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Abstract: E. globulus leaves have been mainly exploited for essential oil recovery or for energy
generation in industrial pulp mills, neglecting the abundance of valuable families of extractives,
namely, triterpenic acids, that might open new ways for the integrated valorization of this biomass.
Therefore, this study highlights the lipophilic characterization of E. globulus leaves before and after
hydrodistillation, aiming at the integrated valorization of both essential oils and triterpenic acids.
The lipophilic composition of E. globulus leaves after hydrodistillation is reported for the first time.
Extracts were obtained by dichloromethane Soxhlet extraction and analyzed by gas chromatography-
mass spectrometry. In addition, their cytotoxicity on different cell lines representative of the innate
immune system, skin, liver, and intestine were evaluated. Triterpenic acids, such as betulonic,
oleanolic, betulinic and ursolic acids, were found to be the main components of these lipophilic
extracts, ranging from 30.63–37.14 g kg−1 of dry weight (dw), and representing 87.7–89.0% w/w of
the total content of the identified compounds. In particular, ursolic acid was the major constituent
of all extracts, representing 46.8–50.7% w/w of the total content of the identified compounds. Other
constituents, such as fatty acids, long-chain aliphatic alcohols and β-sitosterol were also found in
smaller amounts in the studied extracts. This study also demonstrates that the hydrodistillation
process does not affect the recovery of compounds of greatest interest, namely, triterpenic acids.
Therefore, the results establish that this biomass residue can be considered as a promising source of
value-added bioactive compounds, opening new strategies for upgrading pulp industry residues
within an integrated biorefinery context.

Keywords: Eucalyptus globulus leaves; biorefinery; integrated exploitation; hydrodistillation; GC–MS
analysis; cytotoxicity; triterpenic acids; ursolic acid

1. Introduction

In the last decades, the growing concern about the finitude of fossil resources, as well
as the environmental impact resulting from their massive use, associated with greenhouse
gas (GHG) emissions that result in climate change and global warming [1–3] have been
pushing industry to develop fully sustainable processes and particularly those based on
renewable raw materials. The exploitation of value-chains based on biomass has led to
the emergence of the biorefinery concept, which still requires the development of efficient
fractionation processes, allowing for the integrated exploitation of all biomass fractions and
ensuring benefits to society and the environment, including their economic viability [3,4].
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At the same time, in the last decades, the demand for new alternatives to petrochemical
products has aroused great interest in the search for high-value compounds from renewable
feedstocks, such as forest biomass. The forest activity, associated with the pulp and paper
sector has a great impact on the world economy. In fact, Portugal is considered the 3rd
largest European producer of pulp fibers [5].

Eucalyptus globulus is one of the most widely cultivated species in Portugal. According
to the 6th National Forest Inventory (IFN6) published in 2019, eucalyptus is the forest
species that occupies the largest planted area, approximately 844 kha, which corresponds
to 26% of the Portuguese forest area [6]. The large-scale exploitation of E. globulus wood
for pulp production generates large amounts of forest by-products, such as bark, branches
and leaves (Figure 1) that have been widely used as solid fuel for power generation [4,7,8].
Nevertheless, the integrated valorization of these residues may represent a significant
contribution to the paper and/or forestry sector’s profitability.
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E. globulus pulping residues have been scrutinized as a source for added-value applica-
tions such as materials, chemicals or biofuels [9–14]. In the last years, particular interest has
been devoted to the search for bioactive compounds from these resources. Some studies
on E. globulus leaves report the presence of different families of compounds, namely, its
essential oil (EO) [15–17], hydrophilic components, such as phenolic compounds [18–21],
and lipophilic components, such as fatty acids, long-chain aliphatic alcohols, sterols, and
triterpenic acids, such as betulinic, betulonic, oleanolic, and ursolic acids [12,22–24].

Eucalyptus leaf extracts and EO have long been used in the pharmaceutical, sanitary,
agricultural, cosmetic, and food industries because of their beneficial and healthy proper-
ties [25,26]. In fact, traditionally, Eucalyptus leaves have been widely used for the treatment
of various diseases such as influenza, dysentery, pulmonary tuberculosis, cystitis, diabetes,
articular pain, fungal infections, dermatitis, scabies, and burns [25,27].

E. globulus is widely recognized and exploited as a source of EO that is composed
mainly of monoterpenes and sesquiterpenes, which are obtained by hydrodistillation
or steam distillation with extraction yields ranging from 1.2 to 2.7% (w/w) [15–17,28].
Nevertheless, after this process the leaf biomass remains underexploited, despite its richness
in other valuable extractives fractions as, for example, triterpenic acids. The effect of the
hydrodistillation process on E. globulus leaf extract composition is also unknown; therefore,
this study aims to understand the effect of hydrodistillation on the composition of E.
globulus leaf lipophilic extractives with emphasis on triterpenic acids, but including also the
less abundant fractions of fatty acids and long-chain aliphatic alcohols in order to access
the potential of the exploitation of this fraction integrated with EO.

In this vein, the lipophilic fraction of E. globulus leaves before and after hydrodistil-
lation was obtained by Soxhlet extraction, and analyzed by gas chromatography-mass
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spectrometry (GC–MS) and their compositions were discussed in detail. In order to evaluate
the safety of the different extracts to be exploited in different applications, their cytotoxicity
was evaluated in cell lines representative of the innate immune system, skin, liver, and
intestine, namely, on macrophages (RAW 264), fibroblasts (NIH/3T3), hepatocytes (HepG2)
and colon cancer (Caco-2), respectively.

2. Results and Discussion
2.1. Extraction Yields

Lipophilic extracts of E. globulus leaves before and after hydrodistillation were obtained
by Soxhlet extraction with dichloromethane (DCM). The extraction yields obtained were
19.5 ± 0.2% and 22.0 ± 0.6% of dw for E. globulus leaf DCM extracts before and after
hydrodistillation, respectively. Although the values were approximate, the E. globulus
leaves after hydrodistillation (EgLHD) showed a slightly higher extraction yield than
before hydrodistillation (EgL), despite the fact that in this latter case EOs (1.7% of dw) were
also extracted. These values were significantly higher than those previously reported for E.
globulus leaves using non-polar organic solvents [22,29,30]. Rodrigues et al. [22] presented
Soxhlet DCM extraction yields of 7.32% of dw and 2.38–2.89% of dw before and after a
wax removal pretreatment, respectively. While other studies, also with E. globulus leaves,
reported extraction yields of 2.2 and 9% of dw for solid–liquid extractions with hexane
and DCM, respectively [24,30]. The lipophilic extractive yield of Eucalyptus leaves after
hydrodistillation was only reported by El-Ghorab et al. [29] for a different species, namely,
E. camaldulensis, with a value of 7.4 ± 0.6% of dw.

2.2. Chemical Characterization of the Lipophilic Extracts

The chemical composition of DCM extracts from E. globulus leaves before and after
hydrodistillation was studied in detail by GC–MS. The identification of the lipophilic
components and the corresponding quantification in the studied extracts are summarized in
Table 1 and Figure 2. This analysis excludes the EO components (mono and sesquiterpenic
compounds) which have been the focus of another study [31].

Table 1. Compounds identified in dichloromethane (DCM) extracts of E. globulus leaves before (EgL)
and after (EgLHD) hydrodistillation expressed in mg g−1 of extract and g kg−1 of dw biomass.

Rt(min) Compound
mg g−1 of Extract g kg−1 of dw

EgL EgLHD EgL EgLHD

Triterpenic acids 157.42 168.53 30.63 37.14
68.11 Betulonic acid 18.56 29.40 3.61 6.48
68.93 Oleanolic acid 28.02 28.70 5.45 6.32
69.52 Betulinic acid 7.05 6.49 1.37 1.43
70.46 Ursolic acid 89.73 89.93 17.46 19.82
73.09 3-Acetyloleanolic acid 5.11 4.56 0.99 1.00
76.20 3-Acetylbetulinic acid 6.85 7.14 1.33 1.57
77.25 3-Acetylursolic acid 2.09 2.32 0.41 0.51

Fatty acids 5.79 10.14 1.13 2.23
Saturated fatty acids 5.79 9.57 1.13 2.11

30.83 Tetradecanoic acid 0.29 0.52 0.06 0.11
35.74 Hexadecanoic acid 0.59 2.61 0.11 0.58
38.03 Heptadecanoic acid tr 0.12 tr 0.03
40.24 Octadecanoic acid 0.13 0.26 0.03 0.06
48.26 Docosanoic acid 0.21 0.29 0.04 0.06
51.94 Tetracosanoic acid 0.33 0.47 0.06 0.10
55.97 Hexacosanoic acid 1.68 1.61 0.33 0.35
60.37 Octacosanoic acid 0.54 1.29 0.11 0.28
65.28 Triacontanoic acid 2.02 2.41 0.39 0.53
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Table 1. Cont.

Rt(min) Compound
mg g−1 of Extract g kg−1 of dw

EgL EgLHD EgL EgLHD

Unsaturated fatty acids tr 0.42 tr 0.09
39.32 Octadeca-9,12-dienoic acid tr tr tr tr
39.51 cis-Octadec-9-enoic acid tr 0.34 tr 0.07
39.65 trans-Octadec-9-enoic acid tr 0.08 tr 0.02

Diacids tr 0.15 tr 0.03
29.37 Nonanedioic acid tr 0.15 tr 0.03

Long-chain aliphatic alcohols 9.06 6.85 1.76 1.51
50.41 Tetracosan-1-ol 0.32 0.19 0.06 0.04
54.24 Hexacosan-1-ol 1.23 0.96 0.24 0.21
58.49 Octacosan-1-ol 2.33 1.79 0.45 0.39
63.06 Triacontan-1-ol 5.18 3.91 1.01 0.86

Monoglycerides 0.07 0.29 0.01 0.03
47.57 1-Monohexadecanoin 0.07 0.29 0.01 0.03

Sterols 2.33 2.91 0.45 0.64
62.61 β-Sitosterol 2.33 2.91 0.45 0.64

Others 2.13 3.70 0.42 0.82
14.14 Glycerol tr 0.28 tr 0.06
22.95 Tyrosol n.d. 0.05 n.d. 0.01
34.03 Gallic acid n.d. 0.19 n.d. 0.04

57.23 1,6-Dihydroxy-2-
methylanthraquinone 1.16 0.99 0.23 0.22

58.03 α-Tocopherol 0.97 2.19 0.19 0.48

TOTAL 176.81 192.44 34.41 42.37
Abbreviations: n.d.: not detected; Rt: retention time; tr: traces.
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Figure 2. Main families of lipophilic compounds identified by GC–MS in dichloromethane (DCM)
extracts of E. globulus leaves before (EgL) and after (EgLHD) hydrodistillation.
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To our knowledge, this is the first study reporting in detail the chemical characteriza-
tion of the lipophilic fraction of E. globulus leaves before and after hydrodistillation.

In general, both extracts were mainly composed of triterpenic compounds, free fatty
acids, and long-chain aliphatic alcohols. One sterol and one monoglyceride were also
detected, among other minor components. The total contents of the identified compounds
were 34.41 and 42.37 g kg−1 of dw in the EgL and EgLHD extracts, respectively. The
higher contents of lipophilic compounds in the EgLHD extract may have been due to
the disruption of the leaf’s cellular structures during hydrodistillation, that might have
facilitated the extractability of these components.

2.2.1. Triterpenic Compounds

Triterpenic compounds were the predominant lipophilic compounds in the E. glob-
ulus leaves extracts (Table 1) and accounted for nearly 87.7–89% of the total content of
identified compounds, with the DCM extract from the EgLHD containing the highest
amount with 37.14 g kg−1 of dw, and the DCM extract from the EgL with 30.63 g kg−1

of dw, respectively. Ursolic acid was the major triterpenic compound in both extracts,
with contents of 17.46 g kg−1 of dw in the EgL and 19.82 g kg−1 of dw in the EgLHD.
Previous studies on E. globulus leaves also identified ursolic acid as the majority triterpenic
acid [12,22]. Considerable amounts of oleanolic acid were also detected in a range from
5.45 g kg−1 of dw in the EgL to 6.32 g kg−1 of dw in the EgLHD, followed by betulonic
acid with 3.61 g kg−1 of dw in the EgL and 6.48 g kg−1 of dw in the EgLHD, and betulinic
acid with 1.37 g kg−1 of dw in the EgL to 1.43 g kg−1 of dw in the EgLHD. According to
the literature, triterpenic acids possess a wide range of biological activities. Ursolic and
oleanolic acids have very low toxicity and are known for their significant antimicrobial,
anti-inflammatory and antihyperlipidemic, antitumor, hepatoprotective, and cytotoxic
activities, among others [32–35]. Betulonic acid has shown significant antiviral, antimalarial
and anti-leishmanial activities and furthermore, cytotoxic properties against human cancer
cell lines (e.g., HT29 colorectal carcinoma cells, KB oral epidermoid carcinoma and HONE-1
nasopharyngeal carcinoma) [36–39]. Whereas betulinic acid has been shown to exhibit
a wide range of biological activities including anti-HIV, antimalarial, anti-inflammatory,
antibacterial, anthelmintic and antioxidant properties [32,38,40,41]. This wide range of
biological properties associated with the triterpenic acids identified in E. globulus leaves
reveals the promising character of this biomass as a raw material for applications in the
pharmaceutical, nutraceutical and cosmetic industries.

Additionally, acetyl derivatives of triterpenic acids (e.g., oleanolic, betulinic and
ursolic acids) were identified in significant amounts in all the extracts. The most abundant
acetylated compound was 3-acetylbetulinic acid, followed by 3-acetyloleanolic and 3-
acetylursolic acids. All these triterpenic acids have already been reported as components of
E. globulus [8,9,12,22,42].

2.2.2. Fatty Acids

Fatty acids (C14 to C30) were detected in both extracts (Table 1), accounting for 3.3–5.3%
of the total compounds identified. Total saturated fatty acids accounted for 1.13 and
2.11 g kg−1 of dw for the EgL and EgLHD, respectively. Hexadecanoic acid was the
predominant saturated fatty acid found in the DCM extracts from the EgLHD, with a
content of 0.58 g kg−1 of dw, while it only showed a content of 0.11 g kg−1 of dw in the
extract of EgL. Hexadecanoic acid is one of the most common saturated fatty acids and also
the most prevalent in body lipids [43]. This compound, both in acid and sodium salt form,
is widely used in a variety of applications, such as food additives, cosmetic formulations,
waterproofing materials, organic synthesis, etc. [44]. Triacontanoic and hexacosanoic acids
were the most abundant saturated fatty acids for the DCM extract from the EgL, with
contents of 0.39 and 0.33 g kg−1 of dw, respectively. In the extract from the EgLHD, the
triacontanoic and hexacosanoic acids showed higher contents (i.e., 0.53 and 0.35 g kg−1 of
dw, respectively). Fatty acids are the main constituents of the cell membrane structure with
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saturated fatty acids being essential for energy, cell membranes, hormone production, and
organ cushioning [43].

Regarding the unsaturated fatty acids, the lipophilic extracts presented lower amounts
than the saturated fatty acids. The extract from the EgLHD presented larger amounts of
unsaturated fatty acids than before hydrodistillation, showing a content of 0.09 g kg−1 of
dw, whereas only traces of unsaturated fatty acids were found in the DCM extract from the
EgL. The most abundant unsaturated fatty acid was cis-octadec-9-enoic acid with a content
of 0.07 g kg−1 of dw in the EgLHD.

2.2.3. Monoglycerides and Sterols

The only monoglyceride detected, and in rather low amounts, was 1-monohexadecanoin,
with the highest and lowest values recorded for the EgLHD (0.03 g kg−1 of dw) and EgL
(0.01 g kg−1 of dw), respectively (Table 1).

β-Sitosterol was the only sterol identified in the studied E. globulus leaves, accounting
for 0.64 g kg−1 of dw in the EgLHD and 0.45 g kg−1 of dw in the EgL (Table 1). β-Sitosterol
had already been identified in the leaf waxes of E. globulus, and in other morphological
parts such as bark, fruit, wood, etc. [8,9,12]. This phytosterol has a relevant added-value to
the extracts, since it is reported to exhibit analgesic, anti-inflammatory, anti-proliferative,
hypocholesterolemic, anti-cholesterolemic, anti-helmenthic, anti-diabetic, anti-atherogenic
and antibacterial activities against E. coli and Salmonella enterica Typhimurium, among oth-
ers [44,45]. β-Sitosterol, therefore, is already considered a functional bioactive compound,
which can be used in nutraceutical and food products (called functional foods), and the con-
ditions of use of its health claims have already been established in Commission Regulation
(EU) No. 686/2014 [46].

2.2.4. Long-Chain Aliphatic Alcohols

Four long-chain aliphatic alcohols (C24 to C30) were also detected in both E. globulus
leaf extracts representing about 3.6–5.1% of the total lipophilic compounds identified
(Table 1). The DCM extract from the EgL showed the highest amount with 1.76 g kg−1

of dw and the extract from the EgLHD showed the lowest amount (1.51 g kg−1 of dw).
Triacontan-1-ol was the major constituent of this lipophilic class in the extracts with contents
ranging from 0.86 to 1.01 g kg−1 of dw in the EgLHD and EgL, respectively, while tetracosan-
1-ol was the minor aliphatic alcohol (with 0.04 g kg−1 of dw in the EgLHD and 0.06 g kg−1

of dw in the EgL).

2.2.5. Other Compounds

Finally, other minor compounds were also present in the different extracts. A small
amount of tyrosol and gallic acid was found in the EgLHD (Table 1), accounting for
0.01 g kg−1 of dw and 0.04 g kg−1 of dw, respectively.

Glycerol was detected in an amount of 0.06 g kg−1 of dw in the EgLHD and traces in
the EgL. α-Tocopherol and 1,6-dihydroxy-2-methylanthraquinone were identified in both
extracts. In the case of α-tocopherol, also known as vitamin E, it is a lipophilic/liposoluble
antioxidant, and reports indicate that it plays an important role in skin protection. Due
to its properties, this compound is widely used as a low-cost antioxidant in cosmetic
formulations and also as a food preservative [44,47].

2.3. Cell Viability of Lipophilic Extracts

The cytotoxicity of lipophilic extracts from the EgL and EgLHD obtained with DCM
was evaluated, by the assessment of the cell viability using the MTT assay, in cell lines
representative of the innate immune system, skin, liver, and intestine, namely, macrophages
(RAW 264.7), fibroblasts (NIH/3T3), hepatocytes (HepG2), and intestinal cells (Caco-2)
(Figure 3). Macrophages (Figure 3A) were the more sensitive cells to the toxicity of the
extracts. After a 24 h treatment, the EgL and EgLHD extracts obtained with DCM were
devoid of toxicity (i.e., they did not reach 20% of cellular mortality) at concentrations
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below 1.6 µg mL−1 and 0.8 µg mL−1, respectively. In fibroblasts (Figure 3B), an absence of
toxicity was observed after a 24 h treatment with the lipophilic extracts at a concentration
below 6.3 µg mL−1 for the EgL and EgLHD. Regarding hepatocytes (Figure 3C), non-
toxic effects of the lipophilic extracts were observed at 24 h for concentrations below
12.5 µg mL−1 for the EgL, and 25 µg mL−1 for the EgLHD. In intestinal cells (Figure 3D),
which were the cell lines more sensitive to the toxic effects of the extracts, an absence
of toxicity was found after a 24 h incubation with both extracts at concentrations below
50 µg mL−1. In general, no differences in terms of toxicity were observed between the
lipophilic extracts of E. globulus leaves before or after hydrodistillation. No studies in the
literature report the toxicity of lipophilic extracts from eucalyptus; however, there are some
studies in the same cells with ursolic acid, which was the major compound found in these
extracts. For example, Yang et al. (2015) determined that around 30 µg mL−1 of ursolic acid
causes 50% mortality to hepatocytes HepG2 after 24 h exposure [48], while other studies
revealed that approximately 20–40 µg mL−1 of ursolic acid is non-toxic to the same cell
line. Here, 25 µg mL−1 of the lipophilic extracts, which were composed of 40–44% ursolic
acid, were safe to hepatocytes [49–51]. In addition, some studies have revealed that ursolic
acid showed a low toxicity at approximately 15 µg mL−1 to RAW 264.7 macrophages
after 24 h treatment [52], while almost 10 µg mL−1 was devoid of toxicity in peritoneal
macrophages [53]. On the other hand, one study also with RAW 264.7 macrophages did
not observe toxic effects in concentrations below 5 µg mL−1 after a 48 h incubation [54].

These studies revealed the susceptibility of macrophages to ursolic acid, which is
in accordance with our study where macrophages were the cells more sensitive to the
lipophilic extracts (at safe concentrations lower than 0.8–6.3 µg mL−1). Fibroblasts were
the second cell line more sensitive to the lipophilic extracts, with safe concentrations
between 6.3–12.5 µg mL−1. Actually, an in vitro study in the literature demonstrated that
concentrations exceeding 10 µg mL−1 influenced HSF fibroblasts viability after a 24 h
treatment [55]. Regarding intestinal cells, the more resistant cells to the toxicity of the
lipophilic extracts in our study were with safe concentrations from 50 µg mL−1, but a
study previously reported that concentrations above 10 µg mL−1 ursolic acid were toxic
to intestinal Caco-2 cells [56]. This result is not similar to our study because we observed
a low toxicity of the lipophilic extracts in intestinal cells; however, no exposure period
of ursolic acid was mentioned in the previous study. A cytotoxicity screening of the
lipophilic extracts obtained from E. globulus leaves before and after hydrodistillation was
performed for the first time in cell lines representing the immune system, skin, liver, and
intestine, disclosing its safe concentrations. The main compound identified in these extracts,
namely, ursolic acid, possesses relevant biological effects, including anti-inflammatory,
anticancer, antidiabetic, antioxidant, and antibacterial effects [57], and has been involved
in a range of pharmacological applications, which are associated with the prevention of
several diseases [58], such as skin conditions [59–61], liver, and intestinal damage [62–64],
as well as inflammatory diseases, particularly in diabetes [65,66]. The bioactivities of the
lipophilic extracts from E. globulus leaves, however, have not been studied yet; therefore,
our study reveals the potential of lipophilic extracts from E. globulus leaves regarding their
future incorporation in pharmaceutical formulations, and it supports the argument that
their bioactivities should be further investigated.
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Figure 3. Effect of the lipophilic extracts from E. globulus leaves before (EgL) and after (EgLHD) hy-
drodistillation obtained with dichloromethane (DCM) on the cell viability of RAW 264.7 macrophages
(A), NIH/3T3 fibroblasts (B), HepG2 hepatocytes (C), and Caco-2 intestinal (D) cells. The cells were
treated for 24 h with 0–100 µg mL−1 of EgL or EgLHD, and the cell viability was evaluated using a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Cells treated
with the medium alone were used as a control (CTRL). The results were expressed as the percentage
(%) of cell viability relative to the CTRL and represent the mean ± standard error of the mean (SEM)
of at least three independent experiments performed in triplicate. The statistical analysis was carried
out by one-way analysis of variance (ANOVA) followed by a Dunnett’s multiple comparison test.
* p < 0.05, *** p < 0.001, and **** p < 0.0001: significantly different compared to the CTRL.
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3. Materials and Methods
3.1. Reagents

The dichloromethane (p.a., ≥99% purity) and ethanol (p.a., ≥99% purity) were sup-
plied by Fisher Scientific (Thermo Fisher Scientific, Waltham, MA, USA). The pyridine (p.a.,
≥99.5% purity), N,O-bis(trimethylsilyl)trifluroacetamide (99% purity), trimethylchlorosi-
lane (99% purity), tetracosane (99% purity), hexadecanoic acid (≥99% purity), pentadecan-
1-ol (99% purity), stigmasterol (95% purity), and ursolic acid (≥98% purity) were supplied
by Sigma Chemical Co (Madrid, Spain). The gallic acid (≥97.5% purity) was purchased
from Sigma-Aldrich (Merck, Darmstadt, Germany). The Dulbecco’s Modified Eagle’s
Medium (DMEM), sodium bicarbonate, sodium pyruvate, non-essential amino acids, L-
glutamine, glucose, phenol red, trypsin-ethylenediamine tetraacetic acid (EDTA) solution
1X and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The fetal bovine serum (FBS), and
penicillin-streptomycin were obtained from Gibco (Carlsbad, CA, USA).

3.2. Samples Collection

E. globulus leaves, representative of harvesting biomass residues, were sampled from
6-year-old E. globulus trees, in October 2018, randomly selected from a property of “The
Navigator Company”, Braçal (GPS coordinates 40◦44′5.388 N, 8◦23′53.97 W), in the region
of Sever do Vouga, Portugal.

3.3. Hydrodistillation

Following the process of recovery of essential oils used at an industrial scale, a sample
of fresh E. globulus leaves was subjected to a hydrodistillation process until the complete
extraction of the EO (2–3 h), using the modified Clevenger apparatus [31]. The EO was
obtained with a 1.7% yield. The main components of the EO were 1,8-cineole (72.3%),
a-pinene (9.4%), E-pinocarveol (3.6%), limonene (2.3%), globulol (1.6), pinocarvone (1.4%)
and a-terpinyl acetate (1.2%) [31].

Then, so that the water content did not compromise the extraction of the lipophilic con-
tents, hydrodistilled leaves were air-dried until reaching a constant weight and grounded
to obtain a biomass with a particle size less than 2/3 mm before extraction.

3.4. Preparation of Lipophilic Extracts

Samples of E. globulus leaves before and after hydrodistillation (ca. 12 and 10 g of
dried biomass, respectively) were submitted, in triplicate, to Soxhlet extractions with DCM
for a period of 8 h. The solvent was evaporated to dryness, at a low-pressure and 35 ◦C
and the results were expressed as a percentage of dw. DCM is a very selective solvent to
extract lipophilic compounds from biomass [10].

3.5. GC–MS Analysis

Before the GC–MS analysis, aliquots containing about 15 to 20 mg of each dried
extract were dissolved in 250 µL of pyridine containing 0.4 mg of tetracosane (internal
standard) and then, 250 µL of N,O-bis(trimethylsilyl)trifluoroacetamide and 50 µL of
trimethylchlorosilane were added to converting compounds with hydroxyl and carboxyl
groups into trimethylsilyl ethers and esters, respectively. The mixture remained at 70 ◦C
for 30 min and the derivatized extracts were analyzed by GC–MS [42,67].

GC–MS analysis were carried out in a GC–MS-QP2010 Ultra (Shimadzu, Kyoto, Japan).
The compounds were separated in a DB-1 J&W capillary column (with a 30 m × 0.32 mm
inner diameter, and 0.25 µm film thickness), using helium as the carrier gas (40 cm s−1).
The chromatographic conditions were as follows: initial temperature, 80 ◦C for 5 min;
temperature rate, 4 ◦C min−1 up to 260 ◦C, 2 ◦C min−1 up to 285 ◦C, which was maintained
for 15 min. The injector temperature was 250 ◦C, and the transfer-line temperature was
290 ◦C, while the split ratio was 1:50. The mass spectrometer was operated in the electron



Int. J. Mol. Sci. 2023, 24, 6226 10 of 14

impact mode with an energy of 70 eV, and the data were collected at a rate of 1 scan s−1

over a range of m/z 35–900. The ion source was kept at 250 ◦C [68].
The eluted compounds identification was made by comparing their mass spectra (MS)

with the equipment’s mass spectral library (NIST Mass Spectral Library), by comparing the
MS fragmentation profiles with data from the literature [12,19,22] and by the co-injection
of standards.

For the semi-quantitative analysis, the GC–MS apparatus was calibrated with pure ref-
erence standards representative of the main families of compounds present in the lipophilic
extracts, namely, hexadecanoic acid, pentadecan-1-ol, stigmasterol, ursolic acid and gallic
acid, in relation to tetracosane (the internal standard), which allowed to determine the
respective response factors. The compounds were quantified by their peak areas in rela-
tion to tetracosane (the internal standard), corrected using the response factors, and their
abundance expressed in mg g−1 of extract and g kg−1 of dw of biomass.

Each of the three extracts, prepared from leaves before and after hydrodistillation,
was analyzed in duplicate (n = 6). The results presented are the average of the concordant
values obtained (with less than a 5% variation between aliquots of the same sample and
between tripled extracts of the same type of extraction).

3.6. Cell Culture

The mouse fibroblasts (NIH/3T3, ATCC CRL-1658, Manassas, VA, USA), and human
colorectal adenocarcinoma (Caco-2, ATCC HTB-37, Manassas, VA, USA) cell lines were
cultured with DMEM (#D5648), supplemented with 10% (v/v) heat-inactivated FBS, 1%
(v/v) antibiotic solution (from a 10,000 U mL−1 penicillin, and 10 000 µg mL−1 streptomycin
stock), 3.7 g L−1 of sodium bicarbonate and 1 mM sodium pyruvate. The culture medium of
the Caco-2 cell line was additionally supplemented with 1% (v/v) non-essential amino acids.
The mouse leukaemic macrophages cell line (RAW 264.7, ATCC TIB-71, Manassas, VA,
USA) was cultured in DMEM (#D5648) supplemented with 10% (v/v) non-inactivated FBS,
a 1% (v/v) penicillin/streptomycin antibiotic solution, 1.5 g L−1 of sodium bicarbonate,
and 1 mM sodium pyruvate. The human liver hepatocellular (HepG2, ATCC HB-8065,
Manassas, VA, USA) cell line was cultured in DMEM (#D5030) supplemented with 10%
(v/v) heat-inactivated FBS, a 1% (v/v) penicillin/streptomycin antibiotic solution, 1.5 g L−1

of sodium bicarbonate, 1 mM sodium pyruvate, 4 mM L-glutamine, 1 g L−1 of glucose
and phenol red. The cells were cultivated in 75 cm2 flasks in a humidified 5% CO2-95% air
atmosphere at 37 ◦C, and the medium was changed every 2–3 days. For passage and sub-
culturing, the fibroblasts, hepatocytes, and intestinal cells were detached using a trypsin-
EDTA solution 1X when the cells reached a 70–80% confluence, while the macrophages
were detached with a cell scrape. The cells were sub-cultured over a maximum of ten
passages [31].

3.7. Cell Viability Evaluation

For the assessment of cell viability, the MTT reduction assay was performed. RAW
264.7, Caco-2, HepG2, and NIH/3T3 cells were seeded in 96-well plates at a density of 9.6,
5, 2.5 or 1 × 104 cells/well, respectively, and allowed to stabilize for 24 h. The next day, the
culture medium was removed and substituted by an exposure medium (i.e., DMEM supple-
mented with 1% (v/v) FBS). The cells were incubated for 24 h at 37 ◦C with 0–100 µg mL−1

of lipophilic extracts from E. globulus leaves before and after hydrodistillation obtained
with DCM. The extracts were added from stock solutions prepared in DMSO and stored at
−20 ◦C. Cells treated with the medium alone were used as a control. After the incubation
period, the medium was aspirated after the incubation period and a solution of 0.5 mg
mL−1 MTT prepared in Krebs medium (i.e., 140 mM NaCl, 5 mM KCl, 1 mM NaH2PO4,
1 mM MgCl2, 9.6 mM Glucose, 20 mM HEPES, 1.5 mM CaCl2, and a pH of 7.4) was added.
The cells were incubated with MTT at 37 ◦C for 30 min (RAW 264. 7 cells), 1 h (HepG2 cells),
2 h (Caco-2 cells) or 4 h (NIH/3T3 cells). After that, the MTT solution was aspirated and
DMSO was added to dissolve the formed formazan crystals. The absorbance was measured
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after 10 min of shaking, at 570 nm using a SpectraMax Plus 384 Spectrophotometer (Molec-
ular Devices, San Jose, CA, USA). The results of at least three independent experiments
made in triplicate were expressed as a percentage (%) of the absorbance value obtained in
the control, which was considered 100%, and were graphically presented as a % of the cell
viability versus the concentration of the extracts [69].

Statistical Analysis

The results are represented as the mean ± standard error of the mean (SEM) of the
indicated number of experiments. The normality of the data distribution was evaluated us-
ing the D’Agostino and Pearson and Shapiro–Wilk normality tests. Statistical comparisons
between the groups were performed by a one-way analysis of variance (ANOVA) followed
by a Dunnett’s multiple comparison test. Significance was accepted at p values < 0.05. The
GraphPad Prism software (8.0.2, GraphPad Software Inc., San Diego, CA, USA) was used
to perform the statistical analysis.

4. Conclusions

The present study highlights promising insights into the chemical composition and
cytotoxicity of lipophilic extracts of E. globulus leaves before and after hydrodistillation. To
our knowledge, this is the first study of the chemical composition of hydrodistilled leaves.
The obtained extracts were characterized in detail by GC–MS, allowing the identification
and quantification of 31 compounds, including different families of compounds, such as
triterpenic compounds, fatty acids, long-chain aliphatic alcohol, only one sterol, β-sitosterol,
and other minor compounds. DCM extracts of the leaves before and after hydrodistilla-
tion were shown to exhibit valuable bioactive compounds, namely, triterpenic acids (e.g.,
betulonic, oleanolic, betulinic and ursolic acids) that are associated with numerous bio-
logical activities. The majority compound was ursolic acid, with contents ranging from
17.46–19.82 g kg−1 of dw. Interestingly, the extracts of the hydrodistilled leaves showed a
higher content of the identified compounds than the non-hydrodistilled leaves.

The non-toxic concentrations of the extracts in intestinal cells, hepatocytes (liver), fi-
broblasts (skin) and macrophages (innate immune system) were determined. No significant
differences in toxicity were observed between the extracts obtained from the leaves before
or after hydrodistillation. Macrophages were shown to be the most sensitive cells to the
extracts (with safe concentrations less than or equal to 0.8 µg mL−1) and intestinal cells the
most resistant (with non-toxic concentrations less than or equal to 50 µg mL−1).

This study highlights the potential of E. globulus leaves, promoting their economic ex-
ploitation as a source of bioactive compounds with potential applications in pharmaceutical,
nutraceutical and cosmetic formulations, which can only be implemented after the devel-
opment of sustainable extraction methodologies, as well as a thorough technical–economic
evaluation, and finally, an analysis to ensure the ecological impact of its exploitation. Fi-
nally, this study indicates that an integrated and sustainable exploitation of the species E.
globulus can be considered, combining the exploitation of the leaves, for the recovery of EO
and extracts enriched in value-added compounds, along with the exploitation of the wood,
which is the main raw material for pulp production.
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