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Universidade de Coimbra
Preprint Number 06–31

REGULARITY OF ENTROPY SOLUTIONS OF QUASILINEAR
ELLIPTIC PROBLEMS RELATED WITH HARDY-SOBOLEV

INEQUALITIES

BOUMEDIENE ABDELLAOUI, EDUARDO COLORADO AND MANEL SANCHÓN

ABSTRACT: This article is concerned with the regularity of the entropy solution of
{

−div (|x|−γp|∇u|p−2∇u) = f(x) in Ω,
u = 0 on∂Ω,

whereΩ is a smooth bounded domainΩ of R
N such that0 ∈ Ω, 1 < p < N , and

γ < (N − p)/p. Assumingf ∈ Lq(Ω, |x|α(q−1)dx) for someq ≥ 1 andNγp/(N − p) ≤
α ≤ (γ + 1)p, we obtain estimates for the entropy solutionu and its weak gradient in
Lebesgue spaces with weights. Moreover, we introduce some explicit examples showing
the optimality of our results and a relation between our problem and a Hardy-Sobolev type
inequality.

AMS SUBJECT CLASSIFICATION (2000): 35D10, 35J25; 35J70; 46E35 .

1.Introduction.
Let Ω be a smooth bounded domain ofR

N such that0 ∈ Ω. Let 1 < p < N and
−∞ < γ < (N − p)/p. We consider the quasilinear elliptic problem

{

−div (|x|−γp|∇u|p−2∇u) = f(x) in Ω,
u = 0 on∂Ω.

(1)

Throughout the paper we assume thatf belongs to the Banach space
(Eq

α(Ω), ‖ · ‖α,q), for someq andα satisfying

q ≥ 1 and
Nγp

N − p
≤ α ≤ (γ + 1)p, (2)

where

Eq
α(Ω) :=

{

f : |x|αf ∈ Lq(Ω, |x|−αdx)
}

≡ Lq(Ω, |x|α(q−1)dx)

and
‖f‖(α,q) := ‖f‖Lq(Ω,|x|α(q−1)dx).
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Problem (1) and assumption (2) are related with the following Hardy-Sobolev
inequality which is an immediate consequence of some well known Caffarelli-
Kohn-Nirenberg inequalities (see [8]).

Lemma 1.1. Let r ≥ 1 andα, γ ∈ R such thatα < N andγ < (N − r)/r. Let

r∗α,γ :=
(N − α)r

N − (γ + 1)r
.

There exists a positive constantD depending only on the parameters and inde-
pendent ofΩ such that

(
∫

Ω

|φ|r
∗

α,γ |x|−αdx

)1/r∗α,γ

≤ D

(
∫

Ω

|∇φ|r|x|−γrdx

)1
r

, (3)

for all φ ∈ C∞
0 (Ω), if and only if

α− r ≤ γr ≤
(N − r)α

N
.

We note that forα, γ = 0 the previous inequality reduces to the classical
Sobolev inequality. Forα = (γ + 1)r one obtains the Hardy-Sobolev inequal-
ity (if in addition γ = 0 andr = 2 one has the classical Hardy inequality). In the
last section of this paper we give some examples related to these inequalities and
problem (1).

The energy setting for problem (1) is the weighted Sobolev spaceD1,p
0,γ(Ω),

which is defined as the completion ofC∞
0 (Ω), with respect to the norm

‖φ‖γ,p :=

(
∫

Ω

|∇φ|p |x|−γp dx

)1/p

.

However, this variational setting requires that the right-hand sidef will be in
the dual spaceD−1,p′

−γ (Ω) of D1,p
0,γ(Ω). Under this requirement it is easy to obtain

the existence and uniqueness of a weak energy solutionu ∈ D1,p
0,γ(Ω) using the

classical results developed in the sixties by Browder and Minty (see [15]). By a
weak energy solutionof (1) we mean a functionu ∈ D1,p

0,γ(Ω) such that
∫

Ω

|∇u|p−2∇u · ∇φ |x|−γpdx =

∫

Ω

fφ dx for all φ ∈ C∞
0 (Ω).
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As a consequence of Lemma 1.1 we have thatEq
α(Ω) ⊂ D−1,p′

−γ (Ω) for all

q ≥ q̃ :=
(N − α)p

(p− 1)N + (γ + 1 − α)p
and

Nγp

N − p
≤ α ≤ (γ + 1)p (4)

(see Lemma 2.3 below). Therefore, iff ∈ Eq
α(Ω), with α andq satisfying (4),

then there exists a unique weak energy solutionu ∈ D1,p
0,γ(Ω) of (1).

Remark 1.2. The regularity theory of finite energy solutions of ellipticequations
in divergence form, has been investigated by brilliant mathematicians of XX cen-
tury. The first works by De Giorgi in 1957, [10], and Nash in 1958, [18]. Later,
appeared the papers by Moser [16], [17] with different proofs. Some more rele-
vant results were given by Stampacchia, Ladyzhenskaya-Ural’tseva, Serrin, etc.

Closer to the regularity of the problems we study here, are the Cκ regularity
results studied in [12] for the linear case:p = 2, −∞ < γ < (N − 2)/2, and in
[9] for the nonlinear case:1 < p < N , −∞ < γ < (N − p)/p, where, among
other results, is proved that iff satisfy

∫

Ω

|f |r|x|
Nγp
N−p

(r−1)dx <∞,

for somer > N/p, thenu ∈ L∞(Ω) and moreover,u ∈ Cκ(Ω) for some0 < κ <
1. Observe that the previousL∞ result is covered in Theorem 1.3 (i) below.

Forf /∈ D−1,p′

−γ (Ω) problem (1) does not admit any weak energy solution. How-
ever there exists a new framework for which problem (1) is solvable. More pre-
cisely, defining the truncation functionTt by

Tt(s) := max {−t,min{t, s}} , s ∈ R,

we say that a measurable functionu is an entropy solutionof (1) if Tt(u) ∈
D1,p

0,γ(Ω), for everyt > 0, and
∫

Ω

|∇u|p−2∇u · ∇Tt(u− v) |x|−γpdx =

∫

Ω

f Tt(u− v) dx, (5)

for everyt > 0, and for everyv ∈ D1,p
0,γ(Ω) ∩ L∞(Ω). We note that a measurable

functionu such thatTt(u) ∈ D1,p
0,γ(Ω), for everyt > 0, does not necessarily belong

toW 1,1
0 (Ω). However, it is possible to define its weak gradient (see Lemma 2.4),

still denoted by∇u.
Bénilanet al. [3] introduced this notion of solution to problem (1) forγ = 0

andf ∈ L1(Ω). They proved the existence and uniqueness of an entropy solution
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to problem (1). Recently, Peral and one of the authors [1] extended these results
to everyγ < (N − p)/p. Therefore, we may assume the existence of a unique
entropy solution to (1), sinceEq

α(Ω) ⊂ L1(Ω) for all α andq satisfying (2). Our
main purpose here is to study the regularity of such a solution.

The first result that we prove concerns to the regularity of the entropy solution
in some appropriate Lebesgue spaces with weights.

Theorem 1.3. Assumef ∈ Eq
α(Ω) for someα andq satisfying(2). Let

|Ω|α :=

∫

Ω

|x|−αdx and r1 :=
(p− 1)(N − α)q

N − α− (γp+ p− α)q
. (6)

There exists a positive constantC, depending onN , α, γ, andp such that ifu is
the entropy solution of(1) then the following assertions hold:

(i) If α < (γ+1)p andq > (N −α)/(γp+ p−α), thenu ∈ L∞(Ω). Moreover,

‖u‖∞ ≤ C‖f‖
1

p−1

(α,q)|Ω|−1/r1
α (−r1).

(ii) If α < (γ + 1)p andq = (N − α)/(γp+ p− α), thenu ∈ Lr(Ω, |x|−αdx),
for all 1 ≤ r < +∞. Moreover,

(
∫

Ω

|u|r |x|−αdx

) 1
r

≤ C|Ω|
1
r
α‖f‖

1
p−1

(α,q), for all 1 ≤ r < +∞.

(iii) If either,α = (γ+1)p, orα < (γ+1)p and1 ≤ q < (N−α)/(γp+p−α),
then|u|r ∈ L1(Ω, |x|−αdx), for all 0 < r < r1. Moreover,

(
∫

Ω

|u|r |x|−αdx

)
1
r

≤ C|Ω|
1
r
− 1

r1
α ‖f‖

1
p−1

(α,q), for all 0 < r < r1,

where in this case the constantC depending also onq.

In order to prove this theorem we take an adequate test function in the entropy
condition (5). Then, using the Hardy-Sobolev inequality (3) with r = 1, we
obtain a differential inequality for the distribution function ofuwith weight|x|−α.
Finally, solving this inequality in the different cases of the theorem, we prove the
result. This kind of argument were used by Talenti [19] to obtain somea priori
estimates for weak energy solutions whenα = γ = 0. Recently, Grenon [13] and
Alvino et al. [2] proved Theorem 1.3 forα = γ = 0 in a similar way.

Our next result concerns to the regularity of the weak gradient of the entropy
solutionu of (1) when1 ≤ q < q̃. As we said above, ifq ≥ q̃ then there exists
a weak energy solutionu ∈ D1,p

0,γ(Ω). In this last case, higher integrability results
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are known for the gradient ofu whenα = γ = 0 (see [11] and [14]). However, to
our knowledge, the techniques used here does not apply in this case.

Theorem 1.4. Let q̃ be defined in(4) and

q̄ :=
N − α

(p− 1)(N − α) + γ + 1 − α/p
.

Assumef ∈ Eq
α(Ω) for someα andq satisfying(2). If u is the entropy solution of

(1) then it holds that:

(i) If max{1, q̄} < q < q̃ thenu ∈ D1,r2

0,β (Ω), where

r2 :=
(p− 1)(N − α)q

N − α− (γ + 1 − α/p)q
and β := γ +

α

r2
−
α

p
. (7)

In particular,u ∈ Lr1(Ω, |x|−αdx), wherer1 is defined in(6).

(ii) If 1 ≤ q ≤ max{1, q̄} then there exists a constant independent ofu such
that

∫

Ω

|∇u|r |x|−(γ+α
r
−α

p
)rdx ≤ C for all 0 < r < r2.

Part (i) extends the regularity results by Boccardo and Gallouët [4, 5] forα =
γ = 0. We prove the general case in a similar way, but using the Hardy-Sobolev
inequality (3) instead of the classical Sobolev inequality. Alvino et al. [2] proved
part (ii) (and also part (i)) forα = γ = 0. The proof in the general case uses the
estimates obtained, in order to prove Theorem 1.3, for the distribution function of
u with weight|x|−α.

Remark 1.5. First, we note that the last assertion in Theorem 1.4(i) is animme-
diate consequence of Lemma 1.1 withr = r2 and replacingγ by β, since

r1 =
(N − α)r2

N − (β + 1)r2

and all the assumptions in the lemma hold by (2). On the other hand, ifq = q̃ then
r2 = p andβ = γ, and forq = q̄ one hasr2 = 1 andβ = γ − α/p′.

Now, we do some comments for the critical caseα = γp+p. By Theorem 1.3, if
f ∈ Eq

α(Ω), for someq ≥ 1, then|u|r ∈ L1(Ω, |x|−αdx) for all r < r1 = (p− 1)q.
In particular, ifq = +∞ we obtain|u|r ∈ L1(Ω, |x|−αdx) for all 1 ≤ q < +∞.
However, in this special case it remains open to prove thatu is a bounded solution.
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Finally, under the assumptions of Theorem 1.4, one has thatr1 = r2 whenever
α = γp+p, and hence, we obtain|x|r|∇u|r ∈ L1(Ω, |x|−αdx) for all r < (p−1)q.

The paper is organized as follows. In section 2 we give the necessary tools to
prove our results. Section 3 concerns to the proof of Theorem1.4. In section 4 we
prove Theorem 1.4. Finally, section 5 deals with some explicit examples which
show the optimality of our results and the relation between problem (1) and the
Hardy-Sobolev inequality (3).

2.Preliminaries
We start this section recalling the Caffarelli–Kohn–Nirenberg inequalities (see

[8]).

Lemma 2.1. Letp, q, r, β, σ, γ, anda be real constants such thatp, q ≥ 1, r > 0,
0 ≤ a ≤ 1, and

1

r
+
α

N
,

1

p
+
γ

N
,

1

q
+
β

N
> 0,

whereα = aσ + (1 − a)β. There exists a positive constantC, depending only on
the parameters, such that the following inequality holds for all φ ∈ C∞

0 (IRN)
∥

∥

∥
|x|αφ

∥

∥

∥

Lr(IRN )
≤ C

∥

∥

∥
|x|γ|∇φ|

∥

∥

∥

a

Lp(IRN )

∥

∥

∥
|x|βφ

∥

∥

∥

1−a

Lq(IRN )
,

if and only if the following relations hold:

1

r
+
α

N
= a
(1

p
+
γ − 1

N

)

+ (1 − a)
(1

q
+
β

N

)

,

0 ≤ γ − σ if a > 0,

and

γ − σ ≤ 1 if a > 0 and
1

r
+
α

N
=

1

p
+
γ − 1

N
.

As we said in the introduction, Lemma 1.1 is an immediate consequence of
Lemma 2.1 and hence we omit its proof. We write Lemma 1.1 forr = 1 since it
will be a key point in the proof of most of our results.

Lemma 2.2. Let α, γ ∈ R such thatα < N and γ < N − 1. There exists a
positive constantD, depending only on the parameters, such that

(
∫

Ω

|φ|
N−α

N−(γ+1) |x|−αdx

)
N−(γ+1)

N−α

≤ D

∫

Ω

|∇φ||x|−γdx, (8)
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for all φ ∈ C∞
0 (Ω), if and only if

α− 1 ≤ γ ≤
(N − 1)α

N
. (9)

Another consequence of Lemma 1.1 is the following inclusion.

Lemma 2.3. Eq
α(Ω) ⊂ D−1,p′

−γ (Ω) for all

q ≥ q̃ =
(N − α)p

(p− 1)N + (γ + 1 − α)p
and

Nγp

N − p
≤ α ≤ (γ + 1)p.

PROOF. SinceEq
α(Ω) ⊂ Er

α(Ω) for all 1 ≤ r ≤ q we may assumef ∈ E q̃
α(Ω).

Using Hölder inequality, Lemma 1.1 (withr = p), and noting that

q̃′ =
q̃

q̃ − 1
=

(N − α)p

N − (γ + 1)p
= p∗α,γ,

we obtain
∣

∣

∣

∣

∫

Ω

fφ dx

∣

∣

∣

∣

≤ ‖f‖(α,q̃)

(
∫

Ω

|φ|q̃
′

|x|−αdx

)1/q̃′

≤ ‖f‖(α,q̃)‖φ‖γ,p,

for all ϕ ∈ C∞
0 (Ω). We conclude the proof by a standard density argument.

As we said in the introduction, a measurable functionu such thatTt(u) ∈
D1,p

0,γ(Ω), for all t > 0, does not necessarily belong toW 1,1
0 (Ω), nor toL1(Ω).

However, it is possible to define its weak gradient as the unique functionv satis-
fying condition (10) below. The weak gradient ofu is still denoted by∇u. The
following result, proved in [1], introduces this notion.

Lemma 2.4. If u is a measurable function such thatTt(u) ∈ D1,p
0,γ(Ω), for all

t > 0, then there exists a unique measurable functionv : Ω −→ IRN such that

∇Ttu = vχ{|u|<t} for a.e. x ∈ Ω and for all t > 0, (10)

whereχE denotes the characteristic function of a measurable setE.

Finally, taking an adequate test function in the entropy condition (5) we obtain
the following useful inequality.

Lemma 2.5. Assume thatu is the entropy solution of(1) then

1

t

∫

{s<|u|≤s+t}

|∇u|p |x|−γpdx ≤

∫

{|u|>s}

|f(x)| dx.

for all s, t > 0.
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PROOF. The result follows takingv = Ts(u) in the entropy condition (5).

3.Estimates in Lebesgue spaces
In order to prove Theorem 1.3, first we obtain some estimates for the distribution

function of the entropy solution to problem (1). We obtain such estimates using
Lemmas 2.2 and 2.5.

Lemma 3.1. Letα be any real number such that

Nγp

N − p
≤ α ≤ (γ + 1)p. (11)

Assumeγ < (N − p)/p andf ∈ Eq
α(Ω) for someq ≥ 1. Consideru, then entropy

solution of (1), let r1 be defined in(6), and

Vα(t) :=

∫

{|u|>t}

|x|−α dx. (12)

There exists a positive constantC depending only onN , α, γ, andp such that the
following assertions hold:

(i) If α < (γ + 1)p andq > (N − α)/(γp+ p− α) thenVα(t) = 0 for a.e.

t ≥ t∗ := −r1C
p′‖f‖

1
p−1

(α,q)|Ω|
− 1

r1
α . (13)

(ii) If α < (γ + 1)p andq = (N − α)/(γp+ p− α) then

Vα(t) ≤ |Ω|α exp



−
t

Cp′‖f‖
1

p−1

(α,q)



 for a.e.t > 0.

(iii) If either,α = (γ+1)p, orα < (γ+1)p and1 ≤ q < (N−α)/(γp+p−α),
then

Vα(t) ≤

(

A+
t

B

)−r1

for a.e.t > 0,

where

A := |Ω|
− 1

r1
α and B := r1C

p′‖f‖
1

p−1

(α,q).
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PROOF. LetEs,t := {s < |u| ≤ s+ t} for s, t > 0, and

|Es,t|α :=

∫

{s<|u|≤s+t}

|x|−αdx.

From Lemma 2.5 and Ḧolder inequality, we obtain
∫

Es,t

|∇u|p |x|−γpdx ≤ t‖f‖(α,q) Vα(s)1/q′ for all s, t > 0. (14)

On the other hand, using Jensen inequality, we have

1

|Es,t|
p−1
α

(

∫

Es,t

|∇u||x|−(γ−α
p
+α) dx

)p

≤

∫

Es,t

(

|∇u||x|−(γ−α
p
)
)p

|x|−αdx

for all s, t > 0. From the last inequality and (14), we obtain
(

1

t

∫

Es,t

|∇u||x|−(γ−α
p
+α) dx

)p

≤ ‖f‖(α,q) Vα(s)1/q′
(

|Es,t|α
t

)p−1

, (15)

for all s, t > 0.
Let ψs,t = Tt(u − Tsu) and note that∇ψs,t = (∇u)χEs,t

. By Lemma 2.2, we
have

(∫

Ω

|ψs,t|
r |x|−αdx

)
1
r

≤ C

∫

Ω

|∇ψs,t||x|
−(γ−α

p
+α) dx

= C

∫

Es,t

|∇u||x|−(γ−α
p
+α) dx,

for all s, t > 0, where

r =
N − α

N − γp−α
p − α− 1

,
Nγp

N − p
≤ α ≤ (γ + 1)p,

andC is a constant depending only onN , α, γ, andp. Therefore, using (15), we
obtain

(
∫

{|u|>s}

(

|ψs,t|

t

)r

|x|−αdx

)
p
r

≤ Cp‖f‖(α,q) Vα(s)1/q′
(

|Es,t|α
t

)p−1

,

for all s, t > 0. Letting t→ 0 we conclude that

Vα(s)p/r ≤ Cp‖f‖(α,q)Vα(s)1/q′ (−V ′
α(s))

p−1
, for a.e.s > 0,
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and then

1 ≤ Cp′‖f‖
1

p−1

(α,q)Vα(s)−1− 1
r1 (−V ′

α(s)), for a.e.s > 0, (16)

where
1

r1
=
N − α− (γp+ p− α)q

(p− 1)(N − α)q
.

Recall the assumptionα ≤ (γ+1)p < N . We study the following different cases:

1.- If α < (γ+1)p andq > (N −α)/(γp+ p−α), i.e., r1 < 0, then integrating
(16) in (0, t) we get

t ≤ −r1C
p′‖f‖

1
p−1

(α,q)

(

|Ω|
− 1

r1
α − Vα(t)−

1
r1

)

.

We conclude thatVα(t) = 0 if t ≥ t∗, wheret∗ is defined in (13).

2.- If α < (γ + 1)p andq = (N − α)/(γp + p − α), i.e., 1/r1 = 0, then we
obtain the assertion integrating (16) in(0, t).

3.- If either,α = (γ + 1)p, or α < (γ + 1)p andq < (N − α)/(γp+ p − α),
i.e., r1 > 0, we conclude as in the previous cases.

Remark 3.2. The constantC appearing in Lemma 3.1 is the constantD in (8)
replacingγ by γ + α− α/p. This explains the relation between (9) and (11).

Now, we prove Theorem 1.3 as an easy consequence of Lemma 3.1.

PROOF OFTHEOREM 1.3. Part (i) follows directly from Lemma 3.1(i). Parts (ii)
and (iii) follow from Lemma 3.1(ii)-(iii) by noting

∫

Ω

|u|r |x|−αdx = r

∫ ∞

0

sr−1Vα(s) ds.

4.Estimates for the gradient
In this section we prove Theorem 1.4 using Lemma 2.5 and the estimates ob-

tained in Lemma 3.1.
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PROOF OF THEOREM 1.4. Letu be the entropy solution of (1) and letVα be
defined in (12). From Lemma 2.5 and Hölder inequality, we have

1

t

∫

{s<|u|≤s+t}

|∇u|p |x|−γpdx ≤

∫

{|u|>s}

|f(x)| dx ≤ ‖f‖(α,q) Vα(s)1/q′, (17)

for all s, t > 0. Letting tց 0 we obtain

d

ds

∫

{|u|≤s}

|∇u|p |x|−γpdx ≤ ‖f‖(α,q) Vα(s)1/q′, for a.e.s > 0,

and integrating the last expression in(0, t) we get

∫

{|u|≤t}

|∇u|p|x|−γpdx ≤ ‖f‖(α,q)

∫ t

0

Vα(s)1/q′ds. (18)

(i) Assumemax{1, q̄} < q < q̃. Let r1 andr := r2 be defined in (6) and (7),
respectively, and note that1 < r < p. Let

δ :=
(p− r)α

pr
, β := γ + δ, and s :=

(p− r)r∗α,γ+δ

r
,

wherer∗α,γ+δ is the critical Hardy-Sobolev exponent defined in Lemma 1.1.
We note that0 < s < 1 and there exists a constantC such that

n
∑

k=0

1

(1 + k)s
≤ C(1 + n1−s), for all n ∈ N. (19)

LetM ∈ N and definev := TM+1(u). By Hölder inequality, we obtain

∫

Ω

|∇v|r|x|−βrdx ≤

(
∫

Ω

|∇v|p

(1 + |v|)s
|x|−pγdx

)
r
p
(
∫

Ω

(1 + |v|)
rs

p−r |x|−αdx

)1− r
p

. (20)
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Now, using (17), (19), and Ḧolder inequality, we estimate the first integral on the
right-hand side of (20) as follows
∫

Ω

|∇v|p

(1 + |v|)s
|x|−pγdx ≤

M
∑

k=0

1

(1 + k)s

∫

{k≤|u|<k+1}

|∇v|p |x|−pγdx

≤
M
∑

k=0

1

(1 + k)s

+∞
∑

n=k

∫

{n≤|u|<n+1}

|f | dx

=

M
∑

n=0

∫

{n≤|u|<n+1}

|f |

n
∑

k=0

1

(1 + k)s
dx+

+∞
∑

n=M+1

∫

{n≤|u|<n+1}

|f |

M
∑

k=0

1

(1 + k)s
dx

≤
M
∑

n=0

∫

{n≤|u|<n+1}

|f |C(1 + |v|1−s) dx+
+∞
∑

n=M+1

∫

{n≤|u|<n+1}

|f |C(1 + |v|1−s) dx

≤ C‖f‖1 + C

∫

Ω

|f ||v|1−s dx

≤ C‖f‖(α,q)

[

|Ω|
1
q′

α +

(
∫

Ω

|v|(1−s)q′ |x|−αdx

) 1
q′

]

.

Using this inequality in (20) and noting that(1 − s)q′ = r∗α,β = sr/(p − r), we
obtain
∫

Ω

|∇v|r |x|−βrdx

≤ C‖f‖
r
p

(α,q)

(

|Ω|
1
q′

α+

(∫

Ω

|v|(1−s)q′|x|−αdx

)
1
q′

)
r
p(∫

Ω

(1 + |v|)
sr

p−r |x|−αdx

)1− r
p

≤ C‖f‖
r
p

(α,q)

(

1 +

∫

Ω

|v|r
∗

α,β |x|−αdx

)1− r
pq

.

Finally, since
r

r∗α,β

> 1 −
r

pq
,

we obtain, by Hardy-Sobolev inequality (3), that
∫

Ω

|∇v|r |x|−βrdx =

∫

{|u|≤M+1}

|∇u|r |x|−βrdx ≤ C for all M ≥ 0,

whereC > 0 is a constant independent ofu andM . In particular,u ∈ D1,r2

0,β (Ω).
The last assertion of part (i) follows directly from (3).
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(ii) Let τ1 := pq/(r1 + q) andτ2 := (pγ − α)τ1/p. Assume1 ≤ q < q̃ and note
that−r1/q′ + 1 > 0. Sinceα ≤ (γ + 1)p < N and

q < q̃ =
N − α

(p− 1)(N − α) + (γ + 1)p− α
,

we are under the assumptions of Lemma 3.1(iii). Therefore, using (18) and the
lemma, we estimate

∫

{|x|−τ2 |∇u|τ1>t}

tr1 |x|−αdx

≤

∫

{|x|−τ2 |∇u|τ1>t}∩{|u|≤t}

tr1

(

|x|−τ2|∇u|τ1

t

)p/τ1

|x|−αdx+

∫

{|u|>t}

tr1|x|−αdx

≤ ‖f‖(α,q)t
r1−p/τ1

∫ t

0

Vα(s)1/q′ ds+ tr1Vα(t)

≤ ‖f‖(α,q)t
r1/q′−1 B

1 − r1/q′

(

A+
t

B

)1−
r1
q′

+ tr1Vα(t)

≤ C.

In particular,|x|−τ2r|∇u|τ1r ∈ L1(Ω, |x|−αdx) for all 0 < r < r1, or equivalently,
∫

Ω

|∇u|r |x|−(γ+α
r
−α

p
)rdx ≤ C for all 0 < r < r2.

5.Examples and applications
In this section we introduce some examples showing the optimality of our re-

sults and the relation in some sense between problem (1) and the Hardy-Sobolev
inequality (3).

5.1. Examples. 1.- We start with an example that shows the optimality of our
results. Recall thatα, γ, andN satisfy

Nγp

N − p
≤ α ≤ (γ + 1)p < N. (21)

Let θ be a real number such thatN−θ−pγ > 0 and note thatf(x) = |x|−(γp+θ) ∈
L1(B1(0)). Letu be the unique entropy solution to problem

{

−div (|x|−γp|∇u|p−2∇u) = |x|−(γp+θ) in B1(0),
u = 0 on∂B1(0).
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A direct computation shows that:

(1) If θ < p, then

u(x) =
p− 1

(p− θ) (N − γp− θ)
1

p−1

(1 − |x|
p−θ
p−1 ).

Hence, the solution is bounded.
(2) If θ = p, then

u(x) =
1

(N − p(γ + 1))
1

p−1

log

(

1

|x|

)

.

In this case, one has thatu ∈ Lr(Ω, |x|−αdx) for all 1 ≤ r < +∞.
(3) If θ > p, then

u(x) =
p− 1

(θ − p) (N − γp− θ)
1

p−1

(|x|−
θ−p
p−1 − 1).

In this last case, the solutionu is unbounded and

u ∈ Lr(Ω, |x|−αdx) if and only if 1 ≤ r < (p− 1)
N − α

θ − p
.

By analyzing the above example we get easily that the regularity of u obtained
in Theorems 1.3 and 1.4 is sharp.

2.- Let us consider the following problem
{

−div (|x|−γp|∇u|p−2∇u) = g(x, u) in Ω,
u = 0 on∂Ω.

(22)

Assume that there exist positive constantsc andm such that

|g(x, t)| ≤ c |x|−α(1 + t)m−1 for all t ≥ 0 and a.e.x ∈ Ω.

In the particular caseα = γ = 0, it is well known that every weak energy
solutionu ∈ W 1,p

0 (Ω) of (22) is bounded wheneverm ≤ p∗ = Np/(N − p). In
the general case one expect to obtain an analogous result,i.e., if u ∈ D1,p

0,γ(Ω) is
a weak energy solution of (22) thenu ∈ L∞(Ω) wheneverm ≤ p∗α,γ, wherep∗α,γ

is the critical Hardy-Sobolev exponent appearing in Lemma 1.1. However, this
problem remains open to our knowledge. In section 5.2 we willrelate problems
(22) and (1) in a particular case.
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The following explicit example shows that the exponentp∗α,γ is optimal, in the
sense that ifm > p∗α,γ then a solutionu ∈ D1,p

0,γ(Ω) of (22) is not necessarily
bounded. Setg(x, t) = λ|x|−α(1 + t)m−1, where

m > 1 + (p− 1)
N − α

N − (γ + 1)p
(23)

and

λ :=

(

(γ + 1)p− α

m− p

)p−1 [

N −
(γp+ p− α)(m− 1) + α(m− p)

m− p

]

.

Note thatm > p andλ > 0 since (23). An easy computation shows that

U(x) = |x|−τ − 1, where τ =
(γ + 1)p− α

m− p
,

is an entropy solution of (22). Moreover,U ∈ D1,p
0,γ(Ω) if and only if m > p∗α,γ.

Therefore, ifm > p∗α,γ thenU ∈ D1,p
0,γ(Ω) is an unbounded weak energy solution

of (22). See [7] for more details in the caseα = γ = 0.

5.2. Applications. We consider now the case wherep = 2 with go back to the
result obtained in [6]. Letu be the entropy solution to problem

{

−div (|x|−2γ∇u) = a
u

|x|2(γ+1)
+ g in Ω,

u = 0 on∂Ω,
(24)

wherea < ΛN,γ := (N − 2(γ + 1))2/4. We setw(x) = |x|βu(x), where

β :=
N − 2(γ + 1)

2
−
√

ΛN,γ − a > 0,

then it is clear thatw solves problem
{

−div (|x|−2(γ+β)∇w) = |x|−βg in Ω,
w = 0 on∂Ω.

As an immediate consequence of Theorems 1.3 and 1.4 we get thenext corol-
lary.

Corollary 5.1. Assume that|x|−βg ∈ Eq
α(Ω) for someα andq satisfying(2). Let

r1 :=
(N − α)q

N − α− (2(γ + β) + 2 − α)q
.
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Let u be the entropy solution of(24), then there exists a positive constantC de-
pending only onΩ,N , α, γ andβ such that the following assertions hold:

(i) If α < 2(γ + β + 1) andq > (N − α)/(2(γ + β) + 2 − α), thenu|x|β =
w ∈ L∞(Ω). Moreover,

‖u|x|β‖∞ ≤ C‖|x|−βg‖(α,q).

(ii) If α < 2(γ + β + 1) andq = (N − α)/(2(γ + β) + 2 − α), thenu|x|β ∈
Lr(Ω, |x|−αdx), for all 1 ≤ r < +∞. Moreover,

(
∫

Ω

ur |x|rβ−αdx

) 1
r

≤ C‖|x|−βg‖(α,q).

(iii) If either,α = 2(γ+β+1), orα < 2(γ+β+1) and1 ≤ q < (N−α)/(2(γ+
β) + 2 − α), thenur|x|βr ∈ L1(Ω, |x|−αdx), for all 0 < r < r1. Moreover,

(
∫

Ω

|u|r |x|rβ−αdx

)1
r

≤ C‖g|x|−β‖(α,q), for all 0 < r < r1,

where in this case the constantC depends also onq.
Moreover, by Theorem1.4 one gets the corresponding integrability of

|∇(|x|βu)|.
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