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Abstract: In pointfree topology, the point-finite covers introduced by Dowker
and Strauss do not behave similarly to their classical counterparts with respect to
transitive quasi-uniformities, contrarily to what happens with other familiar types of
interior-preserving covers. The purpose of this paper is to remedy this by modifying
the definition of Dowker and Strauss. We present arguments to justify that this
modification turns out to be the right pointfree definition of point-finiteness. Along
the way we place point-finite covers among the classes of interior-preserving and
closure-preserving families of covers that are relevant for the theory of (transitive)
quasi-uniformities, completing the study initiated with [6].
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1. Introduction

Recall that pointfree topology deals with the category Frm of frames and
frame homomorphisms where a frame is a complete lattice satisfying the
distributive law

a ∧
∨

i∈I

bi =
∨

i∈I

(a ∧ bi) (1.1)

and a frame homomorphism is a map : L → M between frames preserving
finitary meets and arbitrary joins.

In the theory of functorial quasi-uniformities on topological spaces, interior-
preserving covers play a central role [9]. Indeed each family of interior-pre-
serving open covers of a space (X, T ) generates, in a canonical way (usually
referred to as the Fletcher construction [8]) a transitive quasi-uniformity on X
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compatible with the topology T (that is, which induces as its first topology
the given topology T ). For instance, with the set of all finite covers one
gets the Pervin quasi-uniformity and with the family of all point-finite (resp.
locally finite, spectrum, well-monotone) covers one gets the point-finite (resp.
locally finite, spectrum, well-monotone) quasi-uniformity [9]. Moreover, this
construction gives all transitive quasi-uniformities in the sense that, for any
transitive quasi-uniformity µ on X, compatible with T , there exists a family
of interior-preserving covers of (X, T ) that generates µ [2].

In the setting of frames, however, matters are a bit more technical: interior-
preserving (and, more generally, closure-preserving) covers induce transitive
quasi-uniformities in case they satisfy a certain condition which we refer to
as the Fletcher condition ([6], [7]). That is the case with finite, locally finite,
spectrum or well-monotone covers but not with the point-finite covers of
Dowker and Strauss [4]. Moreover, the notion of a point-finite family (which
is a notion weaker than local finiteness) is not strong enough to imply the
interior-preserving condition.

By formulating the classical definition inside the sublocale lattice, we pro-
pose a stronger notion of point-finiteness, still weaker than local finiteness,
but stronger enough to imply both interior-preserving and Fletcher condi-
tions. This makes the point-finite quasi-uniformity on frames behaving closer
to its classical role and keeps the pointfree version of the theorem of Lefschetz
that characterizes normality in terms of point-finite covers (due to Dowker
and Strauss [4]) true.

With this refinement of the point-finiteness definition one may redraw the
general picture in ([7], Section 4), making it very similar to the corresponding
classical picture:
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2. The sublocale lattice

The dual category of Frm is the category Loc of locales. We adopt the
usual distinction [10], in notation and terminology, between frames and lo-
cales, which are the same thing, but where morphisms go in the opposite
direction. Given a locale X, we write O(X) for the corresponding frame.
Given a morphism f : Y → X in Loc, we write f ∗ : O(X) → O(Y ) for
the corresponding frame homomorphism. For general notions and results
concerning frames and locales we refer to [11] or [14].

A sublocale j : S  X of a locale X is a regular subobject of X in Loc,
or, in frame terms, a quotient j∗ : O(X) ։ O(S) of the frame O(X). On
the class S(X) of sublocales of X we have the natural preorder j1 ≤ j2 if
and only if there is a j such that j2 · j = j1 (note that this j is necessarily
again a sublocale). Sublocales ji : Si  X (i = 1, 2) are equivalent if j1 ≤ j2

and j2 ≤ j1 or, equivalently, if there is an isomorphism j : S1 → S2 such that
j2 · j = j1.
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The partially ordered set S(X) is a complete lattice, much more compli-
cated than its topological counterpart. Indeed, in the latter every element
has a complement (which makes it a complete Boolean algebra) whilst in the
former most elements are not complemented: in general, for each locale X,
S(X) is a co-frame (that is, it satisfies the dual law of (1.1)) but it is not a
frame unless X is scattered [16]; indeed, S ∧

∨

i∈I Si =
∨

i∈I(S ∧ Si) for all
{Si | i ∈ I} ⊆ S(X) if and only if S is complemented [10]. However, there
are sufficient complemented elements in order for S(X) to be generated by
them (i.e. S(X) is zero-dimensional). Specifically:

There are, for every a ∈ OX, the open sublocales Xa  X given by the
frame homomorphisms

â : OX −→ ↓ a := {x ∈ OX | x ≤ a}
x 7−→ x ∧ a,

and the closed sublocales X-Xa  X given by the frame homomorphisms

ǎ : OX −→ ↑ a := {x ∈ OX | x ≥ a}
x 7−→ x ∨ a.

Open and closed sublocales are complements in S(X) and every sublocale
j : Y  X satisfies

j =
∧

{Xa ∨ X-Xb | j∗(a) = j∗(b)}.

Further, families {Xa | a ∈ A} of open sublocales are distributive [15], that
is, satisfy S ∧

∨

a∈A Xa =
∨

a∈A(S ∧ Xa) for all S ∈ S(X).
Every sublocale j : S  X has a closure cl(j) : cl(S)  X, which is the

smallest closed sublocale that contains j and an interior int(j) : int(S)  X
(the largest open sublocale contained in j).

A family S = {Si | i ∈ I} of sublocales of X is closure-preserving if for all
J ⊆ I,

cl(
∨

j∈J

Sj) =
∨

j∈J

cl(Sj)

and it is a cover of X if
∨

i∈I Si = X [16]. Similarly, we say that S is
interior-preserving if for all J ⊆ I,

int(
∧

j∈J

Sj) =
∧

j∈J

int(Sj).
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Further, S is locally finite [16] if there exists an open cover C of X such that
for all C ∈ C there exists a finite set IC for which C∧

∨

j∈J Sj = C∧
∨

j∈J∩IC
Sj

for all J ⊆ I. The cover C is said to witness the local finiteness of S.

3. Interior-preserving covers

Sublocales of X correspond to quotients on the frame O(X), thus to frame
congruences on O(X), that is, equivalence relations on O(X) closed under
finite meets and arbitrary joins. With the inclusion ordering, the set of all
congruences on L = O(X) forms a frame C(L), called the congruence frame

of L, and S(X)op ∼= C(L). Open sublocales Xa correspond to congruences

∆a = {(x, y) | x ∧ a = y ∧ b}

and closed sublocales X-Xa correspond to congruences

∇a = {(x, y) | x ∨ a = y ∨ b}.

Therefore, each ∇a is complemented in C(L) with complement ∆a.
Further, ∇L := {∇a | a ∈ L} is a subframe of C(L) and the correspondence

a 7→ ∇a defines an epimorphism and a monomorphism ∇L : L → C(L) which
gives an isomorphism L → ∇L. On the other hand, the map a 7→ ∆a is a
dual poset embedding L → ∆L taking finitary meets to finitary joins and
arbitrary joins to arbitrary meets, where ∆L denotes the subframe of C(L)
generated by {∆a | a ∈ L}.

Therefore, open covers {Xa | a ∈ A ⊆ OX} of X correspond to families
{∆a | a ∈ A} of open congruences satisfying

∧

a∈A ∆a = 0, that is, ∆∨

A = 0;
this means that

∨

A = 1 i.e. A is a cover of the frame L = OX. Note that
cl(∆a) = ∇a∗ and int(∇a) = ∆a∗ (where a∗ denotes the pseudocomplement
of a).

For each cover A of L let OA and CA denote respectively, the corresponding
open cover {∆a | a ∈ A} and closed co-cover {∇a | a ∈ A}.

Proposition 3.1.

(1) OA is interior-preserving if and only if
∨

B

∆b = ∆∧

B b , for all B ⊆ A.

(2) OA is closure-preserving if and only if
∧

B

∇b∗ = ∇∧

B b∗ , for all B ⊆ A.

(3) CA is interior-preserving if and only if
∨

B

∆b∗ = ∆∧

B b∗ , for all B ⊆ A.
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(4) CA is closure-preserving if and only if
∧

B

∇b = ∇∧

B b , for all B ⊆ A.

Proof. (1) By definition, OA is interior-preserving if and only if, for every
B ⊆ A, int(

∨

b∈B ∆b) =
∨

b∈B int(∆b). Since int(∆b) = ∆b, we only have to
show that int(

∨

b∈B ∆b) = ∆∧

b∈B b, that is, that ∆∧

b∈B b is the smallest open
congruence that contains

∨

b∈B ∆b. Obviously ∆∧

b∈B b is open and contains
∨

b∈B ∆b. Let ∆x be an open congruence of L such that
∨

b∈B ∆b ≤ ∆x. Then
∆b ≤ ∆x, for every b ∈ B, that is, x ≤ b, thus x ≤

∧

b∈B b and ∆∧

b∈B b ≤ ∆x.

(2) By definition, OA is closure-preserving if and only if, for every B ⊆ A,
cl(
∧

b∈B ∆b) =
∧

b∈B cl(∆b), that is, cl(∆∨

b∈B b) =
∧

b∈B ∇b∗. The congruence
∇∧

b∈B b∗ is closed and it is contained in ∆∨

b∈B b, since

∇∧

b∗
b∈B

∧∇∨

b
b∈B

= ∇∧

b∗∧
∨

b
b∈B b∈B

= ∇0 = 0.

It remains to check that this is the largest closed congruence of L satisfying
those conditions. Let ∇x such that ∇x ≤ ∆∨

b∈B b. Then ∇x ∧ ∇∨

b∈B b = 0,
that is, ∇x∧

∨

b∈B b = 0. Therefore x ∧
∨

b∈B b = 0 and x ≤
∧

b∈B b∗, which
implies ∇x ≤ ∇∧

b∈B b∗.

Assertions (3) and (4) may be proved similarly. �

Since the necessary and sufficient condition in 3.1(4) is a consequence of
the one in 3.1(1) by pseudocomplementation, we have:

Corollary 3.2. For any cover A of L, if OA is interior-preserving then CA

is closure-preserving. �

Contrarily to what happens in the classical case, the converse to Corollary
3.2 does not hold, in general, as the following example shows.

Example 3.3. Let A be the cover {n | n ∈ N} of the frame

L = (ω + 1)op = {∞ < · · · < 2 < 1}.

We show that CA is closure-preserving. Let B be a subset of A. If B is finite
then, trivially,

∧

n∈B ∇n = ∇∧

n∈B n. In case B is infinite then
∧

n∈B n = ∞
and ∇∧

n∈B n = ∇∞ = 0. On the other hand, if (x, y) ∈
∧

n∈B ∇n then x∨n =
y ∨ n, for all n ∈ B, which implies x = y and, consequently,

∧

n∈B ∇n = 0.
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In order to prove that OA is not interior-preserving it suffices to show that
∆∧

n∈N
n >

∨

n∈N ∆n. Of course ∆∧

n∈N
n = ∆∞ = 1. On the other hand, it is

easy to check that

{(a, b) ∈ L × L | a = ∞ iff b = ∞}

is a congruence of L that contains
⋃

n∈N ∆n. Further, it is even the least
congruence of L that satisfies this condition, so

∨

n∈N

∆n = {(a, b) ∈ L × L | a = ∞ iff b = ∞}

which shows that
∨

n∈N ∆n < 1.

However, if L is scattered, that is, if every congruence of L is complemented
[15] or, equivalently,

θ ∨
∧

i∈I

θi =
∧

i∈I

(θ ∨ θi), for every θ, θi ∈ CL, i ∈ I, [16]

the conditions in 3.1(4) and 3.1(1) are equivalent, as for spaces:

Proposition 3.4. For any cover A of a scattered frame L, OA is interior-

preserving if and only if CA is closure-preserving.

Proof. By Corollary 3.2, if OA is interior-preserving then CA is closure-
preserving. Conversely, if CA is closure-preserving then, by Proposition 3.1(4)
∧

b∈B ∇b = ∇∧

b∈B b, for all B ⊆ A, and then, by pseudocomplementation,
(
∧

b∈B ∇b)
∗ = ∆∧

b∈B b. Since L is scattered, the second De Morgan law is
valid in CL thus

∨

b∈B ∆b = ∆∧

b∈B b and OA is interior-preserving. �

The preceding results justify to say that a cover A of a frame L is interior-

preserving if it satisfies the condition in 3.1(1). If A satisfies only condition
3.1(4) we say that A is closure-preserving.

Therefore, a cover A of L is interior-preserving if and only if
∨

b∈B ∆b is
open for every B ⊆ A; A is closure-preserving if and only if the congruence
∧

b∈B ∇b is closed for all B ⊆ A.

Remark 3.5. The closure-preserving subsets of a frame L are precisely the
conservative subsets introduced by Dowker and Strauss in [4] and studied in
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detail by Chen in [3]. They are characterized [3, Lemma 2.3] as the subsets
A of L for which

x ∨ (
∧

b∈B

b) =
∧

{x ∨ b | b ∈ B}, for every B ⊆ A and every x ∈ L.

4. Point-finite families of Dowker and Strauss

We recall from [4] that a subset A of a frame L is point-finite if

x =
∧

F∈Pf (A)

(x ∨ cF ) for every x ∈ L, (4.1)

where Pf(A) denotes the set of all finite subsets of A and cF =
∨

(A \ F ).
This notion is stronger than local finiteness. Indeed, if A is locally finite,
that is, if there exists a cover C of L for which Ac := {a ∈ A | a ∧ c 6= 0} is
finite for all c ∈ C, then, for every c ∈ C and x ∈ L, we have

c ∧
∧

F∈Pf (A)

(x ∨ cF ) ≤ c ∧ (x ∨ cAc
) = c ∧ x;

since C is a cover, this implies
∧

F∈Pf (A)(x∨ cF ) ≤ x, which is the non-trivial
part of the point-finiteness condition.

Furthermore, point-finite covers are closure-preserving [6] but they are not,
in general, interior-preserving [6, Example 3.2].

For any cover A of L let

δA =
∨

{

(
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a) | A1 ∪ A2 = A
}

.

A cover A is said to be a Fletcher cover [6] whenever δA = 1. These covers
are crucial for the construction of transitive compatible quasi-uniformities on
frames: besides being closure-preserving, they must satisfy this condition [6].

Examples of Fletcher covers are finite covers, locally finite covers, spectrum
covers and well-monotone covers (see [6] for the details). However, that
does not happen with the point-finite covers of Dowker and Strauss, as the
following example shows.

Consider the frame of reals L(R) [1], generated by pairs of rationals (p, q),
and its subframe

L[0, 1] = ↑((−, 0) ∨ (1,−))
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(the frame of reals in the closed unit interval), which is generated by elements

Kp, qJ = (p, q) ∨ (−, 0) ∨ (1,−), p, q ∈ Q.

Let A be the cover
{

1,
z

1
n+1 ,

1
n

r
: n ∈ N

}

of L[0, 1].

Lemma 4.1. A is interior-preserving.

Proof. Note that any cover in which every infinite subset B contains b1 and
b2 satisfying b1 ∧ b2 = 0 is interior-preserving:

∨

b∈B

∆b ≥ ∆b1 ∨ ∆b2
= ∆b1∧b2

= ∆0 ≥ ∆∧

B.

This happens precisely with cover A: for any n 6= m, K 1
n+1 ,

1
nJ∧K 1

m+1 ,
1
mJ = 0.

�

The cover A is not Fletcher, that is, δA 6= 1, as we prove in the sequel.
Since A is interior-preserving, then

δA =
∨

A1∪A2=A

(∇∧

a
a∈A1

∧ ∆∨

a
a∈A2

).

In this join it suffices to consider the partitions A1∪A2 of A in which 1 ∈ A1,
since 1 ∈ A2 implies ∆∨

a∈A2
a = ∆1 = 0. On the other hand, if A1 contains

two distinct elements
z

1
n+1 ,

1
n

r
and

z
1

m+1 ,
1
m

r
then

∧

a∈A1
a = 0. Therefore

the remaining partitions are

A1 =
{

1,
z 1

n + 1
,
1

n

r}
and A2 = A \ A1.

Thus,

δA =
∨

n∈N

(

∇ K 1
n+1 , 1

n
J ∧ ∆∨

K 1
m+1 , 1

m
J

m∈N\{n}

)

.

But, as we show in the following lemma,

∇ K 1
n+1 , 1

n
J ≤ ∆∨ K 1

m+1 , 1
m

J
m∈N\{n}

, for every n ∈ N,

hence

δA =
∨

n∈N

∇ K 1
n+1 , 1

n
J = ∇∨

K 1
n+1 , 1

n
J

n∈N

,

which implies that δA < ∇1 = 1.
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Lemma 4.2. For any n ∈ N,

∇ K 1
n+1 , 1

n
J ≤ ∆∨ K 1

m+1 , 1
m

J
m∈N\{n}

.

Proof. We have, for each n ∈ N:

∇ K 1
n+1 , 1

n
J ∧∇∨ K 1

m+1 , 1
m

J
m∈N\{n}

= ∇ K 1
n+1 , 1

n
J ∧(

∨ K 1
m+1 , 1

m
J )

m∈N\{n}

= ∇0 = 0.

Thus

∇ K 1
n+1 , 1

n
J ≤

(

∇∨

K 1
m+1 , 1

m
J

m∈N\{n}

)∗
= ∆∨

K 1
m+1 , 1

m
J

m∈N\{n}

.

�

We are finally ready to show that A is point-finite, that is, for every x ∈
L[0, 1],

∧

F∈Pf (N)

(

x ∨
∨

m/∈F

z 1

m + 1
,

1

m

r)
≤ x. (4.2)

We begin by showing that (4.2) holds for x = 0, that is,

∧

F∈Pf (N)

∨

m/∈F

z 1

m + 1
,

1

m

r
= 0.

Consider n ∈ N. The set F = {1, 2, . . . , n} belongs to Pf(N) and

∨

m/∈F

z 1

m + 1
,

1

m

r
=

∨

m≥n+1

z 1

m + 1
,

1

m

r
,

which implies

∧

F∈Pf (N)

∨

m/∈F

z 1

m + 1
,

1

m

r
≤
∧

n∈N

∨

m≥n+1

z 1

m + 1
,

1

m

r
=
∧

n∈N

z 1

n + 1
,
1

n

r
= 0.

The proof of (4.2) for a non-zero element of L[0, 1] is an immediate conse-
quence of the following result:

Lemma 4.3. Let x, y ∈ L[0, 1]. If y ≤ x ∨
∨

m/∈F

z
1

m+1 ,
1
m

r
for every F ∈

Pf(N), then y ≤ x.
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Proof. The result is obviously true for y = 0. Assume that y � x is a
nonzero element of L[0, 1] which satisfies the hypothesis. This means that
there exists Kp, qJ≤ y, with q > 0, p < 1 and p < q, such that Kp, qJ � x.
Then, there exists a rational r ∈ [0, 1] that satisfies

p < r < q and Kp′, q′J � x, for every Kp′, q′J such that p′ < r < q′. (4.3)

There are two possibilities:

Case 1: r ∈]0, 1]. Then there exists n ∈ N such that 1
n+1 < r ≤ 1

n . Therefore

p ∨ 1
n+1 < r < q and

z
p ∨

1

n + 1
, q

r
= Kp, qJ∧

z 1

n + 1
, q

r
≤ y ≤ x ∨

∨

m/∈F

z 1

m + 1
,

1

m

r

for F = {1, 2, . . . , n}. On the other hand,

z 1

n + 1
, q

r
∧

(

∨

m/∈F

z 1

m + 1
,

1

m

r)
= 0.

Thus,
z
p ∨ 1

n+1 , q
r

≤ x, which contradicts (4.3).

Case 2: r = 0 is the only rational that satisfies (4.3). Then K0, qJ≤ x.
Consider n ∈ N such that 1

n+1 < q ≤ 1
n (we may assume, without loss of

generality, that q ≤ 1) and take F = {1, 2, . . . , n}. By hypothesis,

y ≤ x ∨
∨

m/∈F

z 1

m + 1
,

1

m

r
= x,

which contradicts (4.3). �

In conclusion we have:

Proposition 4.4. The cover A is an interior-preserving and point-finite

cover of L[0, 1] which is not Fletcher. �
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5. Point-finite families

A family S = {Si | i ∈ I} of subsets of a set X is called point-finite [5] if
for every x ∈ X the set {i ∈ I | x ∈ Si} is finite. Denoting

⋃

{Si | i ∈ I \F},
for any finite F ⊆ I, by SF , it is obvious that S is point-finite if and only
if
⋂

F∈Pf (I) SF = ∅ or, equivalently, T =
⋂

F∈Pf (I)(T ∪ SF ) for every T ⊆ X.
Clearly, any locally finite family is point-finite and any point-finite open cover
is interior-preserving [5].

In view of this definition, it is natural to define a family S = {Si | i ∈ I}
of sublocales of a locale X point-finite whenever

T =
∧

F∈Pf (I)

(T ∨ SF ) for every T ∈ S(X), (5.1)

where SF is the sublocale
∨

{Si | i ∈ I \ F}. Note that, by the co-frame
distributive law of S(X), (5.1) is equivalent to

∧

F∈Pf (I)

SF = 0.

Proposition 5.1. Each locally finite family of sublocales is point-finite.

Proof. Let S = {Si | i ∈ I} be a locally finite family of sublocales of X and
consider the corresponding witnessing open cover C. Since open families are
distributive we have
∧

F∈Pf (I)

SF =
(

∨

C∈C

C
)

∧
∧

F∈Pf (I)

SF =
∨

C∈C

(C ∧
∧

F∈Pf (I)

SF ) ≤
∨

C∈C

(C ∧ SIC
) = 0.

�

Proposition 5.2. Each point-finite cover of a locale is interior-preserving.

Proof. We only need to show that int(
∧

j∈J Sj) ≤
∧

j∈J int(Sj) for every
infinite J ⊆ I. For each F ∈ Pf(I) there exists jF ∈ J \ F . Consequently,
SF ≥ SjF

and

0 =
∧

F∈Pf (I)

SF ≥
∧

F∈Pf (I)

SjF
≥ int(

∧

F∈Pf (I)

SjF
) ≥ int(

∧

j∈J

Sj).

�
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Now, let S = {Xa | a ∈ A} be a point-finite open cover of X and consider
the corresponding open cover {∆a | a ∈ A} of congruences. The point-
finiteness of S means that

∨

F∈Pf (A)

(
∧

a∈A\F

∆a) = 1.

Since
∧

a∈A\F ∆a = ∆cF
, this is equivalent to

∨

F∈Pf (I) ∆cF
= 1.

This motivates us to define a point-finite cover A of a frame L as a cover
satisfying

∨

F∈Pf (A)

∆cF
= 1. (5.2)

Remarks 5.3. (1) Condition (5.2) is stronger than condition (4.1) of Dowker
and Strauss. Indeed, by De Morgan law,

∨

F∈Pf (A) ∆cF
= 1 implies

∧

F∈Pf (A) ∇cF
= 0 thus, for every x ∈ L,

∇x = ∇x∨
∧

F∈Pf (A)

∇cF
=

∧

F∈Pf (A)

(∇x∨∇cF
) =

∧

F∈Pf (A)

∇x∨cF
≥ ∇∧

F∈Pf (A)(x∨cF )

from which it follows that x ≥
∧

F∈Pf (A)(x ∨ cF ). Hence (4.1) holds.
The reverse implication is not true as the example of Proposition 4.4, com-

bined with Proposition 5.5 below, shows.
(2) By the properties of open congruences,

∨

F∈Pf (A) ∆cF
≤ ∆∨

F∈Pf (A) cF
.

Therefore condition (5.2) implies, in particular, that
∧

F∈Pf (A) cF = 0. Condi-

tion (4.1) of Dowker and Strauss lies precisely between those two conditions:

(5.2) ⇒ (4.1) ⇒
∧

F∈Pf (A)

cF = 0.

Lemma 5.4. For every point-finite family A of L,

∨

F∈Pf (A)

(∇∧

F ∧ ∆cF
) =

(

∨

F∈Pf (A)

∇∧

F

)

∧
(

∨

F∈Pf (A)

∆cF

)

.

Proof. Trivially

∨

F∈Pf (A)

(∇∧

F ∧ ∆cF
) ≤

(

∨

F∈Pf (A)

∇∧

F

)

∧
(

∨

F∈Pf (A)

∆cF

)

,
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so it suffices to check that

∇∧

F ∧ ∆cG
≤

∨

H∈Pf (A)

(∇∧

H ∧ ∆cH
)

for all F, G ∈ Pf(A). Let F, G ∈ Pf(A), F 6= G.

Case 1: ∃a ∈ F : a /∈ G. This case is obvious: ∇∧

F ∧ ∆cG
≤ ∇a ∧ ∆a = 0.

Case 2: F ⊂ G. Let G = F ∪ {a1, a2, . . . , an},

F0 = F, F1 = F0 ∪ {a1}, . . . , Fn = Fn−1 ∪ {an} = G

and

G0 = G, G1 = G0 \ {a1}, . . . , Gn = Gn−1 \ {an} = F.

It is easy to prove, by induction over n ∈ N, that

∇∧

F ∧ ∆cG
=

n
∨

i=0

(∇∧

Fi
∧ ∆cFi

).

Indeed, the case n = 1 is straightforward: F0 = F, F1 = G, G0 = G, G1 = F
and

∇∧

F ∧ ∆cG
= (∇∧

F ∧ ∆cG
) ∧ (∇a1

∨ ∆a1
)

= (∇∧

F∧a1
∧ ∆cG

) ∨ (∇∧

F ∧ ∆cG∨a1
)

= (∇∧

F1
∧ ∆cF1

) ∨ (∇∧

F0
∧ ∆cF0

).

Now, let n = k + 1 and assume the result holds for k. Then

∇∧

F ∧ ∆cG
= (∇∧

F ∧ ∆cG
) ∧ (∇a1

∨ ∆a1
)

= (∇∧

F∧a1
∧ ∆cG

) ∨ (∇∧

F ∧ ∆cG∨a1
)

= (∇∧

F1
∧ ∆cG

) ∨ (∇∧

F ∧ ∆cG1
),

which, by inductive hypothesis, is equal to

k+1
∨

i=1

(∇∧

Fi
∧ ∆cFi

) ∨
k
∨

i=0

(∇∧

Fi
∧ ∆cFi

) =
k+1
∨

i=0

(∇∧

Fi
∧ ∆cFi

).
�

Proposition 5.5. Each point-finite cover is a Fletcher cover.
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Proof. Let

δA =
∨

{
∧

a∈A1

∇a ∧
∧

a∈A2

∆a | A1 ∪ A2 = A}.

Then

δA ≥
∨

{
∧

a∈F

∇a ∧
∧

a∈A\F

∆a | F ∈ Pf(A)}

=
∨

F∈Pf (A)

(∇∧

F ∧ ∆cF
),

so, using Lemma 5.4, we get

δA ≥
(

∨

F∈Pf (A)

∇∧

F

)

∧
(

∨

F∈Pf (A)

∆cF

)

=
∨

F∈Pf (A)

∇∧

F = ∇∨

F∈Pf (A)

∧

F = 1,

since A is a cover. �

From Propositions 5.2 and 5.5 it follows that the family A of all point-finite
covers of a frame L induces, by the method introduced in [6], a transitive
quasi-uniformity PF on CL compatible with L. From the following result it
follows that A is an adequate kind of covers [7], which, in particular, implies
that PF is functorial (and so we may add it to our table of examples in
[7]). In order to prove the result we need to recall the well-known fact that,
for any frame homomorphism h : L → M , there exists a (unique) frame
homomorphism h : CL → CM , given by h(∇x) = ∇h(x) and h(∆x) = ∆h(x),
making the diagram

L
∇L //

h
��

CL

h
���
�
�

M
∇M

// CM

commute [12].

Proposition 5.6. Let h : L → M be a frame homomorphism. If A is a

point-finite family of L then h[A] is a point-finite family of M .

Proof. For F ∈ Pf(A) and G ∈ Pf(h[A]) let cA
F and c

h[A]
G denote respectively

∨

(A \F ) and
∨

(h[A] \G). From the hypothesis
∨

F∈Pf (A) ∆cA
F

= 1 it readily
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follows that

1 = h(
∨

F∈Pf (A)

∆cA
F
) =

∨

F∈Pf (A)

h(∆cA
F
) =

∨

F∈Pf (A)

∆h(cA
F ).

So it suffices to show that
∨

F∈Pf (A)

∆h(cA
F ) ≤

∨

G∈Pf (h[A])

∆
c
h[A]
G

,

which is easy, since h[F ] ∈ Pf(h[A]) for any F ∈ Pf(A) and

h(cA
F ) = h(

∨

a∈A\F

a) =
∨

a∈A\F

h(a) ≥ c
h[A]
h[F ].

�

Finally, recall from [4] that a cover A = {ai | i ∈ I} of L is shrinkable if
there exists a cover B = {bi | i ∈ I} such that ai ∨ b∗i = 1 for every i ∈ I.
Note that a frame L is normal if for any a, b ∈ L with a ∨ b = 1 there exist
u, v ∈ L with u∧v = 0, a∨u = 1 and b∨v = 1, which is equivalent to saying
that any binary cover {a, b} is shrinkable.

The pointfree version of Lefschetz Theorem [13] presented in [4, Proposition
1] improves this by asserting that a frame is normal if and only if each point-
finite cover (in the sense of Dowker and Strauss) is shrinkable. Now, since our
condition of point-finiteness is stronger than the one by Dowker and Strauss
but still weaker than finiteness, the pointfree version of Lefschetz Theorem
also holds for our notion:

Proposition 5.7. A frame L is normal if and only if each point-finite cover

is shrinkable. �
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