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Abstract: Polyphenols are beneficial natural compounds with antioxidant properties that have
recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived
from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore,
these compounds can be included in several areas of drug development. Authors have considered
the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative
diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their
antioxidant activity; therefore, the use of these natural compounds would improve the quality
of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct
characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols,
and present the highest antioxidant activity in comparison to red algae and green algae. The
present paper collects the most recent in vitro and in vivo evidence from investigations regarding
polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout
the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol
antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in
drug development to delay cell loss in patients with neurodegenerative disorders.

Keywords: marine polyphenols; seaweeds; antioxidant activity; neurodegenerative diseases;
neuroprotective activity

1. Introduction

The advantages of marine macroalgae (or seaweeds) to human wellbeing are well
known [1–4]. Numerous bioactive molecules found in seaweeds may have health advan-
tages against a range of diseases and conditions, including cancer, inflammation, microbes,
and viruses [5–12]. The potential of seaweed bioactive compounds to act as a natural
resource with remarkable neuroprotective properties can be based on abundant published
results from recent clinical and preclinical studies. Numerous studies have documented
seaweed bioactive compounds exhibiting therapeutic activities [13–19].

Seaweed biomass is a promising, renewable, and cost-effective [20–22] resource of
high-value bioactive compounds that have been highly invested in within the food, phar-
maceutical, and cosmetic industries [23–29].

Marine polyphenols have been discovered to be powerful antioxidant compounds;
therefore, they can play a crucial role in the development of natural and innovative neuro-
protective drugs.

Neuroprotection refers to methods and mechanisms that protect neuronal cells against
injury, dysfunction, deterioration, and cell death in the central nervous system (CNS) [30].
These compounds may slow the progression and limit neuronal cell loss; therefore, the use
of those would improve quality of life for patients affected with neurodegenerative diseases.
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The progressive loss of specifically vulnerable groups of neurons characterizes neu-
rodegenerative disorders, which are frequently (though not always) accompanied by
neurodegenerative symptoms. Neurodegenerative diseases can be categorized accord-
ing to their primary clinical characteristics, such as dementia, parkinsonism, or motor
neuron disease; anatomical distribution of the disease, such as frontotemporal degenera-
tions, extrapyramidal disorders, or spinocerebellar degenerations; or principal molecular
abnormality [31]. Although the exact pathophysiology of neurodegenerative diseases is
still unclear, common factors contribute to the disease progression: increased oxidative
stress, neuroinflammation, misfolded proteins, dysfunctional mitochondria, and impaired
proteostasis [32].

By interfering with the CNS functions, neurodegeneration affects both the structure
and survival of neurons as well as their ability to operate. Neuronal cells of the CNS
cannot grow back after being harmed by disease, ischemia (lack of oxygen, glucose, or
blood flow), or physical trauma, in contrast to primary cells from the skin, liver, or muscle.
The human CNS is incredibly complex, creating difficulties in the understanding and
treatment of neurodegenerative diseases. Currently, no therapeutic treatments can stop
the natural course of neurodegenerative disease, and treatments can only ameliorate the
quality of life of patients affected by neurodegenerative diseases. Alzheimer’s disease (AD),
frontotemporal lobar dementia (FTLD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS) are some of the most common neurodegenerative diseases [33].

According to the research, exogenous antioxidants may benefit individuals with neu-
rodegenerative diseases; it has been demonstrated that abundant biomolecules from marine
sources show therapeutic potential. Phlorotannins, sulphated polysaccharides, carotenoids,
and sterols are just a few of the powerful antioxidant compounds that have been found in
various seaweeds. These marine organisms are valuable sources of compounds with neu-
roprotective effects, as they remove or suppress the generation of reactive oxygen species
(ROS) and/or reactive nitrogen species (RNS), preventing neuronal cell death [34–37].
Emerging evidence suggests that antioxidant activity cannot be the exclusive mechanism
by which compounds exert neuroprotection, and compounds that alter signalling pathways
involved in cell survival systems have also been indicated [38].

Polyphenolic antioxidants have significant potential in free radical scavenging, which
is a major contributor to neuronal damage and can therefore exert consequential neuropro-
tective effects and play a critical role in the treatment of neurodegenerative diseases.

Many studies have demonstrated the neuroprotective activity of polyphenolic an-
tioxidants and their usefulness for neuronal regeneration. For example, in 2019, Zhou
et al. [39] investigated the effect of luteolin, a natural flavonoid, on neurogenesis in Ts65Dn
mice, a model of Down syndrome. The study found that luteolin significantly improved
the behavioral performance of the mice, likely through promotion of neuronal differ-
entiation and commutation in hippocampal neurogenesis. Similarly, Katebi et al. [40]
introduced a new approach to neuronal repair therapeutics by combining quercetin and
NGF with superparamagnetic iron oxide nanoparticles to efficiently promote neuronal
branching in morphogenesis of PC12 cells. Bieler et al. [41] also investigated the effects of
a prenylflavonoid on the regeneration of rat dorsal root ganglion neurons and found that
enhancement of ENDF1, which was segregated from hops, could promote branching and in-
duce a percentage of sensory neurons to regrow their neurites. In addition, various studies
have shown positive neuroprotective effects of polyphenolic compounds such as myricetin,
quercetin, tannic acid, and naringenin on both in vivo and in vitro experiments [42–46].
On this basis, the neuroprotective effects of seaweed compounds in various in vitro and
in vivo models of neurodegeneration are further discussed in the present review.

2. Causes Involved in the Development of Neurodegenerative Diseases

So far, several reviews have comprehensively conferred the potential health benefits
of seaweeds in terms of antioxidant properties. Before summarizing the neuroprotective
potentials of seaweeds and their compounds, mechanisms that are involved in the patho-
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genesis of neurodegenerative diseases are shown through this section to investigate the
mechanisms of action of seaweed polyphenols.

The brain is a demanding organ that utilizes a huge amount of oxygen for optimal
function [32]. Several studies have established that the imbalance between pro-oxidant and
antioxidant homeostasis, leading to the generation of free radicals, namely, ROS and RNS,
may be involved in the pathogenesis of most neurodegenerative disorders [47]. The redox
state imbalance is reflected as an increased number of free radicals, ROS, and RNS and
a depleted antioxidant defence system, resulting in oxidative stress conditions [48].

The accumulation of ROS and RNS and the interaction between these reactive species
can result in lipid peroxidation, protein oxidation, DNA damage, and, ultimately, neuronal
cell death [34]. ROSs, such as hydrogen peroxide (H2O2), superoxide anion (·O2

−), and
hydroxyl radicals (·OH), and the RNS nitric are formed due to the reduction of oxygen. The
members of the ROS group trigger mitochondrial dysfunction and protein misfolding in the
endoplasmic reticulum, which lead to ulterior ROS production. Together, these free radicals
cause oxidative damage to DNA, lipids, and proteins, resulting in structural changes to the
brain, thereby modulating its function, and is eventually followed by a cascade of events
that might result in neurodegenerative disease [49].

The loss of certain groups of neurons is a common pathological characteristic of
various neurodegenerative diseases [50]. Although cholinergic denervation is recognized
as a pathological marker of AD, neuroimaging studies conducted in vivo have revealed the
loss of cerebral cholinergic markers in PD as well, with symptoms that are similar or even
more severe than those in AD [51]. Consequently, a decline in the levels of acetylcholine
(ACh) is seen in both neurodegenerative conditions.

Two types of cholinesterase (ChE) enzymes are present in the CNS: acetylcholinesterase
(AChE) and butyrylcholinesterase (BuChE). AChE is an enzyme that specifically targets
ACh, breaking it down at cholinergic synapses, whereas BuChE is a non-specific enzyme
found in neuroglia and the intestine, liver, kidney, heart, lung, and serum. Both enzymes
can split over 10,000 molecules of ACh per second, and therefore, they represent valuable
therapeutic targets for the treatment of neurodegenerative diseases [52,53]. ChE inhibitors
can slow down the inactivation of ACh post-synaptic release, making them one of the
most effective and practical approaches for treating the symptoms of neurodegenerative
disorders. Studies have already demonstrated that ChE inhibitors not only increase ACh
levels in the brain, but also prevent and reduce the formation of amyloid beta (Aβ) deposits,
which protects neurons from neurodegeneration [54].

In AD, Aβ deposits are neurotoxic, triggering the release of pro-inflammatory cytokines,
ROS, and RNS, which eventually lead to neuronal dysfunction and cell death [47–49]. In PD,
the release and accumulation of α-synuclein aggregates activate microglial cells, leading to
the production of pro-inflammatory mediators that can also cause neuronal cell death [55].

Antioxidants have been recognized as a successful therapeutic approach for delaying
the progression of AD. This is due to the notion that increased ROS levels in the brain
are linked to AD development [56]. Due to their high lipid content, high oxygen intake,
and weak antioxidant defences, brain cells are particularly vulnerable to free radical
damage. Therefore, elevated levels of ROS in brain cells may result in lipid peroxidation,
neurodegeneration, and eventually cell death. To avoid this outcome, antioxidants might
be helpful for delaying the rapid progression of the disease.

Studies have shown that natural products derived from plants, animals, algae, and
microalgae, including their extracts and bioactive molecules, have therapeutic benefits and
neuroprotective action [57].

3. Marine Polyphenols Involved in Neuroprotective Activity
3.1. Seaweed Polyphenols

Polyphenolic secondary metabolites comprise a large collection of chemical com-
pounds found in terrestrial plants [58,59] and seaweeds [60,61]. Tannins, a prevalent group
of phenolic metabolites, contain numerous hydroxyl groups and can be classified into three
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groups. Condensed tannins, which are based on flavonoids, are found predominantly in
woody plants, as well as in red wine and tea [62]. Hydrolysable tannins, formed by poly-
hydric alcohol, where hydroxyl groups are partly or etherified with gallic acid or related
compounds, are found in some green algae and are broadly distributed in angiosperms [63].
Phlorotannins, one of several algal polyphenol’s groups, are of great pharmacological sig-
nificance. They are composed of many phloroglucinol (1,3,5-trihydroxybenzene) (Figure 1)
molecules that are linked together in various ways (Figure 2) [64].
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Figure 2. Eckol-class compounds: (a) eckol; (b) dieckol; (c) 6,6-bieckol; (d) dioxinodehydroeckol;
(e) 2-phloroeckol; (f) phlorofucofuroeckol.

Phlorotannins can be split into six distinct groups based on the type of structural
connections between phloroglucinol units and the quantity of hydroxyl groups present:
phlorethols and fuhalols (phlorotannins with an ether linkage), fucols (which present
a phenyl linkage), fucophlorethols (with an ether and phenyl linkage), eckols (with a diben-
zodioxin linkage), and carmalols [65]. In the event of cellular damage, these substances are
produced via the acetate–malonate pathway [66].

Phlorotannins, a type of polyphenolic compound, are found exclusively in brown
algae, and their quantity can vary among species, depending on factors such as algae
size, age, tissue type, salinity, season, nutrient levels, intensity of herbivory, light in-
tensity, and water temperature [67]. Similar to other polyphenols, phlorotannins have
several remarkable properties relevant to biological systems, including antioxidant [68],
anti-inflammatory [69,70], antimicrobial [71], anticancer [72], and antidiabetic [73] activ-
ities. Furthermore, phlorotannins play a significant role in neuroprotection via different
mechanisms of action.

Although their molecular sizes seem to be important for producing robust interactions
with enzymes, variations in the positions and numbers of OH groups and O-bridge linkages
may play an even more important role in promoting inhibitory activity. Additionally,
phlorotannins can form enzyme–inhibitor complexes by associating with proteins [74].
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Reports of different types of phlorotannins in brown seaweeds confirm that the role
of these compounds in nature is to protect algae against environmental stressors and
predators, although numerous phlorotannins from marine brown algae are known to be an
abundant source of nutritious food because of their benefits for health [61,75].

Ecklonia cava is a type of marine brown algae that contains a greater abundance of phe-
nolic compounds than other brown algae [76]. Numerous phlorotannins have been isolated
from brown seaweeds such as E. cava, Ecklonia kurome, Ecklonia bicyclis, and Hizikia fusiformis,
and have been found to possess potent antioxidant properties, protecting cells against
hydrogen peroxide-induced damage [77–79]. Among these phlorotannins, eckol, phlorofu-
cofuroeckol A, dieckol, and 8,8′-bieckol significantly inhibited phospholipid peroxidation
at a concentration of 1 M in a liposome system, as well as exhibited effective scavenging
activities against superoxide and DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals when
compared to ascorbic acid and α-tocopherol [80].

3.2. Mechanisms of Action of Antioxidant Seaweed Polyphenols

ChE inhibitors are a successful approach for treating the symptoms of neurodegen-
erative disorders, even though various strategies can be used to stop the progression of
neurodegeneration. Phlorotannins from Ecklonia maxima were isolated by Kannan et al. [81],
and the results showed that they had AChE inhibitory action. Dibenzo 1,4-dioxine-2,4,7,9-
tetraol and eckol were found to be more effective AChE inhibitors than phloroglucinol. This
is likely because they have larger molecules and more hydroxyl groups than phloroglucinol,
which can modulate their interactions with AChE and subsequently block it (Figure 3).
These findings highlight the potential uses of E. maxima as a beneficial ingredient that could
be used as additives to foods to act as neuroprotective foods [81].

Ecklonia stolonifera is a perennial brown alga that is extensively dispersed throughout
Korea. Eckol, dieckol, 2-phloroeckol, and 7-phloroeckol were isolated from this alga
and showed a selective dose-dependent inhibitory activity against AChE; eckstolonol
and phlorofucofurofuroeckol A inhibited both AChE and BuChE. Phloroglucinol and
triphlorethol A, a phloroglucinol opened-chain trimer, did not, however, inhibit ChE at the
measured concentrations. These results demonstrated that phlorotannins possess structural
features that prohibit the binding of substrates to ChE, but they also implied that the degree
of polymerization and closed-ring structure must be crucial elements in phlorotannins’
capacity to inhibit ChE [82].
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Figure 3. Illustration showing a potential way in which polyphenols may affect neurotransmission.
The process of ACh formation occurs briefly before it is broken down by AChE, ultimately leading
to the transmission of neurotransmitters to postsynaptic neurons. The inhibition of these enzymes
occurs when polyphenols bind to the active sites of AChE or BChE.

Jung et al. [82] evaluated dieckol isolated from E. cava’s neuroprotective benefits
by looking at its anti-inflammatory properties. The results showed that dieckol down-
regulated nuclear factor b (NF-kB), activated p38 kinase, and/or inhibited ROS signal in
microglial cells to significantly inhibit the expression and release of cytokines and mediators
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that promote inflammation, such as ·NO, PGE2, IL-1β, and TNF-α. The management of
reactive stress and neuroinflammation brought on by microglia, which are essential for the
beginning of neurodegenerative processes, may therefore be aided by dieckol.

In another work, Yoon et al. [83] isolated phloroglucinol, 6,6′-bieckol and diphloretho-
hydroxycarmalol (DPHC) from Ishige okamurae, a brown edible alga found throughout
Korean upper and middle intertidal costal zones. They tested the compound’s ability to
inhibit ChE, showing that 6,6′-bieckol and DPHC had strong effects on AChE and modest
effects on BuChE, respectively.

Phlorotannins have been shown to have a neuroprotective effect in previous studies
through a number of mechanisms, including inhibition of AChE, BuChE, monoamine
oxidase, and inhibition of Aβ-precursor protein enzyme 1 (BACE-1) activity [84]. Ad-
ditionally, phlorotannins have the capacity to modify neuronal receptors and control
signalling cascades involved in neuroinflammation, oxidative stress, and neuronal cell
death [84]. Although Lee et al. [85] demonstrated that eckol and dieckol were ascribed
anti-neuroinflammatory properties in Aβ25–35-treated neuronal PC12 cells, earlier studies
showed that eckol, dieckol, and phlorofucofuroeckol A (PFFA) decreased Aβ-induced cell
death, inhibited intracellular ROS generation, and increased calcium generation [86].

The most common neurodegenerative condition that causes dementia—a condition
marked by increasing memory loss and cognitive decline—in the aging population is AD.
The clinical symptoms of AD include the build-up of intracellular neurofibrillary tangles
and extracellular A plaques in the brain [87]. Aβ plaques, soluble Aβ oligomers, and
protofibrillar forms impair synaptic signalling at neural junctions, interfering with normal
neuronal cell function. Their accumulation causes neuronal toxicity [88].

The destruction of Aβ plaques may promote proper neuronal cell activity. Amyloid
precursor protein (APP) is first broken down by β-secretase into soluble β-APP fragments
(sAPPβ) and the C-terminal β fragment (CTFβ, C99), and then C99 is further broken down
by γ-secretase into the APP intracellular domain (AICD) and Aβ. This process is known
as the amyloidogenic pathway. Additionally, a number of Aβ peptides form oligomeric
clusters and stress neuronal cells via oxidative stress [89].

Phlorotannins disrupt the amyloidogenic pathway in a variety of ways, decreasing
the production of Aβ peptides and lowering the risk of oxidative stress [90]. Recently,
Shrestha et al. [91] reported the neuroprotective effects of dibenzodioxin-fucodiphloroethol
(Figure 4) that inhibited its neurotoxicity and aggregation of Aβ, providing evidence that
phlorotannins have a neuroprotective function through a variety of pathways.
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AChE also engages in non-cholinergic mechanisms, such as accelerating the formation
of Aβ plaques through conformational changes in Aβ and raising Aβ toxicity by Aβ-AChE
complexes, and it is essential for cholinergic neurotransmission. Therefore, by preventing
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the accumulation of extracellular Aβ plaques, multi-enzyme target inhibition against AChE
may offer a possible therapeutic approach for AD.

Further research is still needed to determine the contributions of phlorotannin classes
to neuroprotection activity and their protective mechanisms, such as antioxidant capability
and direct modulation of Aβ aggregations.

4. Seaweed Polyphenols as Neuroprotective Antioxidants

Throughout this section, in vivo and in vitro investigations conducted in the last ten
years are collected (Table 1).

In the study of Shrestha et al. [92], four phlorotannins, namely eckol, dieckol,
phlorofucofuroeckol-A (PFFA), and 974-A sourced from the brown seaweed Ecklonia species
were tested to evaluate their neuroprotective action. Aβ42, H2O2, and the lipid peroxi-
dant tert-butyl hydroperoxide (t-BHP) were used to induce oxidative stress and toxicity
in neuronal PC12 cells. From the results, it was evident that all compounds significantly
scavenged ROS. However, only PFFA and 974-A protected PC12 cells from oxidative
stress-evoked neurotoxicity, providing significant increases in cell viability in response to
both cytosolic (H2O2) and lipid peroxidation provoked (t-BHP) cell stress. None of the
phlorotannins tested inhibited Aβ42 aggregate morphology, which suggested that their
neuroprotective activity was unrelated to direct interactions with Aβ42 proteins. Our
results indicate that although all phlorotannins tested exhibited ROS scavenging activity,
only phlorotannins PFFA and 974-A afforded broader neuroprotective activity in response
to both oxidative stress and amyloid beta exposure [92].

When PC12 cells were subjected to t-BHP at concentrations of 150 and 200 µM, cell
viability decreased to 63% and 59%, respectively, compared to the control group without
t-BHP. However, PFFA and 974-A were found to significantly protect PC12 cells compared
to the group treated with t-BHP alone. PFFA increased cell viability to 94% and 92% at
150 and 200 µM of t-BHP, whereas 974-A increased it to 86% and 81% compared to t-BHP
alone. Eckol and dieckol, on the other hand, did not exhibit any protective activity against
cytosolic oxidative stress induced by t-BHP. PC12 cells pre-treated with phlorotannins
and exposed to t-BHP, showed a similar protective effect as in the response to H2O2.
Specifically, the two fucofuroeckols (PFFA and 974-A) were found to significantly protect
PC12 cells exposed to 150 and 200 µM of t-BHP, whereas eckol and dieckol did not offer
any protection. Intriguingly, all the tested phlorotannins were found to effectively scavenge
intracellular ROS, which is likely related to their phenol rings acting as electron traps to
scavenge peroxynitrite, superoxide anions, and hydroxyl radicals, as previously noted by
the authors [92].

To confirm the scavenging activity of 974-A, it is worth mentioning the investigation
of Yotsu-Yamashita et al. [93]. In this work, 974-A and 974-B phlorotannins isolated from
E. kurome were tested for their antioxidant activity along with phlorofucofuroeckol-A, and
dieckol. The text reported the antioxidant activity of these two phlorotannins evaluated
using DPPH radical scavenging assay and intracellular radical scavenging assay. The
results of the assays suggest that 974-A, 974-B, and dieckol have the strongest intracellular
reactive oxygen species reducing capabilities among the tested compounds.

These findings emphasize the potential of a class of phlorotannins from brown sea-
weed called fucofuroeckols, which can successfully reduce oxidative stress and Aβ-evoked
toxicity relevant to neurodegenerative pathways in AD. Additional in vivo studies to fur-
ther establish preclinical efficacy as a guide to guiding further clinical trials in nutraceutical
or pharmaceutical settings are needed in the future, as are studies to differentiate the
mechanistic basis for the protection provided by fucofuroeckols [92].

Barbosa and colleagues [94] conducted a study to investigate the potential neuroactive
effects of phlorotannin-targeted extracts from various Fucus species on human-derived
SH-SY5Y cells, focusing on oxidative stress, protein glycation, enzyme inhibition, and cell
protection against oxidative glutamate toxicity. The study found that the targeted extracts
of Fucus guiryi and Fucus serratus exhibited significantly higher levels of phlorotannins than



Mar. Drugs 2023, 21, 261 8 of 18

Fucus spiralis and Fucus vesiculosus. Total antioxidant capacity was positively correlated
with the phlorotannin content. F. guiryi and F. serratus extracts showed stronger DPPH
scavenging activity, with EC50 values of 286.18 and 322.51 µg/mL, respectively, and were
also the most effective in reducing lipid peroxidation at EC50 concentrations of 845.41 and
932.76 µg/mL, respectively. These activities were found to be strongly correlated with the
amount of phlorotannins present in the extracts.

In the study by Barbosa et al. [94], phlorotannin-targeted extracts from various Fucus
species, as well as phloroglucinol, a constituent unit of phlorotannins, were found to inhibit
the formation of fluorescent advanced glycation end products (AGEs) in a concentration-
dependent manner. AGEs are associated with the pathology of AD, as they induce neu-
rodegeneration by interacting with the receptor for AGE (RAGE). F. guiryi and F. serratus
extracts were more effective than those from F. spiralis and F. vesiculosus in inhibiting protein
glycation, with a strong correlation observed between the total phlorotannin content and
the capacity to inhibit the formation of AGEs. The study also found that the most potent
extracts, F. guiryi and F. serratus, contained primarily low-molecular-weight phlorotannins
(370–498 Da) and had a low degree of polymerization, indicating the significance of the
qualitative composition of the extracts in addition to the phlorotannin content.

The accumulation of neurotoxic aggregated Aβ peptides is believed to play a crucial
role in the pathogenesis and neurological damage of AD. Currently, there is no effective
medication available to treat or prevent AD, and the only available option is to improve the
quality of life for patients with the disease [95]. In the search for new pharmacotherapies,
one approach is to target the aggregation and toxicity of Aβ [96]. Therefore, there is
a growing interest in the commercial sector to identify compounds from novel sources that
can disrupt Aβ aggregation or protect neuronal cells from Aβ toxicity, with the goal of
developing potential disease-modifying therapeutics for the treatment and prevention of
AD [97].

This study aimed to investigate the neuroprotective effects of different extracts of
Ecklonia radiata on Aβ42 toxicity in PC12 cells. The study also aimed to identify major
phlorotannins in the extracts associated with neuroprotection using high-performance
centrifugal partitioning chromatography (HPCPC) and LC-MS/MS. The ethyl acetate (EA)
fraction containing 62% phlorotannins demonstrated the most effective neuroprotective
activity against Aβ42 toxicity, inhibiting neurotoxicity at all Aβ42 concentrations. The frac-
tion also showed a significant reduction in Aβ aggregate density but did not affect overall
aggregate morphology. The study used centrifugal partitioning chromatography to isolate
the major component, eckol, in high yield and liquid chromatography–mass spectrometry
to characterize the major components of the EA fraction. The results suggested that the
presence of eckol-type phlorotannins is associated with the neuroprotective bioactivity of
E. radiata, which may have potential nutraceutical and biopharmaceutical uses in treating
dementia [98].

The extracts from E. radiata were found to be non-toxic to PC12 cells at concentrations
up to 100 µg/mL. When PC12 cells were incubated with Aβ42 (0.05–1 µM) for 48 h,
there was a concentration-dependent decrease in cell viability, with up to 79% reduction
observed at 1 µM Aβ42. However, all the extracts tested demonstrated protection against
Aβ-induced PC12 neuronal cell toxicity. The ethanolic extract increased cell viability to over
89% compared to the control group (79%), consistent with a previous study. Of note, the
EA fraction exhibited the most significant protective activity across all Aβ concentrations,
increasing cell viability to more than 100% compared to the control at low concentrations of
Aβ, indicating a potential proliferative or stimulating effect of EA on mitochondrial activity.
Overall, the EA extract showed significant protection against neurotoxicity in PC12 cells
at most Aβ concentrations, which was associated with a reduction in both the prevalence
and density of Aβ42 aggregates. These findings suggest that E. radiata may be a promising
natural source of therapeutic neuroprotective phlorotannins; however, further studies are
needed to identify other novel compounds associated with Ecklonia species [98].
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Alghazwi et al. [97] conducted a study to investigate the impact of extract composition
on the neuroprotective activities of E. radiata. The study used six fractions of E. radiata
extract, including crude extract (CE), phlorotannin (PT), polysaccharide (PS), free sugar
(FS), low molecular weight (LM), and high molecular weight (HM), to evaluate their effects
against Aβ42 and oxidative stress in the PC12 neuronal cell line. The results showed
that all fractions inhibited apoptosis induced by Aβ42 and enhanced neurite outgrowth
activity, indicating the potential of using E. radiata for improving neuroprotective activities.
Moreover, all fractions demonstrated concentration-dependent neuroprotective activity
against Aβ42-induced cytotoxicity, with the CE, PT, and PS fractions showing the highest
neuroprotective activity, increasing cell viability to more than 92% at a concentration
ranging from 50 to 100 µg/mL. Importantly, the MTT assay revealed that three fractions
(PT, FS, and LM) did not exhibit significant cytotoxicity to PC12 cells, even at the highest
concentration of 100 µg/mL, indicating the safety of using E. radiata fractions as potential
functional food or dietary supplements to support neurological function [97].

Alghazwi and colleagues investigated the efficacy of different fractions of E. radiata
against hydrogen peroxide-induced neurotoxicity in PC12 cells. A concentration of 100 µM
hydrogen peroxide reduced cell viability by 38% compared to PBS control. However, all
fractions except for HM demonstrated neuroprotective activity by reducing neurotoxicity.
The CE and PS fractions showed significant antioxidant activity at 12.5 µg/mL, whereas the
PT, FS, and LM fractions showed antioxidant activity at 25 µg/mL. Among these fractions,
CE exhibited the highest antioxidant activity, recovering cell viability from 62% to 84% at
a concentration of 50 µg/mL, whereas LM showed the lowest activity, with 100 µg/mL
resulting in a recovery from 62% to 75% cell viability. The remaining three fractions (PS, PT,
and FS) demonstrated varying degrees of protection, with a recovery of 63–82% viability at
tested concentrations ranging from 3.125 to 100 µg/mL [97].

Alghazwi et al. [99] found that the PT fraction had the strongest anti-apoptotic activ-
ity, with an apoptosis rate of less than 7%. This could be attributed to the high degree of
hydroxylation in phlorotannin compounds, as a previous study demonstrated the neuropro-
tective effects of 6,6′-bieckol against high glucose-induced cytotoxicity in INS-1 cells. These
results suggest that further research should investigate the neuroprotective compounds
in E. radiata as potential functional food supplements for managing neurodegenerative
disorders such as AD. It is recommended that additional studies be conducted to identify
the specific components responsible for the neuroprotective activities of seaweed extracts,
including polysaccharides and phlorotannins.

In a study conducted by Alghazwi et al. [100], the neuroprotective effects of
phlorotannin-rich fucoidan samples from F. vesiculosus and fucoidans from Undaria pinnatifida
were observed due to their inhibitory effect on Aβ aggregation and Aβ42-induced cytotoxi-
city in PC12 cells. Five types of fucoidan samples (FE, FF, and S from F. vesiculosus and UE
and UF from U. pinnatifida) were tested for their neuroprotective potential. The fucoidan S
sample showed the lowest neuroprotective activity, where cell viability did not exceed 90%
even at the highest concentration. On the other hand, fucoidan UE demonstrated higher
activity than fucoidan UF, although it is not known which structural aspect is behind this
finding. Fucoidan samples FE and FF from F. vesiculosus inhibited cytotoxicity induced by
Aβ42, with cell viability exceeding 80% at the lowest concentration (3.125 µg/mL), whereas
at the highest concentration (100 µg/mL), it reached <98%. Fucoidan S from F. vesiculosus
had the greatest effect on preventing Aβ42 clustering. Fucoidan from U. pinnatifida extract,
on the other hand, demonstrated a stronger anti-aggregation impact against Aβ42. The
sample S from F. vesiculosus, rich in polyphenols showed the greatest anti-Aβ42 aggre-
gation effects compared to other samples, possibly due to the presence of phlorotannin,
the most common polyphenolic compound in brown algae [60,61]. The findings suggest
that fucoidan neuroprotective activity depends on the structure of the polysaccharides,
which can differ depending on the source and the techniques used to purify it. Fucoidan
samples might neutralize free radicals to provide an antioxidant defence [101]. These
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bioactive substances that inhibit Aβ aggregation may offer alternative treatment for AD
patients [100].

Another unique phlorotannin (eckmaxol, Figure 5) isolated from Ecklonia maxima, also
exhibited anti-amyloidogenic activity [102].
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Eckmaxol is a phlorotannin that was extracted from E. maxima and has 13 aromatic
hydroxy groups in its structure, a feature that suggests it may exhibit potent antioxidative
stress effects. It was found that eckmaxol prevented Aβ oligomer-induced cell death and
cytotoxicity in neuroblastoma cell line SH-SY5Y in a concentration-dependent manner. At
a concentration of about 20 µM, eckmaxol exhibited its highest level of neuroprotective
activity (73.08 ± 5.74%) without affecting the survival of SH-SY5Y cells. The MTT assay
demonstrated that longer treatment times greatly increased the neuroprotective effects
of eckmaxol. According to the results, eckmaxol protected SH-SY5Y cells from apoptosis
brought on by Aβ oligomers.

It was also found that after 1 h treatment with 20 µM eckmaxol, the Aβ oligomer-
induced increase in the intracellular ROS level significantly reduced from 154.92 ± 22.54%
to 70.42 ± 3.28%, suggesting that this phlorotannin can attenuate Aβ oligomer-induced
oxidative stress in SH-SY5Y cells. The addition of eckmaxol alone at 20 µM did not increase
intracellular ROS (98.69 ± 2.32%) in SH-SY5Y cells. Therefore, these results suggested that
eckmaxol demonstrates potent neuroprotective effects [102].

The recent study of Meshalkina et al. [103] assessed the anti-neurodegenerative activity
of phlorotannin extracted from F. vesiculosus and Pelvetia canaliculata for differentiated SH-
SY5Y cells. The extracts of both brown algae showed modest but significant protective
effects in the paraquat cell model of PD. Specifically, the intracellular phlorotannins of
F. vesiculosus significantly improved the viability of paraquat-treated cells only at the
highest concentration tested (10 µg/mL), which was toxic to the control cells not treated
with paraquat, whereas the extract of P. canaliculata demonstrated a protective effect at all
the concentrations tested. In the Aβ25–35 cell model of AD, tested extracts of brown algae
demonstrated well-pronounced protective activity, noticed by cell viability that could be
restored to almost the control levels. The solutions containing the extracts were applied to
the cells for 0.5 h prior to the solution of Aβ25–35, and the resulting signal was compared
with the control of Aβ25–35-only wells. In these experiments, the extracts of P. canaliculata
demonstrated more pronounced protective activities at all the concentrations, whiwhereasle
extracts of F. vesiculosus exhibited protective effect only at the highest concentrations of
5 µg/mL and 10 µg/mL. However, the highest concentrations in the tested range produced
the strongest effect, implying therapeutic doses of the extracts may be rather close to the
toxic doses.

Yang et al. [104] investigated the action of phloroglucinol (1,3,5–trihydroxybenzene),
a component of phlorotannins extracted from E. cava to verify the occurrence of therapeutic
activities in AD. Phloroglucinol attenuates the increase in ROS accumulation induced by
oligomeric Aβ42 treatment in HT-22, hippocampal cell line. In addition, phloroglucinol was
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shown to ameliorate the reduction in dendritic spine density induced by Aβ42 treatment
in vivo in rat primary hippocampal neuron cultures. The results showed that administra-
tion of phloroglucinol to the hippocampal region attenuated the impairments in cognitive
dysfunction observed in vivo in 22-week-old 5XFAD (Tg6799) mice. These results indicate
that phloroglucinol displays therapeutic potential for AD by reducing the cellular ROS
levels [104].

In the experiment, cells were treated with 10 µg/mL phloroglucinol for an hour
before being treated with 8 µM Aβ42 for six hours. Fluorescence intensity showed that
phloroglucinol pre-treatment significantly reduced ROS accumulation caused by Aβ42,
indicating that phloroglucinol can lower ROS accumulation caused by Aβ42 [104]. After
three days, the mice underwent the Morris water maze test to assess their spatial learning
and memory capacities. The AD Tg mouse model showed longer latency in locating the
hidden platform compared to the wild-type (WT) mice. However, Tg mice treated with
phloroglucinol showed a significantly shorter escape latency than Tg mice given the vehicle
on the fourth day of the learning stage. The probe test showed no significant differences
in the time spent in the quadrant between the groups. The T-maze test, which evaluated
working memory, was performed on the eleventh day after injection. The Tg mice exhibited
decreased spontaneous alternation ratio compared to WT mice, but the administration of
phloroglucinol restored this ratio significantly. There were no significant differences in
Aβ level or the level of neprilysin, a major Aβ degrading enzyme, between the groups,
suggesting that phloroglucinol did not affect Aβ generation or degradation [104].

Data revealed that phloroglucinol exhibits therapeutic potential in AD and may post-
pone the disease progression by reducing cognitive function deficits by working as an an-
tioxidant. Based on these findings, the authors hypothesize that phloroglucinol’s beneficial
effects on the behavioural phenotype of AD are not caused by a direct impact on the
production and/or degradation of Aβ, but rather by protective effects against a decrease
in the density of dendritic spines and synaptic proteins such as synaptophysin and PSD-
95. Antioxidant therapy may therefore be a strategy that addresses numerous molecular
processes thought to be involved in the pathogenesis of AD [104].

The recent study of Myung et al. [105] shows that dieckol and phlorofucofuroeckol
(PFF) phlorotannins present in E. cava are involved in the inhibition of acetylcholinesterase,
and therefore, they may improve cognitive functions, suggesting that they have the po-
tential ability to enhance memory in several neurodegenerative disorders. Dieckol and
phlorofucofuroeckol were administered orally to ethanol pre-treated mice. The repeated
administration of either dieckol or PFF in a dose-dependent manner reduced the inhibition
of latency by the administration of ethanol. Major central neurotransmitter levels were
assessed in the striatum, hippocampus, and frontal cortex of the mouse brain to determine
the mechanism of memory-enhancing actions. Levels of some neurotransmitters that were
affected by the ethanol treatment changed due to the action of dieckol and PFF. It is note-
worthy that both dieckol and PFF increased the level of acetylcholine, and they exerted
anticholinesterase activities. Overall, the memory-enhancing abilities of dieckol and PFF
may result from, at least in part, an increase in the brain acetylcholine levels by inhibiting
acetylcholinesterase [105].

Yang et al. [106] conducted a recent study that showed the effectiveness of oral adminis-
tration of phloroglucinol from E. cava for improving cognitive impairments in 6-month-old
5X familial AD (5XFAD) mice. The treatment resulted in a decrease in the number of
amyloid plaques and the protein level of BACE1, a major enzyme involved in amyloid
precursor protein cleavage, along with γ-secretase. Moreover, phloroglucinol restored the
decrease in dendritic spine density and the number of mature spines in the hippocampi
of 5XFAD mice. These findings suggest that phloroglucinol has therapeutic potential for
treating AD by mitigating neuropathological symptoms and behavioural phenotypes in
the 5XFAD mouse model [106].

The studies presented in this passage highlight the potential therapeutic effects of
phlorotannins extracted from E. cava in reducing cognitive deficits associated with AD.
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Although the results obtained from cell and animal models are promising, it is important to
note that these models have limitations and differences in their relevance to human biology.
Cell cultures provide a controlled environment for studying the effects of compounds on
specific cellular pathways. However, they lack the complex interactions between different
cell types and organ systems present in vivo, which may affect the effectiveness and
safety of therapeutic interventions. Animal models can provide a more comprehensive
understanding of the effects of a treatment in vivo, but there are variations between species
and strains, and the pathology and progression of diseases may differ from those in humans.
Additionally, the experiments described in this passage focus on specific aspects of AD
pathology, such as oxidative stress, amyloid plaque accumulation, and cholinergic deficits.
AD is a multifactorial disease with complex underlying mechanisms, and the effects of
phlorotannins on other aspects of the disease, such as neuroinflammation, remain to be
studied. Overall, although the studies presented in this passage suggest that phlorotannins
from E. cava may have therapeutic potential for AD, further studies are needed to fully
understand the efficacy and safety of this treatment as well as its potential limitations and
differences in relevance to human biology.

Though there is growing interest in the potential neuroprotective effects of marine
macroalgae polyphenols, it is important to acknowledge the limitations of the current
studies. Most studies have been conducted in vitro or in animal models, and the translation
of these findings to human clinical trials remains uncertain. Additionally, most studies
have focused on the antioxidant properties of marine polyphenols, and further research
is needed to fully understand the mechanisms underlying their neuroprotective effects.
Furthermore, the bioavailability and pharmacokinetics of marine polyphenols need to be
studied to determine optimal dosing and delivery methods. These limitations highlight the
need for further research to fully realize the potential of marine macroalgae polyphenols as
neuroprotective agents.

Table 1. In vitro and in vivo assays performed to investigate seaweed polyphenols neuroprotective
activity.

Species Extracted Compound Exhibited Effect In Vitro/
In Vivo Assay References

Ecklonia cava Dieckol
Phlorofucofuroeckol

Inhibition of AChE.
Potential ability to enhance

memory in neurodegenerative
disorders

In vivo
(Ethanol pre-treated

mice)
[105]

Ecklonia cava Phloroglucinol

Limited increase in ROS
accumulation

In vitro
(SH-SY5Y cells)

[104]
reduction in dendritic spine

density in mice
In vivo

(5XFAD mice)

Ecklonia cava Phloroglucinol Improvement of cognitive
impairments

In vivo
(5XFAD mice) [106]

Ecklonia kurome

Dieckol
phlorofucofuroeckol-A

974-A
974-B

All compounds showed ROS
scavenging activity

In vitro
(DCFH-DA assay) [93]

Ecklonia maxima Eckmaxol
Neuroprotective activity

prevention aggregation of
β-amyloid

In vitro
(SH-SY5Y cells) [102]

Ecklonia radiata Eckol-type
phlorotannins Neuroprotective activity In vitro

(PC12 cells) [98]

Ecklonia radiata Phlorotannin Apoptosis inhibition.
Neuroprotective activity

In vitro
(PC12 cells) [97]
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Table 1. Cont.

Species Extracted Compound Exhibited Effect In Vitro/
In Vivo Assay References

Ecklonia sp.

Eckol
Dieckol

Phlorofucofuroeckol-A
974-A

All compounds showed ROS
scavenging activity.

Phlorofucofuroeckol-A and
974-A showed neuroprotective

activity

In vitro
(PC12 cells) [92]

Fucus guiryi
Fucus serratus
Fucus spiralis

Fucus vesiculosus

Phlorotannin

All compounds showed ROS
scavenging activity (stronger
activity for Fucus guiryi and

Fucus serratus extracts)

In vitro
(SH-SY5Y cells) [94]

Fucus vesiculosus
Undaria pinnatifida

Phlorotannin-rich
fucoidan
Fucoidan

Neuroprotective activity.
prevention aggregation of

β-amyloid

In vitro
(PC12 cells) [100]

Fucus vesiculosus Pelvetia
canaliculata Phlorotannin Neuroprotective activity In vitro

(SH-SY5Y cells) [105]

5. Conclusions

Seaweeds are enriched with several compounds with therapeutic potential. Among
them, polyphenols have clearly exhibited interesting in vitro and in vivo pharmacological
properties related with antioxidant properties. Data collected in the present review suggest
that seaweed can be important sources of polyphenolic compounds with potential applica-
tions as pharmaceutical or nutraceutical agents for prevention and control of neurodegen-
erative processes through different pathways. The manuscript presents a comprehensive
review of the neuroprotective potential of polyphenols from seaweeds. Although some pre-
vious studies have focused on the neuroprotective effects of seaweed-derived compounds,
this review aims to synthesize and critically evaluate the current state of knowledge on
this topic. The manuscript builds on previous research by providing a more in-depth and
up-to-date analysis of the neuroprotective properties of marine polyphenols, particularly
in relation to neurodegenerative diseases. This review also highlights the potential of
these compounds as a source of natural and innovative neuroprotective drugs, given their
antioxidant and signaling pathway-altering properties. Furthermore, this review presents
an extensive evaluation of preclinical and clinical studies investigating the neuroprotective
effects of seaweed-derived compounds. This comprehensive analysis has the potential to
aid in the identification of new therapeutic strategies for the treatment of neurodegenerative
diseases, which currently lack effective treatments. Overall, the manuscript’s contribution
lies in its synthesis and evaluation of recent literature as well as its potential to provide
new insights and strategies for the development of neuroprotective drugs derived from
seaweeds polyphenols, aiding patients that suffer from neurological diseases to achieve
a better life quality.
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