analysis pipelines
that work on sharable file formats and data structures will simplify the verification process for
later reviewers. Third, sharing analysis code prior to data collection or keeping a version control
can be considered the ultimate way of preregistration as it offers full transparency about changes
in analysis plans. We specifically encourage this for the validation of new analysis methods as
this should prevent overfitting of methodological choices based on the obtained research data.
Finally, when drafting informed consent forms for future participants, researchers should con-
sider asking permission to openly share personal data in accordance with local regulatory and
institution specific data protection regulations.184

In general, shared data and code should be compliant with the FAIR principles (i.e., findable,
accessible, interoperable, and reusable).185 Here, we provide some practical tips to make fNIRS
data and code FAIR.

First, fNIRS data should be converted to .snirf186 (shared NIR spectroscopy format, https://
github.com/fNIRS/snirf) files and organized and labeled according to the Brain Imaging Data
Structure (BIDS).185,187 This standardization can help to increase interoperability and reusability,
i.e., the data contains enough details to be easily interpreted by humans and machines.
Specifically, .snirf is a standardized open access data format that is developed by the fNIRS
community to facilitate sharing and analysis of fNIRS data, whereas BIDS is a standard speci-
fying the organization and naming of data and metadata of neuroimaging studies. It is notewor-
thy that BIDS was recently extended (version 1.8.0) to include fNIRS data as a newly supported
modality.188

Second, several platforms and repositories are available to enhance the findability and acces-
sibility of data, code, and preregistrations. Data sharing repositories can vary from very general
(e.g., Zenodo) to more specific for neuro-imaging (e.g., openneuro and NITRC) or even fNIRS
data (e.g., openfnirs). When it comes to code sharing, platforms that include versioning control,
such as GitHub, GitLab, or BitBucket, are preferred. Similarly, multiple options are available to
share a preregistered study (e.g., on the OSF; osf.io). Further, the OSF provides a platform for
organizing and version-controlled sharing data, code, and all other related research materials of
one research project185,187,189 and provides the option to embargo a preregistration (i.e., it will
only be made publicly available after a preset period of time). In Table 2, we provide an overview
of several available data formats, repositories, and sharing platforms.

Third, when researchers intend to share data with other researchers, they should carefully
reflect on the balance between open science practices and privacy protection regulations,201,202

specifically the General Data Protection Regulation for research conducted in the European
Union and the United Kingdom, the Health Insurance Portability and Accountability Act for
research conducted in the United States of America, and similar regulations in other countries.
As far as we know, the fNIRS time series signal itself is not identifiable and therefore, in prin-
ciple, can be shared as anonymous data that does not fall under the privacy protection rules.203

However, data from participants is never measured solely by itself but often is linked to direct or
indirect personal identifiers. For example, the name and contact information of participants (i.e.,
direct identifiers) are usually registered for administrative purposes. Researchers typically
remove the direct link between the fNIRS data and these personal identifiers by pseudonymiza-
tion. In addition, it is often desired and/or encouraged for scientific purposes to give context to
our data with demographic and clinical information (Sec. 2.2.2). The combination of these snip-
pets of information – each of which by itself is not identifying – does increase the chance of
identification of study participants by means of a linkage attack (see for example, Ref. 204) and
can therefore be considered to be indirect identifiable data.

Data sharing should always be in accordance with local data protection laws and require-
ments of the institutional review boards. Because common principles apply to many, we give
a few practical recommendations regarding data from fNIRS studies. First, we recommend
explaining to participants why it is intended to share data, what data will be shared, and how
it will be shared. Even for anonymous data, it is best practice to always ask for explicit consent,
and it is required for pseudonymize data. Importantly, sharing directly identifiable information
(e.g., name, recording date, birthdate, and address) is prohibited under commonly used data
protection regulation. Researchers should be aware that participants may use social media to
share their whereabouts; researchers are strongly advised to prevent that any information shared
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by the participant outside their control—such as the post on social media “I participated in a
study at the university this morning”—can be linked inadvertently to information that is intended
to become later publicly available through data sharing by the researcher. Photos and videos can
also be directly identifiable. Photogrammetry pictures should not be shared. Instead, we advise
that only the extracted optode and anatomical landmark positions of the photogrammetry

Table 2 Overview of available fNIRS-data standards and data-sharing repositories that aim to
improve the FAIR-ness of research.

Specialized for
sharing of: Description Website

Standards

.snirf Raw data Open-source file format for sharing fNIRS data. https://github.com/
fNIRS/snirf

BIDS Raw data Standard specifying the organization and naming
of raw data andmetadata of neuroimaging studies.

Refs. 190, 191

Repositories

Openfnirs Data Platform sharing open-access fNIRS datasets. Ref. 192

Openneuro Data Platform for validating and sharing BIDS-compliant
neuroimaging datasets.

Ref. 193

NITRC-IR Data Image repository sharing neuroimaging datasets. Ref. 194

brainlife Data, code Platform for sharing neuroscience code (apps)
and data with an integrated cloud-computing and
high-performance computing environment to run
the apps.

Ref. 195

Zenodo Data, code General-purpose open repository developed by
the European Commission for sharing data, code,
papers, and reports.

https://zenodo.org/

GitHub Code Developer-focused platform to share code and
software, including version control.

https://github.com/

GitLab Code Developer-focused platform to share code and
software, including version control.

Ref. 196

BitBucket Code Platform to share code and software, including
version control (private repositories for up to
five users).

Ref. 197

OSF Preregistration,
data, code

Platform to organize and share all research data
and material related to a research project,
including version control; different preregistration
templates, including open formats, can be used.

Ref. 198

Peer
Community
in Registered
Reports

Registered
Reports,
preprints

Journal-independent research community
platform that performs and publishes peer reviews
of preprints as well as stage 1 and stage 2 reviews
of Registered Reports. Following a positive
evaluation of the complete review process,
authors may submit their final Registered Report
manuscript to cooperating journals.

Ref. 30

Other useful platforms:

INCF Portfolio with standards and best practices
supporting open and FAIR neuroscience.

Ref. 199

FAIRsharing Resource platform on data and metadata
standards, inter-related on databases and data
policies.

Ref. 200
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pictures are shared, or in case participants are shown on the picture, their face and appearance
should not be recognizable (e.g., via blurring or removal). We further recommend avoiding
sharing data that is not essential for the research question or follow-up analyses but has a high
disclosure risk (e.g., an unusual finding). Furthermore, one should reduce the amount of detail
when it comes to meta data.205 For example, instead of reporting a table with the exact ages of
participants, a range can be reported instead. Finally, many departments and universities employ
data stewards or data protection managers that can advise researchers on how to comply with
local and national data sharing policies and implement FAIR data sharing principles.

Preregistration template item(s): T10 and T11

3 Summary

This step-by-step guide aims to assist researchers in both planning the design and drafting a
preregistration protocol for task-related CW-fNIRS studies. In particular, fNIRS-specific design
aspects such as optode placement and adequate sample size planning, as well as analytical
aspects around the signal quality and data analysis, are elaborated. One focus is also set on using
open research tools that facilitate study planning for hemodynamic studies and data sharing for
fNIRS. Altogether, this guide thus complements recent efforts in providing best practice guid-
ance for fNIRS researchers for careful study planning and addresses the call for tools that support
researchers in preregistering their fNIRS study.18,19 It is further accompanied by a comprehensive
preregistration template that includes 48 items, covering key aspects that are exemplified. These
tools can aid in particular researchers new to the field in getting acquainted with the relevant
steps and decisions of fNIRS study planning, and they can serve as tools for designing fNIRS
studies transparently through the means of study preregistration.
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