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Abstract: The integration of variable renewable energy sources in islands has become crucial in
reducing their dependency on imported fossil fuels. This study aimed to assess the energy transition
of an island towards a 100% renewable energy system for power generation, inland transport, and
potable water provision. Linking various fossil-fuel-consuming sectors, such as transport and potable
water supply systems, may strongly assist in reducing the possible mismatch between renewable
energy source production and demand and contribute to fulfilling other system requirements. The
use of energy storage technologies is vital and unlike traditional power systems; as the number of
components in the system increases, their proper capacity needs to be accurately determined. This
work employs a multi-objective optimization assessment using a modified NSGA-II algorithm to
depict the energy transition for Porto Santo Island. To evaluate the solutions, we considered the main
criteria of energy cost, avoided environmental impacts (CO2-equivalent emissions) of the proposed
system, and loss of power supply. The Pareto front contains various solutions under different system
configurations. Results indicate that full inland transport electrification (introducing 3000 EVs) can
account for 18% of the avoided CO2 emissions of the island while sharing 28–40% of the up-front
cost of the system, depending on the proposed system’s components. The EV’s costs incorporate
subsidies and their battery replacement. Another interesting finding from the optimization process
is that the solution with the highest avoided CO2 emissions involves keeping a diesel generator for
supplying 4% of the island’s total demand and using an underwater compressed air energy storage
with a capacity of 280 MWh. This suggests that adding more installed wind turbines or PV panels
may not necessarily contribute to reducing the emissions of the entire system.

Keywords: hybrid RES; sizing; isolated systems; heuristic algorithm

1. Introduction

Over the last decade, advancements in Energy Storage Systems (ESS) technology and
reductions in the global average Levelized Cost of Electricity (LCOE) for solar and wind
energy have resulted in a significant reduction in the payback period of Hybrid Renewable
Energy Systems (HRESs), particularly in locations with ample sun and wind resources.

A considerable number of works and review articles related to the energy transition
projects for isolated power grids demonstrate that a mixture of multiple energy sources and
energy demand types may effectively overcome the obstacles of variability, unpredictability,
and randomness of solar/wind energy [1–7]. This approach offers a more reliable and
robust energy system that can meet the increasing energy demand of the island while
reducing its dependency on imported fossil fuels [8–10]. However, most of the studies
on 100% RES rarely consider sector coupling, as most of them have only focused on the
power sector. The aim of this study is to create a comprehensive model that can examine
the possibility of increasing renewable energy sources (RES)’ penetration in isolated grids.
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This model will also consider the decarbonization of providing potable water and the
electrification of inland transportation using the V2G concept.

The shift towards 100% renewable energy sources for islanded power systems brings
various challenges, such as the high front costs and operational and maintenance expenses
of HRES, as well as concerns about energy reliability and environmental impacts [1,11].
Additionally, designing an effective HRES involves considering several key factors, such as
the site’s geographic characteristics, the capacity factor of the VRES, the cost-effectiveness
of ESS, the size of the application, and the level of inland transport electrification. Sizing
the system’s components is critical and should be integrated with the energy management
strategy to ensure reliable and cost-effective operation of the system. The HRES is a well-
designed and comprehensive solution that can help to transform the energy system of
Porto Santo Island and pave the way for a more sustainable future.

HRES typically combine solar and wind power and may also include a diesel generator
for backup. Each type of HRES has its own advantages and challenges, and the choice of
system depends on factors such as location, energy demand, and available resources. HRES
can be further classified into three main types based on their connection to the electrical
grid and energy storage options. The first type is a system that benefits hydropower or a
Pumped Hydro Storage (PHS) system as the main energy storage technology. Islands with
PHS, such as El Hierro [12] may have an advantage in achieving a 100% renewable power
system due to the long-term energy storage capability provided by this technology.

The second type of HRES are systems that are connected to another electrical grid via
a submarine power cable. The Greek island of Tilos [13] and Aran in Ireland [14,15] are
examples of this group. The use of submarine power significantly impacts the assumptions
and equations used to achieve a 100% renewable power system as an isolated system. The
third type includes isolated systems that do not have access to PHS and may rely on other
types of ESSs. The Italian island of Pantelleria [16] is an example of this type of system.
These isolated islands lack a submarine connection and rely heavily on ESS to increase the
share of VRES.

ESSs are limited by their cost and storage capacity. For instance, batteries can provide
short-term energy storage solutions and can be deployed in a wider range of locations, but
they might be cost-ineffective to provide long-term (seasonal) ESS services. As a long-term
ESS, Underwater Compressed Air Energy Storage (UW-CAES) systems may be a highly
prospective technology particularly for islands and coastal locations, since they can be
coupled with offshore wind turbines. UW-CAES is still in the early stages of development,
but it has the potential to provide high-density energy storage in a wider range of locations.
According to a study conducted by Hunt et al. [17], the cost of isothermal UW-CAES
can range from 2 to 10 USD/kWh of stored electric energy and 1500 to 3000 USD/kW
of installed capacity, depending on the system’s size, location, depth of the underwater
storage, and operating costs. This cost is higher than that for some other ESSs such as
lithium-ion batteries, but it can provide benefits such as a longer lifespan and scalability.

Demand-side management is the other key pillar in the transition towards 100%
renewable power systems. Many researchers in the field and real-world examples have
demonstrated that coupling RES with reverse-osmosis desalination plants or RODPs is
promising in terms of economic and technical feasibility while significantly reducing the
carbon footprint associated with potable water provision [18,19]. An integrated RODP with
RES coupled with an ESS can respond quickly enough and maintain the necessary change
for a long enough duration in response to significant changes in the power grid.

To determine the optimal size of a HRES in terms of installed power (in kW/kWh), var-
ious studies have used different sizing methodologies that utilize different configurations
and mixes of energy sources to increase the renewable energy fraction. These method-
ologies can be categorized into traditional methods, Artificial Intelligence (AI) methods,
hybrid methods, and software-based simulations [6,20–24]. It is important to note that
the mathematical models employed in these sizing methodologies have different objective
functions, decision variables, and constraints, which makes achieving optimal sizing a
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challenging task when combining multiple types of energy sources and complementary
energy storage systems. The Pareto optimality concept is used to solve and optimize the
given solutions by simultaneously considering multiple objectives, such as minimizing
ESS capacity, power losses, and expected energy not supplied, while maximizing power
supply reliability and minimizing the system lifecycle cost. Pareto optimality is a concept
in multi-objective optimization that involves finding the optimal solutions for multiple
conflicting objectives. The solutions that cannot be improved in any objective without
compromising another objective are said to be Pareto-optimal. In the context of HRES
sizing, the Pareto front represents the set of solutions that are optimal with respect to
multiple conflicting objectives such as cost, energy efficiency, and environmental impact.
By considering solutions that lie on the Pareto front, decision makers can make an informed
decision on the most suitable sizing approach based on their specific requirements and
preferences [25,26]. Thus, Pareto optimality is a key consideration in multi-objective opti-
mization for HRES sizing, and it enables decision makers to find solutions that achieve a
balance between multiple competing objectives.

Commonly used evaluation indicators for capacity optimization include reliability, as
well as economic, environmental, and social indicators. Excessive capacity can increase
the payback period of the system’s investments, whereas insufficient capacity can compro-
mise power supply reliability. Many studies have used cost–benefit analysis to balance
capital investment, system reliability, and environmental impacts. For large-scale grid-
connected hybrid systems with hydro, Zhang et al. [27] presented an optimization method
to determine the capacity of a PV power plant integrated into existing hydropower stations.

Incorporating the water provision and inland transportation sectors in an energy
transition plan increases complexity and uncertainty. The electrification of transportation
with the presence of considerable solar PV panels may lead to a steep duck curve due
to uncontrolled charging but can also provide flexible ramping through smart charging
programs. A duck curve refers to the shape of the net load curve on power grids that
have a high penetration of solar power generation. It is called a “duck curve” because
the curve resembles the shape of a duck’s belly. The curve shows a steep drop in net load
during the day as solar power production increases and a steep rise in net load in the
evening as solar power production decreases and demand for electricity increases. This can
create challenges for grid operators who must balance the electricity supply and demand
in real time to maintain the stability of the grid. To address this issue, grid operators
may need to curtail renewable energy production, increase energy storage capacity, or
add flexible resources that can quickly adjust to changes in demand. Implementing a
deliberate charging and discharging strategy for Electric Vehicles (EVs) can be an effective
way to tackle the aforementioned problems and advance decarbonization, improve energy
efficiency and air quality, and promote the integration of various energy sectors, albeit at
the cost of increasing the island’s electricity demand.

This study aimed to investigate the energy transition of Porto Santo Island towards
a 100% renewable energy system for power generation, inland transport, and potable
water provision, considering various fossil-fuel-consuming sectors such as transport and a
potable water supply system. The study used a multi-objective optimization assessment to
assess the energy transition of the island, using a modified NSGA-II algorithm. This work
is organized as follows:

• Section 2 presents the demand profiles of the selected site, discusses the available
resources, and proposes the system design.

• Section 3 is dedicated to the optimization model that iterates the simulation model,
allowing for an optimal combination and size of the components of a HRES.

• Section 4 presents the results.
• Section 5 discusses the obtained results as well as facts revealed through the current

study and sheds light on future works.
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2. System Design

Porto Santo island, with its 5483 inhabitants and an area of 42.17 km2 (2011), is the
northern- and easternmost island of Madeira’s archipelago, located in the Atlantic Ocean,
west of Europe and Africa. The Portuguese island has been practicing developments that
will allow the territory to become a touristic destination under international standard
recognition, being free from fossil fuel sources and with nearly zero pollutant emissions.
The initiative started in 2012 with the launch of the Sustainable Energy Action Plan of
Porto Santo Island, developed under the Pact of Islands’ advisory [28]. In 2016, the local
executive branches took the project to a new phase by launching the Smart Fossil Free
Island project. They aimed to enable the gradual replacement of fossil fuel resources with
RES in the medium and long term [29].

Indeed, the implementation of a HRES in Porto Santo can bring various benefits such
as reducing the island’s dependence on imported fossil fuels as well as its carbon footprint.
The integration of V2G technology can also contribute to the stability and reliability of the
grid while reducing carbon emissions from the transportation sector. The optimization of
the HRES capacity can ensure efficient use of the available renewable resources, energy
storage, and demand management, leading to a more cost-effective and sustainable energy
system. Overall, the proposed HRES can provide a valuable solution for Porto Santo’s
energy needs and serve as a model for other isolated grids facing similar challenges.
Figure 1 shows the share of the demand for each sector for one year.
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Figure 1. Porto Santo’s annual energy demand estimation. (Source: data provided by Empresa
de Electricidade da Madeira, S.A. (EEM), Águas e Resíduos da Madeira, S.A. (ARM), and authors’
estimation of inland transportation.)

Seawater desalination in Porto Santo is the only solution to supply potable water
for public use. The annual water provision on the island accounts for 11% to 15% of the
total electricity demand, as reverse-osmosis desalination plants (RODPs) solely consume
electricity for desalinating seawater. Additionally, if all Combustion Engine Vehicles (CEV)
were to be replaced with Electric Vehicles (EV), the total electricity demand would increase
by 18%. This information highlights the significant impact that water desalination and
transportation have on the electricity demand on the island. Therefore, implementing
renewable energy sources and energy-efficient technologies, such as EVs and V2G, can help
reduce the reliance on imported fossil fuels and increase the island’s energy independence.
However, the increase in electricity demand due to EVs should be carefully considered in
the sizing and optimization of the HRES components to ensure the stability and reliability
of the grid.

As with many other islands, the island’s water and energy demands are influenced by
the variability and structure of its tourism industry [30]. Figure 2 shows that the electricity
and water demands nearly doubled during the high seasons (June, July, August, and
September), requiring a high reserve capacity. The electricity demand may reach 130 MWh
per day. Figure 3 presents the capacity factor for solar power and wind power in terms
of the daily average. The solar production, with an annual mean of 19% for its capacity
factor, varies throughout the course of a year, representing a higher value from mid-April
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until the end of September. Wind power, with an annual average of 43% for its capacity
factor, though, does not follow a particular pattern. The inland travel pattern and the
Electric Vehicles (EVs)’ connectivity to the grid are modeled using probability distributions,
adopted from the works conducted by Donati et al. [31] and Brady and O’Mahony [32].
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demand. Elaborated with data provided by Empresa de Electricidade da Madeira, S.A. (EEM).
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Figure 3. Daily capacity factor over one year for: (a) solar power and (b) wind power. (Source:
authors’ calculation based on available data in [33].)The research conducted on the solar and wind
profiles of Porto Santo [34] highlights the importance of inter-week energy storage and demand
management to manage additional VRES. To the best of the authors’ knowledge, this is the first study
proposing and validating a HRES combined with inland transport electrification and a seawater
desalination unit on the island of Porto Santo.
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The HRES proposed in this study, as shown in Figure 4, is a complex system that
integrates VRES and ESS technologies, a transport fleet, and a water provision system to
provide reliable and sustainable power to Porto Santo Island. The combination of offshore
wind turbines and PV arrays allows for a diverse energy mix that can help to optimize
energy production throughout the year.
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The Energy Management System (EMS) serves as a central hub that integrates all
relevant data and devises a plan for system operation in advance. The water reservoir
can also be used to store excess energy during periods of high RES production, thereby
providing additional flexibility to the system. The existing diesel generator (DG) is retained
in the system as a backup power source in case of emergencies or when the RES output
is insufficient to meet demand. In 2019, a Li-ion battery pack with a usable capacity of
4 MW/3 MWh was installed to enhance the system’s electro-productivity [29]. The battery
pack’s capacity and power were upgraded to 12 MWh and 6 MW, respectively, in 2022.
Through a Vehicle-to-Grid (V2G) program, the ESS devices, UW-CAES, battery packs, and
EVs might be used to provide spinning reserve and load-following capabilities and to
balance out variations in energy production and consumption. Special attention should be
given to reserves, as the increased uncertainty associated with RES production requires
higher reserve values.

In UW-CAES, compressed air is usually stored in submerged expandable air accumu-
lators, which are placed at the bed of the ocean using the hydrostatic pressure resulting
from the water column [35]. Various design parameters, such as the pipe diameter, ex-
pander and compressor efficiencies, and air storage depth, may affect the overall system
performance, and thus its economic feasibility. For instance, the greater the depth of the
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ocean, the lower the cost of the project may be. Hunt et al. [36] estimated that the cost
of isothermal UW-CAES systems vary from 1 to 10 USD/kWh of stored electric energy
and 1500 to 3000 USD/kW of installed capacity. They showed that this could be a feasible
option to complement batteries, providing long-term energy storage cycles. Tiano and
Rizzo [37] studied the application of UW-CAES for fully powering the Sicily region (Italy)
with VRES (wind and solar power). They showed that the depth of the sea where the
UW-CAES system is placed and its distance from the coast considerably affect the overall
installation cost, as the available energy density in kWh/m3 of the vessel increases by
depth, and the distance from the cost increases the cost of the cables. However, the offshore
wind farm’s placement close to a complementary UW-CAES may reduce the total system
cost. In comparison with PHS and batteries, a UW-CAES system has a substantially lower
environmental footprint. It does not require flooding an area to create a reservoir, nor does
it require a large volume of mined resources [36].

Designing an effective HRES involves considering several key factors, such as the
site’s geographic characteristics, the capacity factor of the VRES, the cost-effectiveness of
the ESS, the size of the application, and the level of inland transport electrification. Table 1
presents the parameters used in this study for economic and environmental analyses.

Table 1. Properties of the selected resources/technologies. (The data and parameter values used in
this study were obtained from various sources, including investigations [35,37–43].)

Resource/
Technology

Life y Investment Replacement LCOE OMC
Emission

Manufacturing Operation

PV 25 883 USD/kW - 0.057 USD/kWh 50 USD/kW/year 0.040 kgCO2eq/kWh 0

Wind offshore 25 2580 USD/kW - 0.084 USD/kWh 70 USD/kW/year 0.012 kgCO2eq/kWh 0

TPP 15,000 h 0 6000 USD/kW 0.18 USD/kWh 0.1 USD/kW/h 0 0.8
kgCO2eq/kWh

Inverter 12.5 400 USD/kW 400 USD/kW - 4 USD/kW/year - -

Battery 12.5 800 USD/kWh
2300 USD/kW

800 USD/kWh
1500 USD/kW 0.05 10 USD/kW 115 kgCO2eq/kWh -

UWCAES 25 50 USD/kWh
2000 USD/kW - 0.14 3 USD/kW/year 5 kgCO2eq/kWh 0

Tank 25 USD 200 /m3 USD 200/m3 - 0.1 USD/m3/year 3 kgCO2eq/kWh 0

EV 150,000 km USD 5000 per EV
100 USD/kWh

USD 5000 per EV
100 USD/kWh -

8.8 tonneCO2eq
per vehicle

5 tonneCO2eq
per vehicle

Mix-generation
kgCO2eq/kWh

CEV 150,000 km - - -

5.60 tonneCO2eq
per vehicle

3.60 tonneCO2eq
per vehicle

0.22 kgCO2/km

It is considered that all EVs are from the same type with a battery capacity of 52 kWh,
which are able to participate in a V2G program through a bi-directional interface with a
constant charging/discharging power of 3.7 kW.

3. Materials and Methods

The use of a heuristic algorithm such as NSGA-II allows for a more flexible and efficient
approach to solving the multi-objective optimization problem for the HRES on Porto Santo
Island. Heuristic algorithms are advantageous for modeling and solving complex problems,
but they may also have limitations, such as the possibility of falling into local optimal
solutions. However, the NSGA-II algorithm has been shown to perform well in previous
studies and can provide a set of non-dominated solutions that can be used to evaluate the
trade-offs between different objectives [6,44]. The framework developed in this study aims
to assess the feasibility and cost-effectiveness of different energy transition pathways for the
island, taking into account the energy, economic, and environmental factors of the HRES
configuration. Figure 5 demonstrates a flowchart of the modified NSGA-II and system
simulation block (the implementation is flexible to add or remove technologies).
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The NSGA-II algorithm provides a set of solutions or individuals with different
values of decision variables (x, y, e, m, n, l, and αj, β j). The algorithm starts with reading the
information. This includes the demand profiles of electricity, potable water, and inland
transportation; forecasts of energy production by solar PV panels and wind turbines;
economic and environmental parameters; and energy storage parameters. The NSGA-II
algorithm is configured with specific parameters, including a population size (N) of 50,
400 generations (G) and probabilities for the crossover (0.7) and mutation (0.4) operators to
run the optimization process. The optimization process starts with the generation of an
initial parent population. These solutions are then passed on to the simulation block. Each
individual submits to an external process, where one year of operation is simulated. The
output is evaluated based on the three performance criteria: minimizing LPSP, minimizing
COE, and maximizing avoided CO2.

Each solution represents a particular combination of installed capacities of PV panels
and wind turbines, the number of EVs, the power and capacity of UW-CAES (kW/kWh),
the size of the water tank, and the operation plan for the RODP. Table 2 provides the ranges
of decision variables (inputs) that are used for system optimization.
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Table 2. The ranges of the decision variables for system optimization.

Decision Variable Item Unit Ranges

x PV MWp [0, 10]

y Wind turbines MWp [0, 16]

m, n UW-CAES MW/MWh [0, 12], [12, 350]

e EV quantity [0, 3000]

l Water reservoir m3 [10,000, 20,000]

αj RODP’s state - [0, 1]

βj RODP’s power MW [1, 2]

The table above shows the installed power capacity range of PV panels and wind
turbines, which varies from 0 to 10 MWp and 0 to 16 MWp, respectively. The inclusion
of zero allows for exploring potential solutions that solely utilize one type of VRES. For
the UW-CAES system, two variables were defined: m represents the charging/discharging
power (MW), and n denotes the storage capacity (MWh). m = 0 means no UW-CAES
is considered in the HRES. Variable e represents the number of EVs, which ranges from
0 to 3000 vehicles, where zero indicates no transport electrification, and 3000 represents
complete transport electrification on the island. Variable l is assigned a range of 10,000
to 20,000, as the island has a water reservoir with a volume of 10,000 m3. The RODP’s
operation plan is split into two decision variables: α, which indicates the RODP’s state
(0→ off and 1→ on) at time interval j, and β represents the desalination plant’s power
operation at time j. All decision variables can only take an integer value that falls within
their defined ranges.

3.1. Simulation

The simulation block uses the measured data at an hourly time step of solar and wind
power gathered from Ninja (https://www.renewables.ninja/ accessed on 2 February 2023)
and accumulated demands from various sectors (i.e., the island’s base load, transport,
and potable water provision). Apart from this, the RODP’s operation plan and V2G are
considered as a controllable load. Therefore, the RODP’s operation and the V2G’s operation
plans for a one-year simulation period are given. The inland travel pattern and the Electric
Vehicles (EVs)’ connectivity to the grid are modeled using probability distributions. Then,
the one-year simulation is run to provide the NETj as follows:

Px
j + Py

j +
e

∑
EV

PEV
j + PBattery

j + Pm
j − Dj −

(
PRO

j

)
= NET j (1)

∀j = 1, . . . , 8760, EV = 1, . . . , e, PRO
j = αj × β j

where NET denotes the net demand. Accordingly, the shortage and dumped load can
be defined:

Shortage =
{
−NET, NET < 0

0, otherwise
,

Dump =

{
NET, NET > 0

0, otherwise
,

3.2. Optimization Objectives

Loss of power supply probability (LPSP): This criterion is used to evaluate the power
supply reliability. The LPSP value is a number between 0% and 100%, and a smaller value
is better. A 0 value means the load can be always met, and a value of 1 denotes the load

https://www.renewables.ninja/
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is never met. Since the mismatch power never exists in charge mode, the LPSP can be
calculated by:

LPSP =
∑

jdischarge
i

[
PLoad(i)−

(
Ppv(i) + Pwind(i) + PCAES(i) + PBattery(i) + ∑e

EV Pe(i)
)]

∑8760 PLoad
(2)

PLoad = Pbase + PRO +
e

∑
EV

PEV,charge

Cost of energy (COE): This criterion is widely used as an objective function for the
economic assessment of a renewable power supply system. It compromises the initial cost
of the components and operation and maintenance cost of the proposed solution. It can be
calculated as:

COE =
NPC× CRF

∑8760 PDemand,Total
(3)

CRF is the capital recovery factor that can be obtained from:

CRF =
r(1 + r)Y

(1 + r)Y − 1
(4)

where Y is the system lifespan, and r stands for the discount rate. NPC denotes the net
present cost of the system, and it may be derived as follows:

NPC = CPV ·NPV + CWT ·NWT + CCAES·NCAES + CBat·NBat + Cconverters·Nconvertors + CEV ·NEV + CTank·NTank (5)

where C and N are the cost and the number/capacity of components, respectively. The total
cost of any component includes the investment cost (IC), the operation and maintenance
cost (OMC), and the replacement cost (RC). Therefore, the kth component’s cost is given by:

Ck = ICk + OMCk + RCk (6)

In this study, the replacement cost is the estimated cost of the kth component at the
end of the component’s lifespan, adopted from studies conducted by Zhao et al. [45].
AOMCk is the annual OMC of the kth component; thus, the OMC of each component can
be obtained from:

OMCk = AOMCk ×
Y

∑
y=1

(
1

1 + r

)y
(7)

where Y is the system lifespan, and r denotes the discount rate (r = 0.06).
Avoided carbon dioxide emissions (ACO2): Carbon dioxide (CO2) emissions are an

important indicator of the environmental aspect for any power system. In this study,
the ACO2 criterion is designed to measure the CO2 that might be avoided through the
proposed HRES in comparison with the current power sector and transport system. It is
denoted in percentage, representing the avoided CO2 proportion of the proposed solution
in comparison with the current condition of the island; thus, a higher value of ACO2 is
better. This aspect is derived from:

ACO2 = 100×
(

f ixedCO2 + operationalCO2
CurrentCO2

)
(8)

where currentCO2 in kgCO2 equivalent is the summation of the annual CO2 emitted by the
DG and the CEVs in a scenario in which there are no VRES or EVs employed. Moreover,
operationalCO2 compromises the annual CO2 emissions to operate the system, and f ixedCO2
includes the emissions related to the introduction and replacement of the components of
the proposed HRES. It is important to note that the accuracy of the ACO2 calculation relies
on obtaining accurate data for the annual CO2 emissions and the emissions related to
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introducing and replacing the HRES components. CurrentCO2, operationco2, and f ixedco2
can be derived through Equations (9)–(11):

CurrentCO2 = DGCO2 + CEVCO2 (9)

operationCO2 = LPSP× ∑
8760

PLoad × µDG + ∑
8760

PPV × µPV + ∑
8760

PWind × µWind + nCEV × ATD×µCEV (10)

f ixedCO2 =
2× Batterycapacity × µBattery + CAEScapacity × µCAES + Tankcapacity × µTank + 2× e× µEV

Y
(11)

where µDG, µPV , and µWind in kgCO2 eq per kWh are the specific CO2 emissions of the DG,
PV panels, and wind turbines that are adopted from the authors’ previous study on the life-
cycle assessment and environmental impacts of electricity production in Porto Santo [46].
e denotes the number of EVs that are replaced with CEV, and µEV is the manufacturing-
related CO2 emissions for each EV. nCEV is the number of conventional vehicles, ATD
denotes the average travel distance in kilometers for each vehicle (i.e., 12,500 km), and
µCEV is the CEV’s specific CO2 emission equivalent per kilometer. In this study, the existing
thermal power plant (DG) and combustion engine vehicles (CEV) account for the major
sources of CO2 emissions from the power sector and transportation, and they can be
estimated as follows:

DGCO2 = µDG ×
(

∑
8760

Pbase + (AnnualWater× ρ)

)
(12)

CEVCO2 = 3000× ATD×µCEV (13)

where ρ (kWh/m3) is the specific consumption (i.e., electricity) for the RODP to desalinate
one cubic potable water. It is assumed that there are 3000 vehicles on the island.

Dump load ratio (DUMP): This criterion is applied to assess the excess energy gen-
erated from the VRES. The DUMP is also a value between 0 and 1. This aspect of excess
energy is curtailed when the HRES is in charge mode and cannot store the VRES, meaning
all the demands are met, and the ES are full. It can be retained as follows:

DUMP =
∑

jcharge
i

[
PPV(i) + Pwind(i)−

(
PLoad(i) + PCAES(i) + PBattery(i)

)]
∑8760 PPV + Pwind

(14)

To evaluate the economic performance of the solutions over a period of 25 years,
two methods are utilized: the profitability index (PI) and the discounted payback period
(DPP). The PI is a measure of the profitability of an investment and indicates whether
the investment will create value for the investor. The DPP calculates the time required to
recover the initial investment, taking into account the time value of money. Both methods
provide valuable insights into the long-term economic viability of the proposed solutions.
Equations (14) and (15) describe them in mathematical form. For the calculation of the PI,
first, the net present value (NPV) must be calculated. This is the net value of the cash flows
of the system, considering the system’s discount from the beginning of the investment. It
can be obtained as follows:

NPV = −TIC +
Y

∑
y=1

Ry − AOMCy − RCy

(1 + r)y (15)

R = PV2D.tr + PV2EV.tr + PV2RO.ti + Wind2D.tr + Wind2EV.tr + Wind2RO.ti
+BatRTE × (Bat2D.tr + Bat2EV.tr + Bat2RO.ti)
+CAESRTE × (CAES2D.tr + CAES2EVs.tr + CAESRO.ti)
+EVRTE × (EV2D.tr + EV2EV.tr + EV2RO× ti)
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where TIC is the total investment cost at the beginning of the project, Y is the lifetime of
the project, R is the revenue, AOMC is the annual operation and maintenance cost, RC is
the replacement cost, and r is the discount rate (0.06). Therefore, the PI can be achieved:

PI =
NPV + IC

IC
(16)

A PI greater than 1 indicates that the investment is expected to generate a positive
value, whereas a PI less than 1 indicates that the investment is not expected to generate a
positive value. The formula for calculating the discounted payback period (DPP) is:

DPP = A +
B
C

(17)

where A is the number of years before the investment is recovered, B denotes the remaining
cost to recover, and C is the cash inflow during the next year. The remaining cost to recover
is the difference between the initial investment and the cumulative cash inflows up to that
point, and the cash inflow during the next year is the expected cash flow in the following
year, discounted to the present value. The discounted cash flows are calculated using a
discount rate, which represents the cost of capital or the opportunity cost of investing in an
alternative project with similar risks.

4. Results

The Pareto front, consisting of fifty solutions, was obtained based on three objectives.
They are all feasible solutions to design a HRES. As seen in Figure 6a, the Pareto front is a
three-dimensional space surface, indicating a compromised proposal among the optimal
objectives. Figure 6b–d gives the corresponding mapping plots of the indicators of the three
objective functions. It can be found that the COE and avoided CO2 would increase with
LPSP’s reduction.

The triangles in the graphs represent solutions in which the LPSP equals zero, indicat-
ing that the total demand is fully met by solar and wind RES. Each triangle corresponds
to different values of COE and avoided CO2 emissions, and no one of these is considered
more favorable than the others. The red star in the graph indicates the solution chosen by
the TOPSIS (technique for order of preference by similarity to ideal solution) method. It
is important to note that the TOPSIS method assumes equal weights for the criteria and
normalized the values, since the criteria have incongruous dimensions in this multi-criteria
problem. The TOPSIS method was utilized to identify the suboptimal solution from the
set of Pareto front solutions. The TOPSIS method is known for its ability to handle both
quantitative and qualitative criteria, making it a simple yet effective tool. This method is
commonly used in multi-criteria decision making (MCDM) to determine the best alternative
among a set of alternatives based on a set of evaluation criteria. However, like any other
method, TOPSIS has certain limitations, which include: (i) sensitivity to the normalization
process; (ii) dependence on the criteria weights; and (iii) an inability to handle uncertainty
and imprecision. Despite these limitations, TOPSIS is still a popular MCDM method and
can be useful in many decision-making situations when used appropriately. The square
in the graph represents the solution with the lowest COE, but it has the least favorable
values for avoided CO2 and LPSP. The solution highlighted in rhombus presents the highest
avoided CO2 among all the other solutions. Table 3 lists the system configurations for the
marked solutions in Figure 6.
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Figure 6. Panel (a) shows a 3D representation of the Pareto front, and panels (b–d) present a mapping
of the LPSP and avoided CO2, the LPSP and COE, and the avoided CO2 and COE, respectively.

Table 3. Results for the selected optimal solutions.

Solutions TOPSIS
Optimal

1st LPSP
Optimal

2nd LPSP
Optimal

3rd LPSP
Optimal

4th LPSP
Optimal

ACO2
Optimal

COE
Optimal

LPSP (%) 2.12 0 0 0 0 4.09 38.10

COE (USD/MWh) 193 293 301 228 233 276 108

Avoided CO2 (%) 75 70 73 65 65 87 45

Dumped load ratio (%) 40 43 41 46 46 31 1

DG’s operational (hours) 169 0 0 0 0 359 3985

TIC (USD) 83,086,000 123,704,500 128,021,500 100,174,500 102,174,500 123,480,000 31,770,000

PI 1.25 1.04 1.01 1.04 1.01 1.12 2.08

DPP (year) 16 23 24 23 24 20 8

Transport
electrification (%) 0 70 70 0 0 100 0

Wind (MWp) 14 16 16 14 14 16 5

PV (MWp) 2 6.5 5.5 6.5 6.5 0 0

Tank (m3) 18,000 17,000 17,000 19,000 19,000 18,000 16,000

UW-CAES (MWh/MW) 240/5 330/8 330/11 230/10 270/10 280/11 0/0
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The highest avoided CO2 emissions achieved is 87%. This solution involves keeping
the DG in the system and replacing all CEVs with EVs. Although this solution has a
relatively high TIC due to the high front cost of EVs, it performs better in terms of PI, with a
20-year DPP, compared to all the other solutions for optimal LPSP. This suggests that simply
increasing the number of installed wind turbines or PV panels may not be the most effective
way to reduce emissions. Interestingly, the optimal COE solution does not involve the use
of EVs, UW-CAES, or PV panels. It involves installing 6 MW of wind turbines and is able to
reduce the CO2 emissions of the system by up to 45%. Additionally, the initial investment
pays off within 8 years, and the profit is doubled within the lifespan of the system. The
analysis yielded four solutions that achieve the minimum LPSP, each proposing different
system configurations to make the island completely free from fossil fuels. However, the
TOPSIS optimal solution, which does not consider transport electrification, stands out by
achieving 75% avoided CO2 emissions, making it a better choice from an environmental
standpoint. Moreover, this solution has a lower COE than all the optimal LPSP and optimal
avoided CO2 solutions.

Figure 7 demonstrates the trend of all the solutions in terms of the installed capacity
of the wind turbines and the PV panels (separately and accumulated) versus the LPSP and
the curtailed power (dumped energy). The red circles present the position of the optimal
TOPSIS solution among all the other solutions for wind, PV, and accumulated wind and PV.
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Figure 7. Trend of all the solutions in terms of the installed capacity of the RES. The red circles
present the position of the optimal TOPSIS solution among all the other solutions for wind, PV, and
accumulated wind and PV.

As per the analysis, it is evident that in most of the solutions considered, offshore
wind turbines have a greater installed capacity than PV panels. This is due to the high
capacity factor that wind turbines can achieve in Porto Santo, resulting in better economic
performance and a lower dump load ratio. The behavior of the criteria can be visualized in
Figure 8, in which each criterion is represented by a fitted curve illustrating how it changes
with the increase in installed RES power across all fifty solutions in the Pareto front.

The solid lines in different colors represent the fitted curves for each criterion, and the
dashed lines indicate the position of each suboptimal solution in terms of the accumulated
installed power of renewable energy sources. The graph is divided into three colored areas:
yellow, blue, and red, representing different subcategories of solutions. The red area, in
which LPSP 1, 2, 3, and 4 fall, indicates that the isolated system of Porto Santo requires at
least 20 MW of accumulated RES installed power (wind and PV panels) to become fully
independent of fossil fuels. However, it should be noted that the graph only displays the
accumulated RES and not the other system components. The LPSP reaches its minimum in
the red zone, and the COE curve shows a steep incline. Nevertheless, the increase in RES
and the elimination of fossil fuels does not necessarily reduce the CO2 emissions of the
entire system, as evidenced by the downslope of the ACO2 curve in the red zone. Further
analysis of the solutions found on the Pareto front is presented in Figure 9.
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Figure 8. Increments of the accumulated RES installed power versus objectives. Left axis presents the
variations in the LPSP, dumped load, and avoided CO2 in percentage, and the right axis presents the
COE in USD/MWh.
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The figure above is divided in four panels, each presenting the variations in the
objectives in terms of increasing the size or the number of the components of the system.
A minimum installed capacity of 140 MWh is required for UW-CAES to be effective.
Additionally, the optimal solution identified by TOPSIS suggests a capacity of 240 MWh
for UW-CAES, with 16 MW installed capacity of renewable energy sources (wind and
solar) and no use of electric vehicles. Moreover, the solution includes an increase of 180%
in the potable water reservoir capacity. This increase in the water reservoir capacity has
a positive impact on the overall performance of the energy system for all the solutions
identified. Overall, these findings suggest that the utilization of UW-CAES in combination
with renewable energy sources can be an effective solution for energy storage and supply,
particularly in areas where potable water is scarce.

The utilization of HRES has become increasingly popular for remote and rural electrifi-
cation due to the decreasing cost of PV and wind generators in recent years. Consequently,
a vast amount of research has focused on developing methods for optimal HRES sizing.
However, to the authors’ knowledge, the avoided CO2 emissions criterion has rarely been
utilized in other works. The literature shows a significantly higher proportion of research
focusing on reliability and economic indicators, with little attention given to environmental
and social indicators. Additionally, the sector-coupling strategy has seldom been proposed
to facilitate the introduction of variable renewable energy sources (VRES). Therefore, the
results of this study may provide valuable insights in this context.

5. Conclusions

This work provides a clear overview of the study’s objectives, methodology, and
key findings, including the importance of integrating VRES in islands’ energy systems to
reduce their dependency on fossil fuels. Solar and wind energies were considered as the
primary resources of energy for an isolated system. Triangled sector-coupling strategies
are proposed to meet the electricity, potable water, and transportation demands, with the
required load of the RODP and the bi-directional loads associated with EVs under the
V2G/G2V approach serving as sources of flexibility.

The use of energy storage technologies has been investigated, and a multi-objective
optimization approach was employed to evaluate the energy transition for Porto Santo
Island. Energy shifting is facilitated by two storage systems: a lithium-ion battery pack
with a capacity of 12 MWh and a maximum power of 6 MW and an UW-CAES system with
varying capacities depending on the needs of decision maker.

A RODP coupled with a water reservoir was considered the sole provider of potable
water. The UW-CAES system, which serves as a long-term ESS, is cost-effective, with a
minimum capacity of 240 MWh and a maximum power of 7 MW. Increasing the potable
water reservoir by 50% is beneficial, allowing the RODP to desalinate seawater when the
storage systems are full.

The results indicate that full inland transport electrification (introducing 3000 EVs) can
account for 18% of the avoided CO2 emissions of the island and shares 28% of the upfront
cost of the system.

The UW-CAES would account for 35% to 60% of the system’s costs. An accumulated
5MW installed capacity of offshore wind turbines, with almost zero dumped load, leads to
45% of the costs, cutting CO2 with least COE 108 USD/MWh. However, the thermal power
plant must run more than 250 days a year to ensure the security of the supply.

The avoided CO2 optimal solution presents a system with the highest The highest
avoided emissions (CO2-equivalent emissions) among the others, whereas it increases
the COE dramatically. One interesting finding from the optimization process is that the
solution with the highest avoided CO2 emissions involves keeping a diesel generator for
supplying 4% of the island’s total demand and using an UW-CAES with a capacity of
280 MWh. This suggests that adding more installed wind turbines or PV panels may not
necessarily contribute to reducing the emissions of the entire system.
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Determining the optimal or sub-optimal capacity for a HRES is a challenging task that
involves addressing several factors. One crucial factor is the accuracy of the load profiles
used as input data for allocating the hybrid system. The optimization process results
are highly sensitive to the characteristics of solar irradiation and wind speed, making it
imperative to obtain accurate input data. Furthermore, the accuracy of the results is also
affected by the simulation time step used. Shorter time steps can potentially result in more
precise optimal solutions. Limitations of this research include the fact that the study is
based on a single case study of Porto Santo Island, and therefore, the findings may not be
fully generalizable to other island contexts. The accuracy of the results is also dependent
on the input data used, and thus, further efforts should be made to obtain more precise
data. Additionally, the economic viability of the proposed energy systems needs to be
further evaluated and compared to traditional fossil-fuel-based systems to ensure their
long-term sustainability.

The presented results hold the potential to offer valuable insights for stakeholders,
policymakers, and island communities in making informed decisions towards a future
with sustainable and resilient energy. For instance, policymakers can formulate specific
subsidies for the purchase of EVs on the island. Additionally, exploring the ideal offshore
wind location in terms of depth and distance from the coast is suggested, especially if this
is coupled with UW-CAES. In order to improve the overall system efficiency, increasing the
interaction between the water supply system and the energy supply system is suggested.
Overall, the study highlights the importance of a holistic approach when designing a HRES
for islands, considering the interdependence of different sectors and the role of energy
storage technologies. It also emphasizes the need to balance the economics, environmental
aspects, and security of the energy transition process. Unlike most previous studies that
have mainly focused on the power sector, this study also considers the decarbonization
of potable water provision and the electrification of inland transportation using the V2G
concept. The use of multi-objective optimization assessment using a modified NSGA-II
algorithm to determine the best energy transition strategy for Porto Santo Island is a novel
aspect of this work. Therefore, the presented work offers a comprehensive and novel
solution to the challenges of achieving a 100% renewable power system on isolated islands
while reducing their dependency on imported fossil fuels.

Future works in this area could involve further exploration and optimization of the
proposed triangled sector-coupling strategies, especially with regards to their scalability
and adaptability to different island contexts. Additionally, research could be conducted to
investigate the feasibility of incorporating other renewable energy sources, such as wave or
tidal energy, into the proposed energy systems. The potential long-term socio-economic
impacts of the proposed HRES on the island could be an area for further research to
complement this study.
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Abbreviations

Hybrid Renewable Energy System HRES Vehicle-to-Grid scheme V2G
Variable Renewable Energy Sources VRES Artificial Intelligence AI
Energy Storage System ESS Non-dominated sorting genetic algorithm NSGA
Compressed air energy storage CAES Loss of power supply probability LPSP
Underwater CAES UW-CAES Annual avoided CO2 ACO2
Reverse-osmosis desalination plant RODP Cost of energy COE
Electric Vehicle EV Total investment cost TIC
Megawatt installed power MWp

Nomenclature

Time interval j Dumped load Dump
Power (MW) p Unsatisfied demand Shortage
Electricity demand (MW) D State of energy of storage system (kWh) SoE
Net demand (MW) NET State of water reservoir level (m3) SoT
Resource’s capacity (MWp) CAP Efficiency η

Potable water production rate kWhm−3 ρ kgCO2 eq µ

Revenue R Residential tariff tr
Round trip efficiency RTE Industrial tariff ti
Operation and maintenance cost OMC
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