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Abstract: Diabetes mellitus (DM) is a metabolic disease characterized by abnormal blood glucose
levels-hyperglycemia, caused by a lack of insulin secretion, impaired insulin action, or a combination
of both. The incidence of DM is increasing, resulting in billions of dollars in annual healthcare
costs worldwide. Current therapeutics aim to control hyperglycemia and reduce blood glucose
levels to normal. However, most modern drugs have numerous side effects, some of which cause
severe kidney and liver problems. On the other hand, natural compounds rich in anthocyanidins
(cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) have also been used for the
prevention and treatment of DM. However, lack of standardization, poor stability, unpleasant taste,
and decreased absorption leading to low bioavailability have hindered the application of anthocyanins
as therapeutics. Therefore, nanotechnology has been used for more successful delivery of these
bioactive compounds. This review summarizes the potential of anthocyanins for the prevention
and treatment of DM and its complications, as well as the strategies and advances in the delivery of
anthocyanins using nanoformulations.

Keywords: diabetes mellitus; diet; bioactive compounds; anthocyanins; nanoformulations

1. Introduction

Diabetes mellitus (DM) is a metabolic disease caused by deficient insulin secretion or
impaired insulin action, resulting in abnormal blood glucose levels [1]. Lack or inadequate
treatment of this disease can lead to various complications such as cardiovascular disease,
coronary heart disease, hypertension, obesity, neurological disorders, diabetic retinopathy
and nephropathy, atherosclerosis, hyperlipidemia, and also skin complications [2].

DM is a global burden due to its high morbidity and mortality and imposes high
public health costs. According to Kumar and colleagues [3], approximately 463 million
people suffered from DM, in 2019. However, these numbers may be even more alarming,
as it is estimated that there will be 578 million diabetics worldwide by 2030, and as many
as 700 million by 2045 [3]. These statistics reflect the sedentary lifestyle and poor dietary
habits in modern societies.

Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are the most
common types of diabetes, with T2DM accounting for 90–95% of DM cases [4]. Treatment of
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DM is performed with synthetic drugs, which can cause serious side effects due to their con-
tinuous use and do not provide a cure for the disease. More recently, the global pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly
known as COVID-19, also affected negatively infected diabetic patients [5]. These patients
were less sensitive to the effects of antidiabetic drugs and were also more susceptible to
adverse effects [6]. Therefore, there is an increasing need to find and develop new thera-
peutic agents that are non-toxic, more effective, safer, and less expensive for the treatment
of DM. In this context, plants and fruits are emerging as a source of bioactive compounds
with biological properties, including antioxidant and antidiabetic activity [7–10].

The knowledge of traditional medicine has increased the importance of searching for
plants and their derivatives with biological health-promoting properties [3,11]. According
to World Health Organization (WHO), there are more than 400 plants with antidiabetic
properties, but only some of them have been medically and scientifically proven [3]. Phe-
nolic compounds are secondary metabolites of plants and represent the largest class of
phytochemicals in edible plants, fruits, and vegetables [12]. Several studies have already
shown that these compounds possess interesting biological activities, that are excellent
for the treatment of various diseases, including DM [9,13]. Among the various phenolic
compounds, anthocyanins have been studied by the scientific community [14–16]. These
compounds belong to the flavonoids subclass and are glycosides of anthocyanidins, being
the pigments responsible for the deep red, purple, and blue colors of many fruits and
vegetables [16]. Cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin
are the most important anthocyanidins found in human nutrition [15]. Due to their special
properties and various biological activities, these phenolics are used in the food processing,
clean energy, and pharmaceutical industries [17]. Numerous studies have reported the
numerous biological activities of anthocyanins, such as anti-inflammatory, antioxidant, and
anticancer properties [14,18–20]. Regarding antidiabetic potential, it has been described that
anthocyanidins and their glycosides can inhibit the activity of α-amylase and α-glucosidase,
and increase the expression of glucose transporter 4 membrane (GLUT 4), thus promot-
ing glucose uptake and improving lipid profile [16,18]. However, the therapeutic use
of anthocyanins presents some challenges, as only a very small proportion (<2%) of the
originally ingested anthocyanins are recovered in the bloodstream [21]. This is due to the
poor stability and poor bioavailability of these compounds in the gastrointestinal tract [22].
However, nanotechnology can be used to solve these problems. Several studies have shown
that the encapsulation of anthocyanins in nanoformulations contributes significantly to the
stabilization and bioavailability of this type of phytochemicals [23–28].

Although the use of anthocyanin-loaded nanoformulations has been studied mainly
for the prevention and treatment of cancer [15,29–31], some studies investigated the use
of these nanoparticles for the prevention and treatment of DM and its complications.
Therefore, this review aimed to provide a general overview of (i) anthocyanins and their an-
tidiabetic potential, and (ii) the application of nanotechnology in the prevention, diagnosis,
and treatment of DM, focusing on the studies that described the use of nanoformulations
to delivery anthocyanins.

2. Diabetic Status: Impact on World Health

DM is a chronic metabolic disorder characterized by hyperglycemia due to deficiency
of insulin secretion or impaired insulin action, affecting millions of people worldwide.
In the next few years, diabetes prevalence is expected to increase by 20% in developed
countries, while in developing countries it is expected to increase by 69% [32]. Globally,
more than 400 million people have diabetes, and this number is expected to increase to
578 million by 2030 [3].

The American Diabetes Association (ADA) defines diabetes as fasting plasma glu-
cose ≥ 126 mg/dL, a 75 g oral glucose tolerance test, 2-h plasma glucose > 200 mg/dL, or
hemoglobin A1c ≥ 6.5% [33]. DM is mainly divided into T1DM and T2DM, with T2DM
being the most common. T1DM is insulin-dependent diabetes and occurs when pancreatic
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β-cells are damaged, resulting in deficient production of this hormone. In addition, this
type of diabetes can be classified as idiopathic or immune-mediated [34]. In T1DM, there
may be irregular hyperglycemia, a risk of severe hypoglycemia, and diabetic ketoacidosis.
T2DM accounts for 90% to 95% of cases and is caused by insulin resistance in the liver
and other peripheral tissues [34]. Furthermore, these people’s ongoing hyperglycemia
metabolic changes, inflammation, and cellular death. In addition, to other cardiovascular
diseases, nephropathy, dyslipidemia, and oxidative stress are frequently linked to the
mortality and morbidity rates of T2DM [35]. WHO reports that the age-specific death rates
for diabetes increased by 3% between 2000 and 2019 [36]. It is concerning that mortality
rates are rising globally and that incidence rates are rising as well. Additionally, people
with diabetes have greater mortality rates from sepsis and a higher chance of developing
infections, such as pneumonia, otitis, and urinary tract infections [35].

DM is currently in its prodromal stage, also referred to as the prediabetic state. Predia-
betes, which has blood glucose levels that are higher than normal but lower than those of
diabetic patients, is reversible and less severe than DM [37]. The people in this state are also
insulin resistant and/or glucose tolerant [38]. Approximately 50% of those with prediabetes
will develop T2DM within seven years, and 83% will convert throughout the course of their
lifetime, according to data analyses [39]. An increase in oxidative stress and, as a result, a
decrease in antioxidant defenses are both linked to DM and prediabetic conditions [37,38].

Over the past few years, there has been a continuous hunt for innovative DM preven-
tion and treatment methods. One or more of the solutions is the use of natural products,
a healthy diet, regular exercise, and blood pressure and lipid profile regulation [40]. In
this context, medicinal plants are abundant in many bioactive compounds, including phe-
nolics like anthocyanins, which have already demonstrated promising antioxidant and
antidiabetic effects [7,8,10,13].

3. Anthocyanins: A Potential Natural Antidiabetic

The main sources of phenolic compounds include plants, fruits, and vegetables. The
primary classes of phenolics are flavonoids and non-flavonoids, and they have already
been demonstrated to have bioactive effects against a variety of diseases [41]. These phy-
tochemicals are promising agents to be used in the pharmaceutical, cosmetic, and food
industries due to the variety of their chemical structures [10,13]. Flavonoids have been
emphasized as phenolic substances with significant biological activities [7,8,42,43]. They are
low-molecular-mass phenolic secondary compounds of plants that aid in defending plants
from environmental stresses [44]. Additionally, flavonoids are recognized as floral pig-
ments [45]. These compounds are made of two aromatic rings (A and B) and a heterocyclic
ring (C) with an oxygen atom, each with a 15-carbon skeleton (C6-C3-C6) [14].

Phenolic substances are well known for having properties that support health, such as
antioxidant, antidiabetic, antimicrobial, anticancer, and others [9,13,46,47]. Anthocyanins
have been shown to play a significant part in the process of metabolic diseases such as
DM [39], with epidemiological research demonstrating an inverse relationship between
dietary flavonoids and T2DM incidence [48–50].

3.1. Structure and Function

The family of flavonoids known as anthocyanidins and their glucosides, also known
as anthocyanins (anthos means flower and kyanos means blue), produced via the phenyl-
propanoid pathway, are what give many fruits, vegetables, and beverages their deep red,
purple, and blue colors [16]. They contribute to the nutritional and sensory properties
of plants and are water-soluble [14]. These compounds may also function as pollina-
tors, antifeedants, and phytoalexins, in addition to aiding in a plant’s defense against
pathogens, predators, UV radiation, and environmental factors [14]. Blueberries, cherries,
raspberries, strawberries, purple grapes, black currants, and red wine are the main sources
of anthocyanidins [16].
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Chemically speaking, anthocyanins are found as a glycoside that contains both a non-
sugar component (aglycone: anthocyanidin) and sugar (glycone moiety: glucose, galactose,
xylose, rhamnose, or arabinose) [15]. These substances are flavonoids because they have
three benzoic rings: an A ring, a heterocyclic ring with an oxygen atom (C ring), and a
B ring that is benzoic with a carbon-carbon bond link called flavylium ion [51]—Figure 1.
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The most prevalent anthocyanidins discovered in food are cyanidin, delphinidin, mal-
vidin, pelargonidin, peonidin, and petunidin—Table 1, which are among the approximately
30 anthocyanidins currently known [14,19]. The classification of anthocyanins is made
according to (i) the number, position, and degree of methylation of the hydroxyl groups;
(ii) the number and nature of the sugar moieties bonded to the aglycone; and (iii) the
position of the aliphatic and/or aromatic carboxylate acids on the sugar molecule [14].
Some of the elements accountable for the various biological activities of these compounds
include hydroxylation, methylation, and the number and type of sugars linked to the
aglycone [14,15,52]. Anthocyanins are powerful antioxidants because of their chemical
structure. The anthocyanin skeleton’s hydroxyl (-OH) and methoxy (-OCH3) group count
and location both have an impact on the antioxidant potential of the substance. For instance,
the antioxidant activity is greater when there are more hydroxyl groups [14]. Additionally,
cyanidin, delphinidin, and pelargonidin are highly effective against the superoxide anion,
while pelargonidin is effective against hydroxyl radicals [53].

Table 1. Chemical structures and sources of six common anthocyanidins found in nature (adapted
from [53]).

Anthocyanidin R1 R2 R3 Natural Sources

Cyanidin -OH -OH -H Apple, blackberry, elderberry,
plum, peach, nectarine

Delphinidin -OH -OH -OH Oranges, grapes, beans
Pelargonidin -H -OH -H Strawberries, red radishes

Malvidin -OCH3 -OH -OCH3 Grapes

Peonidin -OCH3 -OH -H
Cranberries, blueberries,
plums, cherries, grapes,

purple corn
Petunidin -OH -OH -OCH3 Grapes, red berries

Anthocyanins are less stable due to factors such as temperature variations, cooking,
exposure to light and oxygen, as well as the presence of enzymes, phenolic compounds,
metal ions, ascorbic acid, hydrogen peroxide, and water [54]. They are also influenced by
storage and processing conditions.

3.2. Main Sources

Anthocyanins can be found in large amounts in many red and blue fruits and
vegetables—Table 1. Their content depends on the species, cultivar, growing region,
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climate (e.g., temperature, humidity, light exposure), harvesting, ripening, processing, and
storage conditions [16]. The main sources of anthocyanins are berries, like strawberries,
blueberries, blackberries, blackcurrant, and raspberries [16]. These berries contain between
100 and 700 mg of anthocyanins per g of fresh fruit [55,56]. Elderberries and chokeberries
have the greatest concentrations of these compounds (1.4 to 1.8 g per 100 g). The skin of
cherries has the highest concentration of anthocyanins, followed by flesh and pits [57].
Other great sources include açai, purple corn, plums, pomegranates, eggplant, wine, grapes,
and red/purple vegetables [55,56,58].

The Mediterranean diet, which is high in these phenolic compounds due to its abun-
dance in red fruits and wine, is the one with the greatest daily intake of anthocyanins [59].
About 70% of the anthocyanins consumed every day come from fruits, while 25% come
from wine 25% [60]. The main anthocyanidins consumed by humans are cyanidin, delphini-
din, malvidin, pelargonidin, peonidin, and petunidin, with cyanidin 3-O-glucoside being
primarily found in berries, and malvidin 3-O-glucoside in broad varieties of foods [16]. To
guarantee an adequate level of bioactive compounds with health-promoting properties, reg-
ular consumption of fruits and vegetables is imperative. Numerous studies have shown that
eating foods high in phenolic compounds, such as anthocyanins, can reduce oxidative stress
and inflammation, which lowers the chance of developing chronic diseases [13,14,47,59].

3.3. Antidiabetic Potential

Anthocyanins have been found to be beneficial in the prevention and treatment of
DM and its complications, according to several investigations [9,17,61]—Table 2. These
compounds have demonstrated the ability to reduce hyperglycemia, insulin resistance,
reactive species, and proinflammatory cytokines in this setting [8,9,17,48]. Additionally,
they were found to be involved in gluconeogenesis suppression, as well as α-amylase and
α-glucosidase activity [62–64].

The enzymes α-amylase and α-glucosidase hydrolyze carbohydrates and produce glu-
cose, and thus they are crucial for controlling digestion and absorbing glucose. Numerous
studies have demonstrated the ability of anthocyanins or the consumption of foods high in
anthocyanins to inhibit these enzymes, thereby modulating postprandial blood glucose
and preventing the onset of DM [8,62,64,65]. The α-glucosidase enzyme can be inhibited by
sweet cherry extracts, according to previous research [8]. The authors claim that cherries are
extremely rich in anthocyanins, especially cyanidin 3-O-rutinoside [8], which has already
been shown to significantly inhibit α-glucosidase activity in a concentration-dependent
way [66]. According to additional research, cyanidin from Cinnamomum camphora fruit
inhibited α-glucosidase action more potently than Acarbose (a drug used for the manage-
ment of glycemic control in patients with T2DM) [67]. The ability to inhibit α-glucosidase
was also demonstrated in other experiments with blueberry, blackcurrant, and blue hon-
eysuckle [68], blackberry [69], and bilberry and cranberry [70]. The activity of pancreatic
α-amylase was shown to be inhibited by cyanidin-3-rutinoside in research conducted
by Akkarachiyasit and colleagues [71]. According to recent research on animal studies,
T2DM mice fed blackcurrant extract, which contains high levels of delphinidin 3-rutinoside,
demonstrated a reduction in blood glucose concentration and an improvement in glucose
tolerance [72]. Another study found that cyanidin 3-glucoside reduced fasting blood glu-
cose and increased glycogen synthesis, which was most likely caused by an increase in
GLUT-1 expression in the liver of db/db mice [73]. Malvidin, malvidin 3-glucoside, and
malvidin 3-galactoside, which are all components of blueberry anthocyanin extract, were
discovered by Herrera-Balandrano and co-works [74] to be capable of inhibiting diabetes
hyperlipidemia and decrease insulin levels. In streptozotocin-induced diabetic rats treated
for 12 weeks, anthocyanins from purple sweet potatoes improved blood glucose and lipid
levels and reduced oxidative stress and liver damage [75].

In human studies, anthocyanins’ ability to treat diabetes was also assessed. A ran-
domized controlled study performed on 37 people with T2DM demonstrated that taking
350 mg of whortleberry fruit hydroalcoholic extract, every eight hours for two months
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could lower blood levels of fasting glucose, 2-h postprandial glucose, and HbA1C [76].
Similarly, eating freeze-dried strawberries for six weeks increased antioxidant capacity and
blood glucose levels, while lowering inflammatory reaction and lipid peroxidation [77]. An-
thocyanin supplementation for 12 weeks improved serum adiponectin and fasting glucose
in patients with recently diagnosed diabetes, according to a study that included people
with prediabetes or diabetes [78].

Despite a number of scientific studies showing that anthocyanins are crucial for the
prevention and treatment of DM and its complications—Table 2, it is important to take
into account that the limited bioavailability and poor stability of these colored compounds
hinder the achievement of their highest therapeutic potential. To improve the efficacy of
anthocyanins, lipids, polysaccharides, and protein complexes or nanoencapsulation may
be suitable substitutes.

Table 2. In vitro studies, animal studies, and clinical trials on the antidiabetic potential of antho-
cyanins.

Source Anthocyanin Type Main Outcomes Reference

Sweet Cherries
(Prunus avium L.) Anthocyanins-enriched fraction α-glucosidase inhibition [8]

Cinnamomum camphora L. fruit Cyanidin α-glucosidase inhibition [67]

Blueberry, blackcurrant and
blue honeysuckle fruits Anthocyanins-enriched fraction α-glucosidase inhibition [68]

Blueberries (Vaccinium
corymbosum) and blackberries

(Rubus spp.)
Anthocyanins-enriched fraction α-glucosidase inhibition [69]

Vaccinium oxycoccos L. and
Vaccinium myrtillus L. Anthocyanins-enriched fraction α-glucosidase inhibition [70]

n.d. Cyanidin 3-rutinoside α-amylase inhibition
↓ postprandial glycemia [71]

Blackcurrant extract
(11 g per kg) Anthocyanins-enriched fraction ↓ blood glucose

↑ glucose tolerance [72]

n.d. Cyanidin 3-O-glucoside
↓ fasting blood glucose levels
↓ accumulation of liver lipids
↑ glycogen synthesis

[73]

Blueberry anthocyanin extract
(100.4 mg per kg) Anthocyanins-enriched fraction

↓ fasting blood glucose levels
↓ insulin levels
↑ liver antioxidants

[74]

Purple sweet potato Anthocyanins-enriched fraction

↓ blood glucose levels
↑ glucose tolerance
↓ liver damage

↑ antioxidant capacity

[75]

Whortleberry fruit
hydroalcoholic extract

(1.0 g per day)
Anthocyanins-enriched fraction ↓ blood glucose of fasting glucose [76]

Freeze-dried strawberry
(100 g per day) Anthocyanins-enriched fraction ↓ lipid peroxidation

↓ HbA1c and total antioxidant status [77]

n.d. Anthocyanins
(320 mg per day)

↑ adiponectin
↓ fasting glucose

↓ basal glycemia and insulinemia
[78]

4. Application of Nanotechnology in DM

Nanotechnology includes the atomic- or molecule-level manipulation of materials
in physics, chemistry, and biology [79]. Nanotechnology has so far greatly benefited our



Pharmaceuticals 2023, 16, 736 7 of 16

society, making great contributions in several prestigious industries, including electronics,
energy, agriculture, textile, environmental remediation, cosmetics, medicine, and healthcare,
among others [80]. The advancement of nanotechnology in the medical and healthcare
fields over the past 20 years has helped with the prevention, diagnosis, and treatment of
numerous pathologies, including DM [79,81].

Up to now, nanotechnology has been widely investigated for the prevention, diagnosis,
and treatment of DM and its complications, as previously reviewed in detail in several arti-
cles [82–92]. Nanotechnology has aided in the diagnosis of DM, as the early detection of this
disease or knowledge of its exact stage of progression is essential for its management and
for the prevention of its potentially fatal complications. For instance, since the loss in β-cell
mass is what drives the progression of DM, specifically type 1, nanoprobes (e.g., metallic
and magnetic nanoparticles) with β-cell specificity and high contrast can quantify β-cell
mass by using various imaging techniques, such as computed tomography (CT), positron
emission tomography (PET) and magnetic resonance imaging (MRI), which is otherwise
only possible by performing a post-mortem autopsy [84]. Moreover, new nanotechnology-
based sensors, such as metal nanoparticles optical sensor systems, carbon nanotubes for
fluorescent glucose sensing, and nanoparticles for direct enzyme-free detection of glucose,
among others, enable the accurate gathering of data about the patient’s blood glucose levels
and, as a result, better insulin dosing [92]. Additionally, “artificial pancreas” or “‘smart”
glucose-responsive insulin-based therapies have been developed using nanotechnology.
Examples of these devices include patches that contain microneedles packed with insulin
and glucose-sensing enzymes that are released in response to the body’s needs, thereby low-
ering the frequency of hypoglycemic and hyperglycemic events [84,93]. Additionally, this
eliminates the need for patients to conduct routine examinations, which can be challenging
and uncomfortable, especially for young children and the elderly.

Last but not least, using nanoformulations to deliver antidiabetic drugs can greatly aid
in the prevention and treatment of DM [82,85,94]. Examples of such formulations include
ceramic nanoparticles, liposomes, dendrimers, polymeric biodegradable nanoparticles,
and polymeric micelles. In short, nanoformulations effectively transport the antidiabetic
agent to the target site in the desired release pattern while also enhancing its stability.
Utilizing nanocarriers can also lower medication dosage and administration frequency,
likely reducing the risk of toxic effects.

4.1. Nanoformulations for the Delivery of Anthocyanins for the Prevention and Treatment of DM

Numerous in vitro and in vivo studies have shown that bioactive compounds found
in nature, such as anthocyanins, aid in the prevention and treatment of metabolic disorders
like DM, as previously discussed in this review—Table 2. In light of this, it is advised to
consume anthocyanins supplements or anthocyanin-rich foods (berries, currants, grapes,
tropical fruits, etc.) as a preventive and therapeutic approach towards DM, and even
DM-related complications, like nephropathy, neuropathy retinopathy, hearts problems,
and among others [57,95,96]. Because the traditional antidiabetic medications (Insulins,
Sulfonylureas (SUs), Thiazolidinediones (TZDs), Biguanides, Meglitinides, etc.) are linked
to a number of side effects, including gastrointestinal disorders such as constipation, di-
arrhea, vomiting, nausea, and even severe hepatic or renal impairment, the use of these
naturally-derived products has also recently attracted significant attention [97]. However,
a number of variables limit the potential of natural-derived compounds. In the case of
anthocyanins, their low in vivo absorption, which is brought on by their poor stability and
poor bioavailability in the gastrointestinal tract, hinders their therapeutic impact [22]. An-
thocyanins are vulnerable to gastrointestinal pH, enzymatic environments, and microbiota
after ingestion, which cause the anthocyanins to be broken down into metabolites and have
poor bioavailability [22,98,99]—Figure 2.
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Additionally, the strong polarity of anthocyanins prevents them from crossing the lipid-
rich outer membrane of small intestine enterocytes [98]. Even after absorption, complete
anthocyanins may continue to be metabolized in the liver or kidney. Thus, by increasing the
stability and bioavailability of anthocyanins in the gastrointestinal tract, nanoformulations
can be used to greatly increase anthocyanins’ absorption (Figure 3).
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According to a recent review by Shen et al. [98], nanoformulations (lipid-based,
polysaccharide-based, and protein-based complexes, as well as in anthocyanin-encapsulation
systems) have been researched to deliver anthocyanins and can lessen anthocyanins’ high
instability and poor bioavailability in a variety of ways.

Anthocyanins are compounds with high polarity, which limits their crossing through
the lipid-rich outer membrane of the small intestine. Having this in mind, lipid-based
nanoformulations (liposome, noisome, micelle, etc.) with the right balance of lipophilicity
and hydrophilicity can increase intestinal transport and thereby increase the bioavailabil-
ity of anthocyanins [98]. In fact, studies demonstrated that phospholipid-anthocyanins
nanoformulations allowed a better transepithelial transport activity than free anthocyanins,
prolong the half-life of anthocyanins in the gastrointestinal tract, and increased concen-
tration in blood [100]. Similarly, it was found that noisome allowed a better absorption
of anthocyanins inside the intestine villus [101]. Nevertheless, phospholipids can easily
oxidize [100], and the assembly of niosomes (ratios of cholesterol and surfactant) limits the
trapping efficacy and controlled release of anthocyanins [101].

On the other hand, by preventing them from degrading in biological environments,
anthocyanins’ conjugation with polysaccharides (such as chitin, cellulose, chitosan, pectin,
etc.) can enhance their stabilization. It has been reported that polysaccharides can stabilize
anthocyanin pigment through modification of the equilibrium and rate constants of the
flavylium network [102,103]. Polysaccharides are additionally renowned for their capacity
to regulate the release of substances [104]. For instance, pectin interacts slowly with bile
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salts [105], and this interaction was stronger than that between pectin and anthocyanins,
thus, causing the controlled release of anthocyanins from the pectin complex in the intes-
tine [106]. As a result, they permit the release of anthocyanins for extended durations,
increasing their bioavailability. Nevertheless, it must be considered that it was also found
some issues related to the polysaccharides-based delivery of anthocyanins. For instance,
some polysaccharides, such as chitosan, only dissolve in acidic environments, which may
affect the release of anthocyanins [23]. Pectin-cyanidin-3-glucoside nanoformulation also
demonstrated low loading efficiency [107].

Anthocyanins can naturally associate with proteins (such as those found in soy, whey,
etc.) to create more stable protein-anthocyanin complexes. The anthocyanins-protein
interaction is based on the formation of multiple weak interactions, reinforcing and sta-
bilizing the complexes between amino acid side chains of protein and aromatic rings of
anthocyanins [98]. Soy protein-blueberry anthocyanin nanoformulations showed better
bioaccessibility in simulated jejunal and ileal compartments [108] and whey protein-bilberry
anthocyanin capsules increased systemic concentrations and short-term bioavailability of
anthocyanins [109]. On the other hand, anthocyanin released in the ileal efflux might be
metabolized in the colon instead of entering body circulation [108] and the isoelectric points
of whey protein limited their applications [109].

Lastly, anthocyanins can also be encapsulated being therefore protected with various
coating materials, usually polymeric materials. These materials potentially improve the
anthocyanin’s stability by serving as a barrier towards different factors such as oxygen, light,
temperature, water, enzyme, and reactive compounds [110]. Additionally, anthocyanin-
encapsulation systems can be produced by controlling certain parameters can be controlled
such as place and time of delivery for maximum efficiency, the size of vesicles produced by
this method varies [110]. The majority of anthocyanin-loaded nanoformulation research to
date has focused on cancer prevention and therapy [15,29,31,44]. However, some studies
showed the potential of anthocyanin-loaded nanoparticles for the prevention and treatment
of DM, and its complications, as detailed in the following sections.

4.1.1. Anthocyanin-Loaded Nanoparticles for DM Prevention

Because mitochondria are involved in a number of insulin-signaling mechanisms that
maintain proper glucose homeostasis, this organelle is crucial in the emergence of DM.
Samadder et al. [111] created pelargonidin-loaded poly-lactide-co-glycolic-acid (PLGA)
nanoparticles in order to investigate the protective effects of this anthocyanin in preserving
glucose homeostasis and mitochondrial functionality in L6 muscle cells under the influence
of alloxan (ALX)-induced prediabetic/diabetic states. Results showed that the disruption
of enzymatic protein glucokinase, the GLUT4 glucose transporter in ALX-induced L6 cells
was associated with an imbalance in glucose homeostasis. This disruption was lessened in
cells treated with free pelargonidin and pelargonidin-PLGA nanoparticles before the ALX
treatment. Other tests performed in this study, showed that cells that were pre-treated with
free-pelargonidin and pelargonidin-PLGA nanoparticles expressed more of the proteins
(IRS1, IRS2, and PI3) involved in glucose regulation. Additionally, pelargonidin showed
defense against DNA deterioration and reactive stress. Although both free-pelargonidin
and pelargonidin-PLGA nanoparticles had beneficial impacts on the development and
prevention of DM, pelargonidin-loaded nanoparticles performed more effectively than
pelargonidin alone, even at a dose that was 10-fold lower. The authors hypothesized that
this finding was caused by pelargonidin’s enhanced intracellular penetration when loaded
into nanoparticles, enabling faster transport to target locations.

In diabetic individuals, the enzymes α-amylase and α-glucosidase digest the carbohy-
drates and raise the postprandial glucose level. Therefore, postprandial hyperglycemia can
be controlled and the chance of developing DM can be decreased by inhibiting the activity
of these enzymes DM [65]. On the other hand, oxidative stress has a significant impact on
T2DM development [112]. Using Bauhinia variegata flower extract, which is rich in antho-
cyanins like cyanidin-3-glucoside, malvidin-3-glucoside, malvidin-3-diglucoside, peonidin-



Pharmaceuticals 2023, 16, 736 10 of 16

3-glucoside and peonidin-3-diglucoside, Johnson and colleagues [113] showed that silver
nanoparticles may prevent diabetes by inhibiting the antioxidant property and α-amylase
enzyme activity. For 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing power
activity assays, the IC50 value of nanoparticle was discovered to be 4.64 and 16.6 µg/mL,
respectively. The nanoparticle’s IC50 measurement for inhibiting α-amylase was reported
to be 38 µg/mL.

4.1.2. Anthocyanin-Loaded Nanoparticles for DM Treatment

The in vitro and in vivo inhibitory effects of delphinidin and cyanidin in the free and
liposomal forms on the albumin glycation reaction were examined in a 2013 study by
Gharib and colleagues [61]. The inhibition of the protein glycation process is considered
a promising strategy to control DM. The authors encapsulated delphinidin in liposomes
made of phosphatidylcholines and cholesterol. Results revealed that the albumin glycation
was significantly inhibited by anthocyanins in their liposomal form more effectively than
in their free form. The rate of albumin glycation with delphinidin and cyanidin chloride
in free forms could be reduced to 30.50 and 46.00%, respectively, when compared to
control groups. Delphinidin and cyanidin-loaded liposomes were able to lower albumin
glycation to 8.50 and 14.60%, respectively, under the same circumstances. The rate of
albumin and HbA1c glycation could be lowered to 46.35 and 3.60%, respectively, with daily
administration of 100 mg/kg delphinidin-loaded liposomes after 8 weeks of in vivo trials in
diabetic mice. Additionally, under the same circumstances, the cyanidin-loaded liposomes
could reduce albumin and HbA1c glycation rates to 55.56 and 4.95%, respectively. The
writers concluded that these formulations are effective at inhibiting protein glycation and
could be used to manage DM [61].

Pelargonidin was also encapsulated into PLGA nanoparticles by emulsion-diffusion-
evaporation method in another work by Roy et al. [114]. The effects of free-pelargonidin
and nanoparticles were examined in a rat model of diabetes caused by streptozotocin.
0.6 mg pelargonidin/kg body weight or 0.6 mg of pelargonidin-loaded nanoparticles/kg
body weight were administered intravenously to rodents at an internal of 3 days. Two doses
of nanoparticles were administered, and this helped to manage hyperglycemia and hyper-
lipidemia, decreased enzymatic antioxidant activity, and elevated oxidative stress markers.
Overall, using nanoparticles to deliver pelargonidin enabled better control of the diabeto-
genic effects in streptozotocin-induced diabetic rats. This is likely because pelargonidin has
an improved dissolution rate, slow release, and long-acting impact.

More recently, I’tishom et al. [115] showed that DM can be treated with carboxymethyl
chitosan and alginate nanocapsules loaded with anthocyanin-rich purple-sweet-potato-
extract. Researchers found that purple sweet potato extract-loaded chitosan and alginate
nanocapsules were 4.4 times more effective at lowering blood glucose levels in diabetic
mice caused by Streptozotocin than the extract alone.

4.1.3. Anthocyanin-Loaded Nanoparticles for DM Complications

Patients with diabetes mellitus frequently experience hyperlipidemia, which is char-
acterized by abnormally elevated blood levels of fats (lipids), including cholesterol and
triglycerides, and is associated with several additional health issues [116]. In order to
lessen hyperlipidemic aberrations and consequently DM problems, Sreerekha et al. [117]
created anthocyanin-loaded chitosan nanoparticles. In rats fed on high-fat, high-alcohol
diets, dietary supplementation with nanoparticles reduced lipid peroxidation, boosted
antioxidant enzyme activity and inhibited the growth of lipogenesis. In other words, the
group given the nanoparticles had significantly higher catalase and superoxide dismutase
(SOD) enzyme activity levels, decreased serum levels of total cholesterol and triglycerides,
and decreased lipid-mediated oxidative stress and lipid levels in serum and liver.

Among the many complications of DM, cardiac dysfunction is a serious one [118].
By maintaining glycogen levels in the heart tissue and lowering malondialdehyde and
hydroxyproline levels in mice, Hanafy and colleagues [119] were able to effectively attenu-



Pharmaceuticals 2023, 16, 736 11 of 16

ated cardiac dysfunction brought on by fibrosis caused by anthocyanin incorporated into
hydrogel nanoparticles. This indicates that the delivery of anthocyanin via nanoparticles
may increase its retention in the body, because the capsules may protect anthocyanin from
immunoglobulins and cellular immune system components.

5. Conclusions

Natural bioactive compounds are excellent candidates to be studied due to the ongoing
rise in the prevalence of DM around the globe and the need to create new, efficient, safe,
and low-toxic medications. Due to their advantageous health properties, anthocyanins
have been receiving increasing focus. The chance to use these compounds in the creation
of nutraceuticals, functional foods, and cosmetics is made possible by their diversity
and the ease with which they can be discovered and acquired in nature. Numerous
studies demonstrate that these flavonoids work through a variety of antioxidant and
anti-inflammatory pathways to improve insulin resistance, lipid metabolism, glucose
metabolism, and insulin sensitivity. To counteract the reduced stability and bioavailability
of anthocyanins, numerous attempts have been made. Therefore, using nanoformulations
to transport these compounds in the human body may be a good idea. Examples include
liposomes, polymeric biodegradable nanoparticles, ceramic nanoparticles, and polymeric
micelles. Nevertheless, before the use of nanoparticles in the clinical environment they
must check several requirements in terms of their biodegradability, biocompatibility, drug
release time, stability, and integrity of biomacromolecules. To better understand and show
the potential of anthocyanin-loaded nanoformulations to prevent and treat DM, even more,
research must be done, since these nanoformulations have been mostly investigated for
cancer prevention and treatment.

Author Contributions: Conceptualization, A.R.N.; writing—original draft preparation, E.C.C. and
A.R.N.; writing—review and editing, A.R.N., E.C.C. and L.R.S.; supervision, L.R.S. and G.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by CICS-UBI (UIDP/00709/2020), and financed by
National Funds from the Portuguese Foundation for Science and Technology (FCT) to doctoral fel-
lowship grant of Ana R. Nunes (SFRH/BD/139137/2018), Community Funds of Science, Technology
and Higher Educations (MCTES), European Social Funds (EFS), and European Union.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and

Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [CrossRef] [PubMed]
2. Rahman, M.M.; Islam, M.R.; Shohag, S.; Hossain, M.E.; Rahaman, M.S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris,

A.M.; et al. The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review.
Molecules 2022, 27, 2236. [CrossRef] [PubMed]

3. Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal Medicines for Diabetes Management and its Secondary Complications. Curr.
Diabetes Rev. 2021, 17, 437–456. [CrossRef] [PubMed]

4. Nunes, A.R.; Alves, M.G.; Moreira, P.I.; Oliveira, P.F.; Silva, B.M. Can Tea Consumption be a Safe and Effective Therapy Against
Diabetes Mellitus-Induced Neurodegeneration? Curr. Neuropharmacol. 2014, 12, 475–489. [CrossRef] [PubMed]

5. Lima-Martínez, M.M.; Carrera Boada, C.; Madera-Silva, M.D.; Marín, W.; Contreras, M. COVID-19 and diabetes: A bidirectional
relationship. Clin. Investig. Arterioscler. 2021, 33, 151–157. [CrossRef]

6. Panchamoorthy, R.; Vel, N. Herbal spices-based therapeutics for diabetic patients with COVID-19 infection: A review. Nat. Resour.
Hum. Health 2022, 2, 32–51. [CrossRef]

7. Nunes, A.R.; Gonçalves, A.C.; Alves, G.; Falcão, A.; García-Viguera, C.; Moreno, D.A.; Silva, L.R. Valorisation of Prunus avium L.
By-Products: Phenolic Composition and Effect on Caco-2 Cells Viability. Foods 2021, 10, 1185. [CrossRef]

https://doi.org/10.3390/nu12082236
https://www.ncbi.nlm.nih.gov/pubmed/32726990
https://doi.org/10.3390/molecules27051713
https://www.ncbi.nlm.nih.gov/pubmed/35268815
https://doi.org/10.2174/18756417MTExfMTQ1z
https://www.ncbi.nlm.nih.gov/pubmed/33143632
https://doi.org/10.2174/1570159X13666141204220539
https://www.ncbi.nlm.nih.gov/pubmed/25977676
https://doi.org/10.1016/j.artere.2021.04.004
https://doi.org/10.53365/nrfhh/143758
https://doi.org/10.3390/foods10061185


Pharmaceuticals 2023, 16, 736 12 of 16

8. Gonçalves, A.C.; Rodrigues, M.; Santos, A.; Alves, G.; Silva, L.R. Antioxidant Status, Antidiabetic Properties and Effects on
Caco-2 Cells of Colored and Non-Colored Enriched Extracts of Sweet Cherry Fruits. Nutrients 2018, 10, 1688. [CrossRef]

9. Farias, P.F.; Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Antidiabetic potential of dietary polyphenols: A mechanistic review. Food
Res. Int. 2021, 145, 110383. [CrossRef]

10. Gonçalves, A.C.; Nunes, A.R.; Flores-Félix, J.D.; Alves, G.; Silva, L.R. Cherries and Blueberries-Based Beverages: Functional
Foods with Antidiabetic and Immune Booster Properties. Molecules 2022, 27, 3294. [CrossRef]
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