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Abstract: The aim of this paper is to study the effect of the organic matter (OM) content on the
effectiveness of the soil stabilization process using the biopolymer xanthan gum. Five different
artificial soils with an organic matter content in the range of 1.5 to 7.7% are subjected to unconfined
compressive strength (UCS) and oedometer tests to evaluate their strength, stiffness and compress-
ibility, respectively. These results are complemented by an analysis of SEM images. The results from
the UCS tests show a positive effect of the stabilization process in terms of strength and stiffness in
a range of an OM content of 1.5 to 5.5%, but a detrimental effect for a higher OM content (7.7%) is
observed. Due to the hydration of the biopolymer’s hydrogels, the compressibility tends to increase
in specimens stabilized with xanthan gum. This effect is amplified for higher OM contents. The
results of oedometer tests also show that the stabilization with xanthan gum brings about a significant
decrease in the coefficient of consolidation, inducing an increase in the primary consolidation time.

Keywords: xanthan gum; organic soils; soil stabilization

1. Introduction

The construction of many civil engineering structures (such as buildings, ports, air-
ports, bridges, tunnels, among others) on/in problematic soils with poor mechanical
behavior requires the implementation of improvement methods to enhance these soils’
characteristics, in order to increase the strength and/or decrease the compressibility. One of
the most common techniques used to improve a soil’s properties is chemical stabilization,
which consists of a mixture of the natural soil with binders, such as quicklime, fly ash,
blast furnace granulated slag and cement (which is the most used), among others. The
use of cement is associated with a significant ecological footprint, since: (i) the cement
industry is responsible for about 2.6% of the global CO2 emissions [1]; (ii) the use of cement
in soil stabilization induces an increase in the pH of the soil treated, which has a negative
impact on the natural microbiome and on the vegetation’s development [2]; and (iii) the
material produced by the cement-based soil stabilization is irreversible [2], which is not an
advantage for construction in an environmentally sensitive area.

To reduce the environmental impact of the use of cement, some alternative techniques
have been investigated in the last few years, such as the reuse of materials in the construc-
tion industry [3], and the use of biodegradable [4,5] and bio-based materials, among others.
One of the most studied bio-based methods consists of the precipitation of calcium carbon-
ate that behaves as a bio-cement. When this material is deposited in the porous spaces of
the soil, it creates bonds between the soil particles, inducing an improvement in the mechan-
ical properties of the composite material [6–14]. This methodology presents two variants,
microbial-induced calcium carbonate precipitation [7,15] and enzyme-induced calcium
carbonate precipitation [7–10,15,16]; in the former, bacteria are added to the soil to produce
enzymes, while in the latter, the enzymes are added directly to the soil.

The use of biopolymers (biodegradable polysaccharides produced by living organisms)
has emerged as an alternative to the bio-based methodologies, which are also associated
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with a low ecological footprint. Among the several types of biopolymers studied to solve
geotechnical problems (casein and sodium caseinate salt, guar, cationic e-polylysine, gellan,
agar, chitosan, curdlan and β-Glucan, Persian gum [17], Zein biopolymer [18], etc.), xanthan
gum (XG) is one of the biopolymers most investigated in geotechnical engineering, mainly
due to the significant reduction in its market price in the last years [5] and to its ability to
mitigate some soil weaknesses; in particular, it:

(i) Decreases the soil’s erosion [19], and in parallel promotes the growth of the vegetation,
which also contributes to erosion mitigation [20];

(ii) Decreases the permeability coefficient of the treated soil [21–26] due to the hydration
of the XG hydrogels, which decreases the soil’s porosity and consequently makes the
flow of water in the porous space difficult;

(iii) Improves the mechanical properties of the treated soils, such as sands [23,27], silty
sands [28,29], clayed soils [19,27,30], bentonite, kaolinite [26,27,31,32], and residual
soils [33,34];

(iv) Some one-dimensional compression tests with a bentonite and a kaolinite stabilized
with XG show a decrease in the compressibility after the stabilization with xanthan
gum [31]. However, it should be emphasized that not all the results published
are consistent with each other; indeed, results of a soft marine soil [30], kaolinite
clay [35], sandy soil [23], and silt sand [29] show an increase in the compressibility
after stabilization with XG. In terms of the coefficient of consolidation (Cv), results of
the treatment of a marine soft soil [30], high plastic soil [36], and kaolinite clay [35]
with XG promotes a significant reduction in the Cv; i.e., the stabilization with XG
prolongs the time required to the end of the primary consolidation. Additionally, the
coefficient of secondary compression of a kaolinite clay increases after the stabilization
with xanthan gum [35];

(v) Increases the pH value [34] and the plasticity index [19,26,34], and decreases the
specific gravity [34];

(vi) Changes the compaction characteristics, namely, it increases the optimum moisture
content and decreases the maximum dry density of a tropical residual soil [34], a
dispersive soil [37], and a kaolinite clay [26];

(vii) Increases the undrained shear strength of a kaolinite clay, but decreases the undrained
shear strength of a montmorillonite clay [38];

(viii) Decreases the cumulative variation in moisture loss and mass loss in freeze–thaw
tests [36];

(ix) Decreases the swelling potential of a high plastic soil [36].

Some research works indicate that the effectiveness of XG in stabilizing soils results
from the contribution of two effects: (i) the aggregation of the soil particles due to the
deposition of the XG in the voids; and (ii) the bonds established between the XG (hydrogen
bonding) and the surfaces of the soil particles, mainly when they are electrically charged,
as it occurs in clayed soils [2,27]. These two effects justify the greater effectiveness of the
XG in stabilizing clays than coarse-grained soils, since in clays, both effects are cumulative
in strengthening the soil. Nevertheless, in coarse-grained soils the improvement of the
mechanical properties is only due to the deposition of the XG in the porous space of the
soil, inducing the generation of a network of XG fibers, similar to micro-reinforcement of
the soil, as illustrated in Figure 1 for a silty sand.

Some experiments with specimens of silty sand submitted to curing in humid condi-
tions indicate that the stabilization with XG is potentiated for a curing time of 7–14 days
and for an XG content of approximately 1% [29]. For a curing time of less than 3 days, a
detrimental effect of the stabilization with XG was observed [29].
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Figure 1. SEM image of a non-organic silty sand stabilized with 2% of XG.

Although xanthan gum is a biodegradable biopolymer, which is naturally associated
with a progressive loss of its properties with elapsed time, some experimental results show
a high stability over time in strengthening the soils in dry environments. Indeed, the benefit
of XG strengthening such soils tends to grow with curing time [23,27,29,31,37], and even
in the long-term (until 730 days) no traces of biodegradability in a sand-XG mixture were
observed [27]. On the other hand, the evolution over time of the permeability coefficient (in
saturated conditions) did not show results totally consistent with a great stability over time.
In fact, the results of Bouazza et al. [22] reveal a decrease in the permeability coefficient of a
sandy-XG mixture during the curing time, while the opposite was observed in a clayed
soil [24] and a sandy soil [23]. Additionally, the results of Mendonça et al. [25] show a
decrease in the permeability coefficient of a sandy soil during the first 14 days of curing
time, followed by a slight increase in the permeability coefficient for higher curing times,
which may be the consequence of some biodegradability and/or some dehydration of the
biopolymer’s hydrogels over time [25,32].

Some previous research has described the efficiency of the treatment of soils with
xanthan gum, namely concerning the effect of several factors (such as soil type, curing time,
content of XG, among others) on the strengthening, plasticity [30,32] and the permeability
coefficient. However, not only is the number of studies about the compressibility of water-
soil-XG mixtures in the bibliography limited, there is also a lack of research concerning
the effect of the organic matter content on the effectiveness of water-soil-XG mixtures,
both in terms of the mechanical properties and of the compressibility characteristics. The
main objective and the novelty of this work is to contribute to filling these gaps in the
scientific knowledge. Thus, the present study intends to analyze the effectiveness of the
use of XG to stabilize five soils, in terms of mechanical properties and compressibility,
each with a different organic matter content (1.5, 2.4, 4.1, 5.5 and 7.7%) but a constant
particle size distribution. This study is based on the experimental results obtained from
unconfined compression strength (UCS) and one-dimensional compression (oedometer)
tests, where the behavior of non-stabilized soils is compared with the behavior obtained
after stabilization with XG (Table 1). Additionally, images obtained from scanning electron
microscopy (SEM) of some specimens are also considered in the analysis.



Appl. Sci. 2023, 13, 4787 4 of 15

Table 1. Testing program. Number of UCS and oedometer tests carried out.

Organic Matter
Content (%)

Xanthan Gum
Content (%)

Curing Time
(Days) UCS Tests (N) Oedometer

Tests (N)

1.5 0.0 1 — 3 2
1.0 2 14 3 2

2.4 0.0 1 — 3 2
1.0 2 14 3 2

4.1 0.0 1 — 3 2
1.0 2 14 3 2

5.5 0.0 1 — 3 2
1.0 2 14 3 2

7.7 0.0 1 — 3 2
1.0 2 14 3 2

1 Non-stabilized specimen; 2 Specimen stabilized with 1% of xanthan gum.

2. Materials and Methods
2.1. Characteristics of the Soils

Table 2 presents the main physical and chemical properties of the five soils used in
the experimental work. The reference soil is a natural alluvial soft soil collected in the
“Baixo Mondego” area, located in central Portugal. This is an organic soil (OM = 7.7%)
with a low pH (3.6) and with a grain size distribution composed predominantly of sand
(57%), classified as OH (ASTM D2487-00), i.e., an organic soil with high plasticity. These
characteristics affect the behavior of the soil, which exhibits a low undrained shear strength
(cu < 25 kPa), high compressibility and high plasticity (wL = 71%; wP = 44.3%) [39–41].

Table 2. Physical and chemical properties of the soils tested.

Property
Organic Matter Content (%)

1.5 2.4 4.1 5.5 7.7 1

Grain size distribution:
Clay (%) 23 23 23 23 23

Silt (%) 57 57 57 57 57
Sand (%) 20 20 20 20 20

Specific gravity, G – – – – 2.32
Liquid limit, wL (%) 36.3 40.9 46.6 54.1 71.0
Plastic limit, wP (%) 15.3 33.1 33.2 33.0 44.3
Plasticity index, PI (%) 21.0 7.8 13.4 21.1 26.7
Liquidity index 1.09 1.09 1.09 1.09 1.09
Soil classification, USCS 2 CL CL OL OH OH
Chemical composition
pH (BSI337-3) – – – – 3.6
SiO2 (%) – – – – 62
Al2O3 (%) – – – – 16
Fe2O3 (%) – – – – 4.8

1 Natural organic soil; 2 (ASTM D2487-00).

The reference soil was used to prepare the remaining four artificial soils with five
different OM contents, as described in the following sections. Therefore, the five soils used
in the experiments have the same grain size distribution. The results presented in Table 2
show the increase in the plasticity (wL and wP) for the higher OM content [42], which
matches with other studies [43–46].

2.2. Characteristiques of the Biopolymer (Xanthan Gum)

The xanthan gum (XG) is a commercial biopolymer produced by the Xanthomonas
campestris bacterium and available in powdered form. It is a heteropolysaccharide, com-
posed of glucose, mammose and glucuronic acid [47]; it is usually used as a thickening
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agent, since when in contact with water it generates viscous hydrogels which promotes an
increase in the viscosity [22,30]. XG is active under a wide range of temperature (10◦–80◦)
and pH values (1–13), which promotes its use in agriculture, food and the pharmaceutical
industry, cosmetics, drilling lubrication, industrial oils and enhanced oil recovery, among
others [22,47].

2.3. Specimen Preparation and Testing

To mitigate the variability usually observed in natural soils, the present work uses
remolded samples which maintain the organic matter content, mineralogical composition
and grain size distribution composition of the natural soil; but the intrinsic structure of the
natural soil is totally destroyed during the remolding process.

The preparation of the soil used for testing started by sifting the natural soil through
a 2.36 mm mesh sieve to remove the larger particles and some shell residues. The OM
content of a certain amount of “natural” soil (OM = 7.7%) was destroyed by loss-on-ignition
at 400 ◦C, which was then used to prepare the specimens with different OM contents
(1.5–5.5%). The specimens of the soils with the different OM contents were prepared in
accordance with the following actions (Figure 2):
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Figure 2. Flow chart of the specimen preparation.

(i) This soil subjected to loss-on-ignition at 400 ◦C (with an OM content of 1.5%) was
mixed with the “natural” soil (OM = 7.7%) in different amounts to obtain the samples
of artificial soil with the desired OM content, between 1.5% (lower OM) and 7.7%
(natural OM). Naturally, the process of adjustment of the OM content had some
iterations, with the re-evaluation and eventual re-adjustment of the OM content;

(ii) In the case of the stabilized samples, an XG content of 1% (ratio of the dry weight of
XG to the dry weight of the soil) in powder form was added to the dry artificial soil
and mixed well;

(iii) The artificial soil (with the required OM content), with or without XG, was mixed
with the distilled water, to obtain a liquidity index of 1.1, during the time necessary to
obtain a homogeneous soil-water-XG paste;

(iv) The mixture was introduced into the UCS molds (38 mm in diameter, 76 mm height) and
oedometer molds (70 mm in diameter, 19 mm height) in 3 layers and 1 layer, respectively;

(v) Each layer was subjected to tapping (10 times) to remove air bubbles and compacted
with 100 kPa for 10 s;
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(vi) A superficial scarification of the previous layer was performed to improve the connec-
tion between two successive layers in the molds;

(vii) Based on the results of Venda Oliveira and Cabral [29], the stabilized specimens were
stored in a plastic bag during 14 days of curing time (only stabilized specimens) inside
a room with controlled temperature (20 ± 2 ◦C) and humidity (95 ± 5%), in order to
reduce the suction phenomenon. The unstabilized specimens were not submitted to a
curing time;

(viii) After that, the specimens were removed from the molds, both surfaces were trimmed
and the quality of the samples was analyzed visually;

(ix) The specimens with the required quality were accepted for testing (UCS and oedome-
ter tests);

(x) The oedometer ring (polished stainless steel) was coated with a thin film of grease
prior to the oedometer tests to minimize the friction between it and the soil;

(xi) The oedometer ring was assembled with the specimen, and they were saturated
by immersion;

(xii) The displacement transducers (both tests) and the load cell (UCS tests) were set up
and adjusted;

(xiii) The UCS and oedometer tests were carried out. The vertical displacement (both
tests) and the vertical pressure (UCS test) were recorded by an automatic data
acquisition system;

(xiv) A strain controlled test was used in the UCS tests under a strain rate of 1%/min
(ASTM2166-05);

(xv) In accordance with ASTM D2435-04, stress increments with a load ratio of 2 were
applied in the loading path of the oedometer tests, while in the unloading path a load
ratio of 4 was used during the time required to the end of the primary consolidation.
The coefficient of consolidation (Cv) was evaluated using Casagrande’s methodology.

For each condition tested, the UCS tests were repeated three times and the oedometer
tests were duplicated, which ensured the quality and reproducibility of the tests carried
out (Table 1). The conformity/compliance criterion used for the UCS tests states that the
results must be within the range ±10% of the average value, which is a more demanding
requirement than the ±15% specified in the standard EN-206-1 (2007).

Additionally, in order to study the repercussions of the factors studied on the mi-
crostructure, SEM images were analyzed.

3. Results and Discussion
3.1. UCS Tests

The stress-strain curves of the UCS tests for the unstabilized and stabilized specimens
for the various organic matter contents are compared in Figure 3. Despite some scattering,
the results clearly indicate a beneficial impact concerning the stabilization with 1% of XG for
an OM content in the range of 1.5–5.5%, manifested by a significant increase in strength and
stiffness. On the other hand, for a higher OM content (7.7%), a detrimental consequence of
the stabilization with XG was observed, indicated by the decrease in mechanical properties
(strength and stiffness). Moreover, for the range of OM content of 1.5–5.5%, the results
also show that the stabilization with XG tends to decrease the ductility of the stress-strain
behavior; in fact, the stabilized soil shows a peak strength followed by a decrease, while a
continuous increase in the strength is seen for the unstabilized soil, which is characteristic
of ductile behavior. In contrast, stabilized samples with an OM content of 7.7% show clear
ductile stress-strain behavior, both for the unstabilized and stabilized soils.
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Figure 3. UCS tests. Effect of organic matter content on the stress-strain behavior: (a) OM = 1.5%;
(b) OM = 2.4%; (c) OM = 4.1%; (d) OM = 5.5%; (e) OM = 7.7%.

Considering the ductile stress-strain behavior exhibited by the majority of the samples
tested, a failure criterion that corresponds to an axial strain (εax) of 20% is used to quantify
the unconfined compressive strength (qu). The evolution of qu with the OM content,
depicted in Figure 4a, highlights the features previously described, namely, a significant
increase in the unconfined compressive strength with positive gains between +131% and
+270%, for soils with an OM content of 1.5% and 5.5%, respectively. The opposite of this
behavior is seen for the soil with an OM content of 7.7%, described by a loss of strength
higher than 50% after stabilization with XG.
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Figure 4. UCS tests. Effect of OM on the evolution of: (a) qu; (b) Eu-50.

The evolution of the secant modulus at 0.5qu (Eu50) with the OM content (Figure 4b)
matches with the trend observed in Figure 4a for qu. In fact, the stabilization with XG
induced a significant gain of stiffness (from about 109 to 204%) for OM contents in the
range of 1.5–5.5%, while for an OM content of 7.7% a reduction of 29% was obtained.

These results indicate that the process of stabilization with XG can be used successfully
for soils with a low organic matter content (less than 5.5%), but is counterproductive for
higher values of OM content (7.7%). Indeed, after a certain threshold value of OM content
(7.7%), the OM that exists in the soil tends to coat the soil particle and partially fill the voids.
This prevents the creation of a network of micro-fibers of XG that would create bonds
between the soil particles. Simultaneously, the hydration of the biopolymer’s hydrogels
that exist in the soil’s porous spaces seems to promote a reduction in the friction between
the soil particles, inducing a decrease in the mechanical properties of the stabilized soil.
The SEM image of the stabilized soil with an OM content of 7.7% (Figure 5b) confirms a
greater coating of the soil particles with OM than that observed with a stabilized soil with
an OM content of 1.5% (Figure 5a). Thus, the increase in the OM content makes it difficult
to establish a network of bonds, similar to the micro-reinforcement observed in a stabilized
non-organic silty sand (Figure 1).
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3.2. Oedometer Tests

The e-logσ’v curves obtained from the one-dimensional compression (oedometer) tests
for the five different organic matter contents are illustrated in Figure 6. Despite some
scattering in terms of the evaluation of the void ratio, in qualitative terms there were some
similarities in the curves; mainly:
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(i) a progressive increase in the compressibility with the increase in the vertical stress.
(ii) The increase in the void ratio with the OM content, which agrees with the findings of

Venda Oliveira et al. [48].
(iii) The upward movement of the e-logσ’v curves after the stabilization with XG due to

the hydration of the biopolymer’s hydrogels, which induces an increase in the void
ratio; this tendency matches with the results of Venda Oliveira et al. [29].
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Figure 6. Oedometer tests. Effect of organic matter content on the e-logσ’v behavior. (a) OM = 1.5%;
(b) OM = 2.4%; (c) OM = 4.1%; (d) OM = 5.5%; (e) OM = 7.7%.
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Figure 7 highlights the effect of the OM content on the initial void ratio and on the
change in the void ratio during compression (∆ecompression) and swelling (∆eswelling). These
results clearly show the increase in the initial void ratio after the stabilization of the soil
with XG, and this effect is enhanced with the increase in the OM content. In fact, this
behavior can be explained by two cumulative factors—the high ability of the organic matter
to retain water, and the hydration of the hydrogels of the XG when water is present—which
together potentiate a high void ratio for a stabilized soil with a high OM content. Figure 7
also demonstrates that the change in the void ratio (both in compression and swelling)
increases after stabilization with XG; although, as expected, with a greater variation for the
compression paths than for the swelling paths. Additionally, in the compression paths the
∆e increases with the OM content, while in the swelling path the ∆e is negligible in relation
to the change in the OM content. Figure 8 illustrates the effect of the variation in the OM
content on the compression index (Cc) and the swelling index (Cs). Naturally, the tendency
observed by Cc and Cs corroborates the features described concerning the evolution of
∆ecompression and ∆eswelling in Figure 7. Indeed, Cc increases after the stabilization of the soil
and this effect is amplified for higher OM contents. Moreover, Cs is relatively unaffected
by the organic matter content, increasing slightly for the stabilized soil.
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Figure 7. Oedometer tests. Effect of organic matter content on the: (a) initial void ratio, (b) variation
of void ratio during compression (9.0 to 902 kPa) and swelling (902 to 1.5 kPa).
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Figure 8. Oedometer tests. Effect of organic matter content on the compressibility indices, Cc and Cs.

The effect of the stabilization process and the variation in the organic matter content
on the coefficient of consolidation (Cv) evaluated for the vertical stress increment between
450 and 900 kPa is presented in Figure 9. In line with other research work [39,48,49], the Cv
of the unstabilized soil decreases with the increase in OM content, which corresponds to
an increase in the primary consolidation time. This behavior is fundamentally due to the
significant ability of the OM to absorb water, which induces a higher void ratio and a higher
compressibility. On the other hand, the stabilization process induces a significant decrease
in the Cv, which is related to the capacity of the biopolymers to retain water, due to the
hydration of the hydrogels. This means that the stabilization of a soil with XG prolongs the
time required to complete primary consolidation.
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during the increments in compression stress (405 to 900 kPa).

4. Main Conclusions

Considering the experimental results of the unconfined compressive strength (UCS)
tests and one-dimensional compression (oedometer) tests concerning the consequences
of changes in the organic matter (OM) content (from 1.5% to 7.7%) on the behavior of
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unstabilized and stabilized soils with a content of 1% of the biopolymer xanthan gum
during 14 days of curing time, the following conclusions were reached:

(i) For an OM content in the range of 1.5–5.5%, there is a positive impact resulting from
the stabilization with XG on the mechanical properties, with a significant increase
in strength (from 130% to 270%) and stiffness (from 109% to 204%). Moreover, the
stabilization with XG induces a decrease in the ductility of the stress-strain behavior
characterized by a loss of strength after the peak;

(ii) There is a detrimental impact of the stabilization with XG in terms of mechanical
properties for an OM content of 7.7%, while the stress-strain behavior remains ductile.
These results seem to indicate that this OM content is sufficient to coat the soil particles,
which prevents bonds (i.e., a micro-reinforcement network) being established between
the soil particles and the XG, and simultaneously the hydration of the biopolymer
hydrogels tends to minimize the friction between the soil particles;

(iii) The stabilization of the soil with XG induces an increase in the initial void ratio; this
effect is enhanced by the increase in the OM content, which reflects the effect of two
cumulative factors, the ability of the organic matter to retain water, and the hydration
of the hydrogels of the XG in the presence of water;

(iv) The stabilization with XG increases the change in the void ratio both in compression
(i.e., Cc) and swelling (i.e., Cs), with more significant effects in terms of compression;
this behavior is amplified with the increase in the OM content;

(v) In compression, the increase in the OM content induces an increase in the change in
the void ratio (i.e., the Cc). The void ratio variation (and the Cs) is negligible for the
swelling relative to the change in OM content;

(vi) The coefficient of consolidation (Cv) of the unstabilized soil decreases with the increase
in OM content, which is due to the significant ability of the OM to absorb water;

(vii) The stabilization process induces a significant decrease in the Cv, which is related to
the considerable capacity of the biopolymers to retain water, due to the hydration of
the hydrogels.

Considering the results obtained in this work, it is expected that this technique can
be used to improve the properties of the soils with low/medium organic matter content
(lower than 5%). Considering that biodegradability is inherent in the use of these bio-
based materials, it is expected that this methodology is suitable to apply in provisory
works, mainly when a high level of sustainability is required. In this type of work, the
biodegradability of the materials used can be a favorable issue, since it annuls all the traces
of the work in long term.
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